首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA interference: the fragile X syndrome connection   总被引:7,自引:0,他引:7  
Carthew RW 《Current biology : CB》2002,12(24):R852-R854
  相似文献   

2.
The Fragile X protein FMRP is an RNA binding protein whose targets are not well known; yet, these RNAs may play an integral role in the disease's etiology. Using a biotinylated-FMRP affinity resin, we isolated RNAs from the parietal cortex of a normal adult that bound FMRP. These RNAs were amplified by differential display (DDRT-PCR) and cloned and their identities determined. Nine candidate RNAs were isolated; five RNAs, including FMR1 mRNA, encoded known proteins. Four others were novel. The specificity of binding was demonstrated for each candidate RNA. The domains required for binding a subset of the RNAs were delineated using FMRP truncation mutant proteins and it was shown that only the KH2 domain was required for binding. Binding occurred independently of homoribopolymer binding to the C-terminal arginine-glycine-rich region (RGG box), suggesting that FMRP may bind multiple RNAs simultaneously.  相似文献   

3.
We have previously demonstrated that PM-Scl-75, a component of the human exosome complex involved in RNA maturation and mRNA decay, can specifically interact with RNAs containing an AU-rich instability element. Through the analysis of a series of deletion mutants, we have now shown that a 266 amino acid fragment representing the RNase PH domain is responsible for the sequence-specific binding to AU-rich elements. Furthermore, we found that the RNase PH domains from two other exosomal components, OIP2 and RRP41, as well as from Escherichia coli polynucleotide phosphorylase, are all capable of specifically interacting with RNAs containing an AU-rich element with similar affinities. Finally, we demonstrate that the interaction of the RNase PH domain of PM-Scl-75 is readily competed by poly(U), but only inefficiently using other homopolymeric RNAs. These data demonstrate that RNase PH domains in general have an affinity for U- and AU-rich sequences, and broaden the potential role in RNA biology of proteins containing these domains.  相似文献   

4.
Fragile X syndrome, the most common cause of inherited mental retardation, is caused by the absence of the fragile X mental retardation protein (FMRP). The emerging picture is that FMRP is involved in repression of translation through a complex network of protein-protein and protein-RNA interactions. Very little structural information is, however, available for FMRP that could help to understand its function. In particular, no structural studies are available about the N-terminus of the protein, a highly conserved region which is involved in several molecular interactions. Here, we explore systematically the ability of the FMRP N-terminus to form independently folded units (domains). We produced deletion mutants and tested their fold and functional properties by mutually complementary biophysical and biochemical techniques. On the basis of our data, we conclude that the N-terminus contains a domain, that we named NDF, comprising the first 134 amino acids. Most interestingly, NDF comprises two copies of a newly identified Agenet motif. NDF is thermally stable and has a high content of beta structure. In addition to being able to bind to RNA and to recognize some of the FMRP interacting proteins, NDF forms stable dimers and is able to interact, although weakly, with the full-length protein. Our data provide conclusive evidence that NDF is a novel motif for protein-protein and protein-RNA interactions and contains a previously unidentified dimerization site.  相似文献   

5.
The K homology module, one of the most common RNA-binding motifs, is present in multiple copies in both prokaryotic and eukaryotic regulatory proteins. Increasing evidence suggests that self-aggregation of KH modules has a functional role. We have used a combination of techniques to characterize the behavior in solution of the third KH domain of Nova-1, a paradigmatic KH protein. The possibility of working on the isolated module allowed us to observe specifically the homodimerization and RNA-binding properties of KH domains. We provide conclusive evidence that self-association of Nova-1 KH3 occurs in solution even in the absence of RNA. Homodimerization involves a specific protein/protein interface. We also studied the dynamical behavior of Nova-1 KH3 in isolation and in complex with RNA. These data provide a model for the mechanism of KH/RNA recognition and suggest functional implications of dimerization in KH complexes. We discuss our findings in the context of the whole KH family and suggest a generalized mode of interaction.  相似文献   

6.
M Mahone  E E Saffman    P F Lasko 《The EMBO journal》1995,14(9):2043-2055
The Bicaudal-C (Bic-C) gene of Drosophila melanogaster is required for correct targeting of the migrating anterior follicle cells and for specifying anterior position. Females lacking any wild type copies of Bic-C produce only eggshells open at the anterior end, because of the failure of the columnar follicle cells to migrate in the correct position at the nurse cell--oocyte boundary. Embryos which develop from eggs produced in females with only one wild type copy of Bic-C show defects in anterior patterning and an abnormal persistence of oskar RNA in anterior regions. We cloned Bic-C and found that, in ovaries, Bic-C RNA is expressed only in germline cells. Bic-C RNA is localized to the oocyte in early oogenesis, and later concentrates at its anterior cortex. The Bic-C protein includes five KH domains similar to those found in the human fragile-X protein FMR1. Alteration of a highly conserved KH domain codon by mutation abrogates in vivo Bic-C function. These results suggest roles for the Bic-C protein in localizing RNAs and in intercellular signaling.  相似文献   

7.
Fragile X syndrome is the most common form of inherited mental retardation in humans, with an estimated prevalence of about 1 in 4000 males. Although several observations indicate that the absence of functional Fragile X Mental Retardation Protein (FMRP) is the underlying basis of Fragile X syndrome, the structure and function of FMRP are currently unknown. Here, we present an X-ray crystal structure of the tandem KH domains of human FMRP, which reveals the relative orientation of the KH1 and KH2 domains and the location of residue Ile304, whose mutation to Asn is associated with a particularly severe incidence of Fragile X syndrome. We show that the Ile304Asn mutation both perturbs the structure and destabilizes the protein.  相似文献   

8.
Telomerase, a ribonucleoprotein complex, replicates the linear ends of eukaryotic chromosomes, thus taking care of the "end of replication problem." TERT contains an essential and universally conserved domain (TRBD) that makes extensive contacts with the RNA (TER) component of the holoenzyme, and this interaction is thought to facilitate TERT/TER assembly and repeat-addition processivity. Here, we present a high-resolution structure of TRBD from Tetrahymena thermophila. The nearly all-helical structure comprises a nucleic acid-binding fold suitable for TER binding. An extended pocket on the surface of the protein, formed by two conserved motifs (CP and T motifs) comprises TRBD's RNA-binding pocket. The width and the chemical nature of this pocket suggest that it binds both single- and double-stranded RNA, possibly stem I, and the template boundary element (TBE). Moreover, the structure provides clues into the role of this domain in TERT/TER stabilization and telomerase repeat-addition processivity.  相似文献   

9.
The most common genetic cause of mental retardation after Down's syndrome, the fragile X syndrome, is associated with the occurrence of a fragile site at Xq27.3. This X-linked disease is intriguing because transmission can occur through phenotypically normal males. Theories to explain this unusual phenomenon include genomic rearrangements and methylation changes associated with a local block of reactivation of the X chromosome. Using microdissected markers close to the fragile site, we have been able to test these hypotheses. We present evidence for the association of methylation with the expression of the disease. However, there is no simple relationship between the degree of methylation and either the level of expression of the fragile site or the severity of the clinical phenotype.  相似文献   

10.
Summary A de novo interstitial deletion (X)(q27.1q27.3), between the loci DXS 105 and F8, has been found in a mentally retarded female. The deleted X chromosome is preferentially early replicating in fibroblasts, B cells and T cells, suggesting that the missing region plays a role in inactivation of the X chromosome. None of the available DNA probes except DXS 98 maps to the deleted region of about 10000kb. The locus FRAXA is either included in the deletion, or located close to the distal break point.  相似文献   

11.
12.
Inherently unstable mRNAs contain AU-rich elements (AREs) in their 3' untranslated regions that act as mRNA stability determinants by interacting with ARE binding proteins (ARE-BPs). The mechanisms underlying the function of ARE and ARE-BP interactions in promoting mRNA decay are not fully understood. Here, we demonstrate that KSRP, a KH domain-containing ARE-BP, is an essential factor for ARE-directed mRNA decay. Some of the KH motifs (KHs) of KSRP directly mediate RNA binding, mRNA decay, and interactions with the exosome and poly(A) ribonuclease (PARN). The ability of KHs to promote mRNA decay correlates with their ability to bind the ARE and associate with RNA-degrading enzymes. Thus, KHs promote rapid mRNA decay by recruiting degradation machinery to ARE-containing mRNAs.  相似文献   

13.
Fragile X syndrome is the most common cause of inherited mental retardation, and recently a number of mouse models have been generated to study the condition. Knockout of the gene associated with fragile X, Fmr1, results in mild, but consistent abnormalities, analogous to the clinical and pathological symptoms observed in human patients. Thus, many aspects of the syndrome can now be studied in mice, taking full advantage of the benefits of this model organism, including the short generation time and unlimited supply of tissue. The experimental data suggest that knockout of Fmr1 mildly disturbs a variety of processes in different brain regions.  相似文献   

14.
The loss of the fragile X RNA binding protein, FMRP, causes macroorchidism and mental retardation in man. The discovery of a mouse ortholog led to the development of several FMRP knockout mouse strains that recapitulate some features of the disease. As mouse and human FMRPs differ in several amino acids in their RNA binding domains, we compared the RNA binding profiles of these two orthologs. Five variant FMRPs, whose differences arose from alternative splicing and mutation within the conserved RNA binding domains, were examined. Homoribopolymer binding studies showed that human FMRPs (hFMRP) bound a broader range of single-stranded mimetics than mouse FMRPs (mFMRP) and these interactions were both complex and cooperative. hFMRP and mFMRP also displayed significant preferences toward binding their own mRNA; specifically we found that the mFMRP isoforms bind mFMR1 mRNA much more tightly than their human counterparts. Finally, these data demonstrate that each FMRP variant binds RNAs uniquely, resulting in a set of proteins with differing affinities.  相似文献   

15.
Poly(C)-binding proteins (CPs) are important regulators of mRNA stability and translational regulation. They recognize C-rich RNA through their triple KH (hn RNP K homology) domain structures and are thought to carry out their function though direct protection of mRNA sites as well as through interactions with other RNA-binding proteins. We report the crystallographically derived structure of the third domain of alphaCP1 to 2.1 A resolution. alphaCP1-KH3 assumes a classical type I KH domain fold with a triple-stranded beta-sheet held against a three-helix cluster in a betaalphaalphabetabetaalpha configuration. Its binding affinity to an RNA sequence from the 3'-untranslated region (3'-UTR) of androgen receptor mRNA was determined using surface plasmon resonance, giving a K(d) of 4.37 microM, which is indicative of intermediate binding. A model of alphaCP1-KH3 with poly(C)-RNA was generated by homology to a recently reported RNA-bound KH domain structure and suggests the molecular basis for oligonucleotide binding and poly(C)-RNA specificity.  相似文献   

16.
17.
The limited coding capacity of picornavirus genomic RNAs necessitates utilization of host cell factors in the completion of an infectious cycle. One host protein that plays a role in both translation initiation and viral RNA synthesis is poly(rC) binding protein 2 (PCBP2). For picornavirus RNAs containing type I internal ribosome entry site (IRES) elements, PCBP2 binds the major stem-loop structure (stem-loop IV) in the IRES and is essential for translation initiation. Additionally, the binding of PCBP2 to the 5'-terminal stem-loop structure (stem-loop I or cloverleaf) in concert with viral protein 3CD is required for initiation of RNA synthesis directed by poliovirus replication complexes. PCBP1, a highly homologous isoform of PCBP2, binds to poliovirus stem-loop I with an affinity similar to that of PCBP2; however, PCBP1 has reduced affinity for stem-loop IV. Using a dicistronic poliovirus RNA, we were able to functionally uncouple translation and RNA replication in PCBP-depleted extracts. Our results demonstrate that PCBP1 rescues RNA replication but is not able to rescue translation initiation. We have also generated mutated versions of PCBP2 containing site-directed lesions in each of the three RNA-binding domains. Specific defects in RNA binding to either stem-loop I and/or stem-loop IV suggest that these domains may have differential functions in translation and RNA replication. These predictions were confirmed in functional assays that allow separation of RNA replication activities from translation. Our data have implications for differential picornavirus template utilization during viral translation and RNA replication and suggest that specific PCBP2 domains may have distinct roles in these activities.  相似文献   

18.
Fragile X syndrome, associated with the fragile X chromosome, is the most common cause of familial mental retardation. A breakthrough has been made in molecular biological research into the fragile X site. In this review we describe the molecular investigations that have led to the isolation of the FMR-1 gene. The nature of the fragile X mutation as well as the implications of the DNA test for the mutation are discussed.  相似文献   

19.
20.
To date, the identification of patients and carriers of the fragile X syndrome has been carried out by DNA analysis by means of the polymerase chain reaction and Southern blot analysis. This direct DNA analysis allows both the size of the CGG repeat and methylation status of the FMR1 gene to be determined. We have recently presented a rapid antibody test on blood smears based on the presence of FMRP, the protein product of the FMR1 gene, in lymphocytes from normal individuals and the absence of FMRP in lymphocytes from patients. Here, we have tested the diagnostic value of this new technique by studying FMRP expression in 173 blood smears from normal individuals and fragile X patients. The diagnostic power of the antibody test is “perfect” for males, whereas the results are less specific for females. Received: 25 October 1996 / Revised: 21 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号