首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In a previous paper we showed that bradykinin (BK), interacting with its B2 receptor, inhibits proximal tubule Na+-ATPase activity but does not change (Na+ + K+)ATPase activity. The aim of this paper was to investigate the molecular mechanisms involved in B2-mediated modulation of proximal tubule Na+-ATPase by BK. To abolish B1 receptor-mediated effects, all experiments were carried out in the presence of (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Leu), des-Arg9-[Leu8]-BK (DALBK), a specific antagonist of B1 receptor. A dual effect on the Na+-ATPase activity through the B2 receptor was found: short incubation times (1-10 min) stimulate the enzyme activity; long incubation times (10-60 min) inhibit it. The stimulatory effect of BK is mediated by activation of phosphoinositide-specific phospholipase C β (PI-PLCβ)/protein kinase C (PKC); its inhibitory action is mediated by Ca2+-independent phospholipase A2 (iPLA2). Prior activation of the PI-PLCβ/PKC pathway is required to activate the iPLA2-mediated inhibitory phase. These results reveal a new mechanism by which BK can modulate renal sodium excretion: coupling between B2 receptor and activation of membrane-associated iPLA2.  相似文献   

2.
Recently, our group described an AT1-mediated direct stimulatory effect of angiotensin II (Ang II) on the Na+-ATPase activity of proximal tubules basolateral membranes (BLM) [Am. J. Physiol. 248 (1985) F621]. Data in the present report suggest the participation of a protein kinase C (PKC) in the molecular mechanism of Ang II-mediated stimulation of the Na+-ATPase activity due to the following observations: (i) the stimulation of protein phosphorylation in BLM, induced by Ang II, is mimicked by the PKC activator TPA, and is completely reversed by the specific PKC inhibitor, calphostin C; (ii) the Na+-ATPase activity is stimulated by Ang II and TPA in the same magnitude, being these effects abolished by the use of the PKC inhibitors, calphostin C and sphingosine; (iii) the Na+-ATPase activity is activated by catalytic subunit of PKC (PKC-M), in a similar and nonadditive manner to Ang II; and (iv) Ang II stimulates the phosphorylation of MARCKS, a specific substrate for PKC.  相似文献   

3.
Clinical and experimental data show an increase in sodium reabsorption on the proximal tubule (PT) in essential hypertension. It is well known that there is a link between essential hypertension and renal angiotensin II (Ang II). The present study was designed to examine ouabain-insensitive Na+-ATPase activity and its regulation by Ang II in spontaneously hypertensive rats (SHR). We observed that Na+-ATPase activity was enhanced in 14-week-old but not in 6-week-old SHR. The addition of Ang II from 10− 12 to 10− 6 mol/L decreased the enzyme activity in SHR to a level similar to that obtained in WKY. The Ang II inhibitory effect was completely reversed by a specific antagonist of AT2 receptor, PD123319 (10− 8 mol/L) indicating that a system leading to activation of the enzyme in SHR is inhibited by AT2-mediated Ang II. Treatment of SHR with losartan for 10 weeks (weeks 4-14) prevents the increase in Na+-ATPase activity observed in 14-week-old SHR. These results indicate a correlation between AT1 receptor activation in SHR and increased ouabain-insensitive Na+-ATPase activity. Our results open new possibilities towards our understanding of the pathophysiological mechanisms involved in the increased sodium reabsorption in PT found in essential hypertension.  相似文献   

4.
We showed previously that angiotensin-(1-7) [Ang-(1-7)] reversed stimulation of proximal tubule Na+-ATPase promoted by angiotensin II (Ang II) through a d-ala7-Ang-(1-7) (A779)-sensitive receptor. Here we investigated the signaling pathway coupled to this receptor. According to our data, Ang-(1-7) produces a MAS-mediated reversal of Ang II-stimulated Na+-ATPase by a Gs/PKA pathway because: (1) the Ang-(1-7) effect is reversed by GDPβS, an inhibitor of trimeric G protein and Gs polyclonal antibody. Cholera toxin, an activator of Gs protein, mimicked it; (2) in the presence of Ang II, Ang-(1-7) increased the PKA activity 10-fold; (3) the peptide inhibitor of PKA blocked the Ang-(1-7) effect on Ang II-stimulated Na+-ATPase; (4) Ang-(1-7) reverses the Ang II-stimulated PKC activity; (5) cAMP mimicked the Ang-(1-7) effect on the Ang II-stimulated Na+-ATPase. Our results provide new understanding about the signaling mechanisms coupled to MAS receptor-mediated renal Ang-(1-7) effects.  相似文献   

5.
The basolateral membranes of kidney proximal tubule cells have (Na++K+)-ATPase and Na+-ATPase activities, involved in Na+ reabsorption. We showed that ceramide (Cer) modulates protein kinase A (PKA) and protein kinase C (PKC), which are involved in regulating ion transporters. Here we show that ceramide, promotes 60% inhibition of Na+-ATPase activity (I50 ≈ 100 nM). This effect was completely reversed by inhibiting PKA but did not involve the classic PKC signaling pathway. In these membranes we found the Cer-activated atypical PKC zeta (PKCζ) isoform. When PKCζ is inhibited, Cer ceases to inhibit the Na+-ATPase, allowing the cAMP/PKA signaling pathway to recover its stimulatory effect on the pump. There were no effects on the (Na++K+)-ATPase. These results reveal Cer as a potent physiological modulator of the Na+-ATPase, participating in a regulatory network in kidney cells and counteracting the stimulatory effect of PKA via PKCζ.  相似文献   

6.
Studies have recently supported the emerging role of OX40/OX40L interaction in atherosclerosis. The mechanism of OX40/OX40L interaction may be related to a variety of signal pathways. The most important signal pathway involves the activation of phospholipase C (PLC) which induces diacylglycerol–protein kinase C (DAG–PKC) and the inositol trisphosphate (IP3)–intracellular free calcium ([Ca2+]i) pathway. The aim of this work was to investigate whether OX40–OX40L interaction can stimulate the PLC signal pathway in human umbilical vein endothelial cells (HUVEC). The DAG and IP3 level in HUVEC were measured by radio-enzymatic assay. The activity of PKC was detected by its ability to transfer phosphate from [γ-32P]ATP to lysine-rich histone. [Ca2+]i concentrations were measured by flow cytometric analysis. Results showed that the DAG level was markedly increased in a concentration-dependent, biphasic manner in HUVEC induced by OX40. The early phase was rapid, peaking at 30 s. The late phase reached the maximum level at 15 min and decayed slowly. OX40 increased PKC activity in a dose-dependent manner with two peaks at 40–50 s and 12–16 min, then decreased slowly, yet maintained a high level for at least 30 min. PKC activity was mainly in cytosol at rest and translocated from cytosol to membrane when stimulated by OX40. Similarly, OX40-induced rapid IP3 formation coincided with the peak of DAG level. Moreover, OX40 also induced peak [Ca2+]i responses including the rapid transient phase and the sustained phase. Anti-OX40L antibody significantly suppressed OX40-induced DAG–PKC and IP3–[Ca2+]i signal pathway activation in HUVEC. In conclusion, the data suggested that OX40–OX40L interaction induced a robust stimulation of phospholipase C signal transduction pathway in HUVEC.  相似文献   

7.

Background

High Na+ intake is a reality in nowadays and is frequently accompanied by renal and cardiovascular alterations. In this study, renal mechanisms underlying perinatal Na+ overload-programmed alterations in Na+ transporters and the renin/angiotensin system (RAS) were investigated, together with effects of short-term treatment with enalapril in terms of reprogramming molecular alterations in kidney.

Methodology/Principal Findings

Male adult Wistar rats were obtained from dams maintained throughout pregnancy and lactation on a standard diet and drinking water (control) or 0.17 M NaCl (saline group). Enalapril (100 mg/l), an angiotensin converting enzyme inhibitor, was administered for three weeks after weaning. Ninety day old offspring from dams that drank saline presented with proximal tubules exhibiting increased (Na++K+)ATPase expression and activity. Ouabain-insensitive Na+-ATPase activity remained unchanged but its response to angiotensin II (Ang II) was lost. PKC, PKA, renal thiobarbituric acid reactive substances (TBARS), macrophage infiltration and collagen deposition markedly increased, and AT2 receptor expression decreased while AT1 expression was unaltered. Early treatment with enalapril reduced expression and activity of (Na++K+)ATPase, partially recovered the response of Na+-ATPase to Ang II, and reduced PKC and PKA activities independently of whether offspring were exposed to high perinatal Na+ or not. In addition, treatment with enalapril per se reduced AT2 receptor expression, and increased TBARS, macrophage infiltration and collagen deposition. The perinatally Na+-overloaded offspring presented high numbers of Ang II-positive cortical cells, and significantly lower circulating Ang I, indicating that programming/reprogramming impacted systemic and local RAS.

Conclusions/Significance

Maternal Na+ overload programmed alterations in renal Na+ transporters and in its regulation, as well as severe structural lesions in adult offspring. Enalapril was beneficial predominantly through its influence on Na+ pumping activities in adult offspring. However, side effects including down-regulation of PKA, PKC and AT2 receptors and increased TBARS could impair renal function in later life.  相似文献   

8.
The geographical distribution of aquatic crustaceans is determined by ambient factors like salinity that modulate their biochemistry, physiology, behavior, reproduction, development and growth. We investigated the effects of exogenous pig FXYD2 peptide and endogenous protein kinases A and C on gill (Na+, K+)-ATPase activity, and characterized enzyme kinetic properties in a freshwater population of Macrobrachium amazonicum in fresh water (<0.5 ‰ salinity) or acclimated to 21 ‰S. Stimulation by FXYD2 peptide and inhibition by endogenous kinase phosphorylation are salinity-dependent. While without effect in shrimps in fresh water, the FXYD2 peptide stimulated activity in salinity-acclimated shrimps by ≈50 %. PKA-mediated phosphorylation inhibited gill (Na+, K+)-ATPase activity by 85 % in acclimated shrimps while PKC phosphorylation markedly inhibited enzyme activity in freshwater- and salinity-acclimated shrimps. The (Na+, K+)-ATPase in salinity-acclimated shrimp gills hydrolyzed ATP at a Vmax of 54.9 ± 1.8 nmol min?1 mg?1 protein, corresponding to ≈60 % that of freshwater shrimps. Mg2+ affinity increased with salinity acclimation while K+ affinity decreased. (Ca2+, Mg2+)-ATPase activity increased while V(H+)- and Na+- or K+-stimulated activities decreased on salinity acclimation. The 120-kDa immunoreactive band expressed in salinity-acclimated shrimps suggests nonspecific α-subunit phosphorylation by PKA and/or PKC. These alterations in (Na+, K+)-ATPase kinetics in salinity-acclimated M. amazonicum may result from regulatory mechanisms mediated by phosphorylation via protein kinases A and C and the FXYD2 peptide rather than through the expression of a different α-subunit isoform. This is the first demonstration of gill (Na+, K+)-ATPase regulation by protein kinases in freshwater shrimps during salinity challenge.  相似文献   

9.
Activation of α1-adrenoceptors as well as endothelin (ET) and angiotensin II (Ang II) receptors in cardiac muscle is coupled to acceleration of the hydrolysis of phosphoinositide (PI), with resultant production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. There is an excellent correlation between the extent of acceleration of the PI hydrolysis and the positive inotropic effect (PIE) under most experimental conditions after the administration of α-adrenoceptor agonists, ET and Ang II in the rabbit ventricular muscle. The PIE of the α-adrenoceptor agonists, ET and Ang II is associated with a negative lusitropic effect and an increase in the sensitivity of myofilaments to Ca2+ ions. The PIE can be selectively inhibited by inhibitors of protein kinase C (PKC) such as staurosporine, NA 0345 and H-7, with little effect on the PI hydrolysis and the PIE of isoproterenol and Bay k 8644. Surprisingly, an activator of PKC, phorbol 12,13-dibutyrate (PDBu), selectively and more completely inhibited the PIE and acceleration of PI hydrolysis induced by the α-adrenoceptor agonists as well as by ET and Ang II in the rabbit. These receptor agonists consistently cause intracellular alkalinization by activation of Na+−H+ exchange, while the effects on membrane ion channel activities are divergent. For example, α-adrenoceptor agonists cause monophasic prolongation of the action potential, the time course of which coincides well with that of the PIE, while ET and Ang II produce a biphasic change in action potential duration, i.e., the long-lasting prolongation preceded by a transient abbreviation. α-Adrenoceptor agonists scarcely affect ICa, whereas ET elicits a biphasic alteration of the current. In addition, the potassium current, IKl, is markedly suppressed by α-adrenoceptor agonists, but this effect is not revealed with Ang II under the same experimental condition. These results indicate that the effects of α1-adrenoceptors stimulation are partially shared by those of ET and Ang II receptor activation in the heart. Approximately 60% of the total population of α1-adrenoceptors in the rabbit ventricle are composed of α1B subtype, which is susceptible to chlorethylclonidine (CEC) and is predominantly responsible for the α1-mediated PIE and PI hydrolysis. The remaining fraction that belongs to α1A-adrenoceptors subtype is further subclassified into the WB 4101-sensitive (partly coupled to PI hydrolysis) and the niguldipinesensitive (PI hydrolysis-unrelated) subtypes. Special issue dedicated to Dr. Kinya Kuriyama.  相似文献   

10.
11.
Considerable evidence indicates that the renal Na+,K+-ATPase is regulated through phosphorylation/dephosphorylation reactions by kinases and phosphatases stimulated by hormones and second messengers. Recently, it has been reported that amino acids close to the NH2-terminal end of the Na+,K+-ATPase α-subunit are phosphorylated by protein kinase C (PKC) without apparent effect of this phosphorylation on Na+,K+-ATPase activity. To determine whether the α-subunit NH2-terminus is involved in the regulation of Na+,K+-ATPase activity by PKC, we have expressed the wild-type rodent Na+,K+-ATPase α-subunit and a mutant of this protein that lacks the first thirty-one amino acids at the NH2-terminal end in opossum kidney (OK) cells. Transfected cells expressed the ouabain-resistant phenotype characteristic of rodent kidney cells. The presence of the α-subunit NH2-terminal segment was not necessary to express the maximal Na+,K+-ATPase activity in cell membranes, and the sensitivity to ouabain and level of ouabain-sensitive Rb+-transport in intact cells were the same in cells transfected with the wild-type rodent α1 and the NH2-deletion mutant cDNAs. Activation of PKC by phorbol 12-myristate 13-acetate increased the Na+,K+-ATPase mediated Rb+-uptake and reduced the intracellular Na+ concentration of cells transfected with wild-type α1 cDNA. In contrast, these effects were not observed in cells expressing the NH2-deletion mutant of the α-subunit. Treatment with phorbol ester appears to affect specifically the Na+,K+-ATPase activity and no evidence was observed that other proteins involved in Na+-transport were affected. These results indicate that amino acid(s) located at the α-subunit NH2-terminus participate in the regulation of the Na+,K+-ATPase activity by PKC. Received: 10 July 1996/Revised: 19 September 1996  相似文献   

12.
Acute myocardial stretch elicits a biphasic increase in contractility: an immediate increase, known as Frank–Starling mechanism (FSM), followed by a progressive increase, regarded as slow force response (SFR). In this study, we characterized the contractile response to acute stretch from 92 to 100% Lmax in rabbit papillary muscles (n = 86) under normoxic and ischemic conditions, and its modulation by angiotensin II signaling pathway. Under normoxia, the FSM was independent of Na+/H+-exchanger, reverse mode of Na+/Ca2+-exchanger (r-NCX), AT1 receptor, AT2 receptor and PKC. Regarding the SFR, it was mediated by AT1 receptor activation and its downstream effectors PKC, Na+/H+-exchanger and r-NCX. Ischemia negatively impacted on the FSM and abolished the SFR, with the muscles exhibiting a time-dependent decline in contractility. Under ischemic conditions, FSM was not influenced by AT1 and AT2 receptors or PKC activation. AT1 receptor antagonism rescued the progressive deterioration in contractility, an effect partially dependent on AT2 receptor activation.  相似文献   

13.
Glutathionylation of the Na+-K+ pump’s β1-subunit is a key molecular mechanism of physiological and pathophysiological pump inhibition in cardiac myocytes. Its contribution to Na+-K+ pump regulation in other tissues is unknown, and cannot be assumed given the dependence on specific β-subunit isoform expression and receptor-coupled pathways. As Na+-K+ pump activity is an important determinant of vascular tone through effects on [Ca2+]i, we have examined the role of oxidative regulation of the Na+-K+ pump in mediating angiotensin II (Ang II)-induced increases in vascular reactivity. β1-subunit glutathione adducts were present at baseline and increased by exposure to Ang II in rabbit aortic rings, primary rabbit aortic vascular smooth muscle cells (VSMCs), and human arterial segments. In VSMCs, Ang II-induced glutathionylation was associated with marked reduction in Na+-K+ATPase activity, an effect that was abolished by the NADPH oxidase inhibitory peptide, tat-gp91ds. In aortic segments, Ang II-induced glutathionylation was associated with decreased K+-induced vasorelaxation, a validated index of pump activity. Ang II-induced oxidative inhibition of Na+-K+ ATPase and decrease in K+-induced relaxation were reversed by preincubation of VSMCs and rings with recombinant FXYD3 protein that is known to facilitate deglutathionylation of β1-subunit. Knock-out of FXYD1 dramatically decreased K+-induced relaxation in a mouse model. Attenuation of Ang II signaling in vivo by captopril (8 mg/kg/day for 7 days) decreased superoxide-sensitive DHE levels in the media of rabbit aorta, decreased β1-subunit glutathionylation, and enhanced K+-induced vasorelaxation. Ang II inhibits the Na+-K+ pump in VSMCs via NADPH oxidase-dependent glutathionylation of the pump’s β1-subunit, and this newly identified signaling pathway may contribute to altered vascular tone. FXYD proteins reduce oxidative inhibition of the Na+-K+ pump and may have an important protective role in the vasculature under conditions of oxidative stress.  相似文献   

14.
We demonstrated previously that 30 min of hypoxic preconditioning (HPC) applied 1 day before 10 min of transient global cerebral ischemia (tGCI) reduced neuronal loss in the hippocampal CA1 subregion in adult rats. The aim of the present study was to investigate the role of Na+/K+-ATPase and protein kinase Mζ (PKMζ) in the protective effect of HPC against tGCI in adult rats. We found that the activity of Na+/K+-ATPase decreased in the hippocampal CA1 subregion after 10 min of tGCI. This effect was not seen after 30 min of HPC in adult rats. Corresponding to the changes in Na+/K+-ATPase activity, the surface expression of Na+/K+-ATPase α1 subunit increased after HPC. Furthermore, HPC dramatically reduced the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells in the hippocampal CA1 subregion after tGCI. However, neither PKMζ nor phosphorylation of PKMζ was changed after tGCI or HPC. The results of the present study are consistent with the hypothesis that both enhanced recovery of Na+/K+-ATPase activity due to preserved the protein levels of Na+/K+-ATPase α1 subunit and reduced DNA fragmentation after tGCI contribute to the protection afforded by HPC. However, PKMζ activation does not appear to play a role in this neuroprotection.  相似文献   

15.

Background

Several studies have correlated protein restriction associated with other nutritional deficiencies with the development of cardiovascular and renal diseases. The driving hypothesis for this study was that Ang II signaling pathways in the heart and kidney are affected by chronic protein, mineral and vitamin restriction.

Methodology/Principal Findings

Wistar rats aged 90 days were fed from weaning with either a control or a deficient diet that mimics those used in impoverished regions worldwide. Such restriction simultaneously increased ouabain-insensitive Na+-ATPase and decreased (Na++K+)ATPase activity in the same proportion in cardiomyocytes and proximal tubule cells. Type 1 angiotensin II receptor (AT1R) was downregulated by that restriction in both organs, whereas AT2R decreased only in the kidney. The PKC/PKA ratio increased in both tissues and returned to normal values in rats receiving Losartan daily from weaning. Inhibition of the MAPK pathway restored Na+-ATPase activity in both organs. The undernourished rats presented expanded plasma volume, increased heart rate, cardiac hypertrophy, and elevated systolic pressure, which also returned to control levels with Losartan. Such restriction led to electrical cardiac remodeling represented by prolonged ventricular repolarization parameters, induced triggered activity, early after-depolarization and delayed after-depolarization, which were also prevented by Losartan.

Conclusion/Significance

The mechanisms responsible for these alterations are underpinned by an imbalance in the PKC- and PKA-mediated pathways, with participation of angiotensin receptors and by activation of the MAPK/ERK1/2 pathway. These cellular and molecular alterations culminate in cardiac electric remodeling and in the onset of hypertension in adulthood.  相似文献   

16.
Miltefosine has been shown to be a very active compound against Trypanosoma cruzi. Here, we evaluated the effects of miltefosine on the activity of the Na+-ATPase and protein kinase C (PKC) present in the plasma membrane of T. cruzi. Furosemide (2 mM), a specific inhibitor of Na+-ATPase, abolished the growth of T. cruzi showing a crucial role of this enzyme to parasite growth. Miltefosine inhibited the Na+-ATPase activity with IC50 = 18 ± 5 μg mL−1. This effect was shown to be reversible, dependent on the pH and Ca2+. The inhibition was not observed when the membranes were solubilized with 0.1% deoxycholate, suggesting that the interaction between the enzyme and membrane phospholipids might be important for the drug effect. Miltefosine also inhibited the parasite PKC activity, but through a Na+-ATPase-independent way. Altogether the results indicate that miltefosine inhibits T. cruzi growth through, at least in part, the inhibition of both Na+-ATPase and PKC activities.  相似文献   

17.
Previous data showed that prostaglandin E2 (PGE2) mediates the inhibitory effect of bradykinin (BK) on proximal tubule (PT) Na+-ATPase activity. The aim of this work was to investigate the molecular mechanisms involved in the effect of PGE2 on PT Na+-ATPase. We used isolated basolateral membrane (BLM) from pig PT, which expresses several components of different signaling pathways. The inhibitory effect of PGE2 on PT Na+-ATPase activity involves G-protein and the activation of protein kinase A (PKA) because: (1) PGE2 increased [35S]GTPγS binding; (2) GDPβS abolished the inhibitory effect of PGE2; (3) PGE2 increased PKA activity; (4) the inhibitory effect of PGE2 was abolished by PKA inhibitor peptide. We observed that the PKA-mediated inhibitory effect of PGE2 on PT Na+-ATPase activity requires previous activation of protein kinase C. In addition, we observed that PGE2 stimulates Ca2+-independent phospholipase A2 activity representing an important positive feedback to maintain the inhibition of the enzyme. These results open new perspectives to understanding the mechanism involved in the effect of PGE2 on proximal tubule sodium reabsorption.  相似文献   

18.
The present study is designed to investigate the role of Na+-H+ exchanger in the cardioprotective effect of ischaemic and angiotensin (Ang II) preconditioning. Isolated perfused rat heart was subjected to global ischaemia for 30 min followed by reperfusion for 120 min. Coronary effluent was analysed for LDH and CK release to assess the degree of cardiac injury. Myocardial infarct size was estimated macroscopically using TTC staining. Left ventricular developed pressure (LVDP) and dp/dt were recorded to evaluate myocardial contractility. Four episodes of ischaemic or Ang II preconditioning markedly reduced LDH and CK release in coronary effluent and decreased myocardial infarct size. 5-(N-ethyl-N-isopropyl)amiloride (EIPA), a Na+-H+ exchange inhibitor, produced no marked effect on ischaemic preconditioning and Ang II preconditioning induced cardioprotection. On the other hand, EIPA administration prior to global ischaemia produced a similar reduction in myocardial injury as was noted with ischaemic preconditioning or Ang II preconditioning. On the basis of these results, it may be concluded that inhibition of Na+-H+ exchanger protects against ischaemia-reperfusion induced myocardial injury whereas activation of Na+-H+ exchanger may not mediate the cardioprotective effect of ischaemic and Ang II preconditioning.  相似文献   

19.
Rat C6 glioma cells were cultured for 4 days in MEM medium supplemented with 10% bovine serum and Na+,K+-ATPase activity was determined in homogenates of harvested cells. Approximately 50% of enzyme activity was attained at 1.5 mM K+ and the maximum (2.76±0.13 mol Pi/h/mg protein) at 5 mM K+. The specific activity of Na+,K+-ATPase was not influenced by freezing the homogenates or cell suspensions before the enzyme assay. Ten minutes' exposure of glioma cells to 10–4 or 10–5 M noradrenaline (NA) remained without any effect on NA+,K+-ATPase activity. Neither did the presence of NA in the incubation medium, during the enzyme assay, influence the enzyme activity. The nonresponsiveness of Na+,K+-ATPase of C6 glioma cells to NA is consistent with the assumption that (+) form of the enzyme may be preferentially sensitive to noradrenaline. Na+,K+-ATPase was inhibited in a dose-dependent manner by vanadate and 50% inhibition was achieved at 2×10–7 M concentration. In spite of the fact that Na+,K+-ATPase of glioma cells was not responsive to NA, the latter could at least partially reverse vanadate-induced inhibition of the enzyme. Although the present results concern transformed glial cells, they suggest the possibility that inhibition of glial Na+,K+-ATPase may contribute to the previously reported inhibition by vanadate of Na+,K+-ATPase of the whole brain tissue.  相似文献   

20.
Na+, K+-ATPase is inhibited by neurotensin, an effect which involves the peptide high affinity receptor (NTS1). Neurotensin effect on cerebral cortex synaptosomal membrane Na+, K+-ATPase activity of rats injected i.p. with antipsychotic clozapine was studied. Whereas 3.5 × 10−6 M neurotensin decreased 44% Na+, K+-ATPase activity in the controls, the peptide failed to modify enzyme activity 30 min after a single 3.0, 10.0 and 30.0 mg/kg clozapine dose. Neurotensin decreased Na+, K+-ATPase activity 40 or 20% 18 h after 3.0 or 5.6 mg/kg clozapine administration, respectively, and lacked inhibitory effect 18 h after 17.8 and 30.0 mg/kg clozapine doses. Results indicated that the clozapine treatment differentially modifies the further effect of neurotensin on synaptosomal membrane Na+, K+-ATPase activity according to time and dose conditions employed. Taken into account that clozapine blocks the dopaminergic D2 receptor, findings obtained favor the view of an interplay among neurotensinergic receptor, dopaminergic D2 receptor and Na+, K+-ATPase at synaptic membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号