共查询到20条相似文献,搜索用时 0 毫秒
1.
Ficcadenti Nadia Sestili Sara Pandolfini Tiziana Cirillo Chiara Rotino Giuseppe Leonardo Spena Angelo 《Molecular breeding : new strategies in plant improvement》1999,5(5):463-470
Parthenocarpy was engineered in two genotypes of Lycopersicon esculentum Mill. by using the DefH9-iaaM chimeric gene. The parthenocarpic trait consists of fruit set and growth in the absence of fertilization. Seedless parthenocarpic fruits were obtained from emasculated flowers, and fruits with seeds from pollinated flowers. All parthenocarpic tomato plants analysed expressed the DefH9-iaaM gene during flower development. The fruit set percentage of emasculated transgenic flowers was similar to that of control plants. In 7 out of 8 independent transgenic plants, the fresh weight of fruits derived from pollinated or emasculated flowers did not significantly differ from that of fruits obtained by pollination of the control plants. The pH of the parthenocarpic fruit was generally unaffected and the soluble solid concentration was either unchanged or increased. Thus, the DefH9-iaaM gene is a genetic tool that might be used to improve tomato productivity. 相似文献
2.
Physiology and firmness determination of ripening tomato fruit 总被引:1,自引:0,他引:1
Tomato ( Lycopersicon esculentum Mill.) genotypes varying in intrinsic firmness were examined to determine the quantitative relationships between polygalacturonase (EC 3.2.1.15) activity, firmness and other ripening parameters including rate (days from mature-green to full red) and intensity (rate of ethylene production at climacteric peak) of ripening. Texture, respiration and ethylene production were monitored in the immature-green through the red (ripe) stages of development. Polygalacturonase activity was measured by direct assay of salt-extractable wall protein or by monitoring the release of pectins from isolated, enzymically active wall. In all fruit, polygalacturonase activity was highly correlated with pericarp softening, but only moderately correlated with softening of whole fruit (r = 0.920 and 0.757, respectively). Polygalacturonase activity was positively correlated with cell-wall autolytic activity in pink (r = 0.969) and red (r = 0.900) fruit. Firmer genotypes exhibited lower rates of respiration and ethylene production during ripening. Polygalacturonase activity in isolates prepared from fruit at the climacteric peak was positively correlated with ethylene production and respiration, and negatively correlated with days to ripening (r = 0.929, 0.805, and -0.791, respectively). The data demonstrate the importance of selecting the appropriate method of firmness determination and are consistent with the hypothesis that pectin fragments released by polygalacturonase contribute to the production of autocatalytic (system II) ethylene. 相似文献
3.
Rivka Barg Efrat Meir Dvora Lapushner Rafael Frankel Yehiam Salts 《Physiologia plantarum》1990,80(3):417-424
The denatured protein profiles of developing tomato ( Lycopersicon esculentum Mill.) fruits, from the anthesis stage up to fruits at 30% of their final diameter, were examined in a pai-2l pat-2 parthenocarpic line and in its near isogenic non-partheno-carpic line. At anthesis no differences were detected between the protein patterns of ovaries developed on parthenocarpic and non-parthenocarpic plants. In subsequent stages the seeded and seedless fruits differed in the pattern of manifestation of several abundant proteins, none of which seem to be included in seeds The most prominent difference was found in an insoluble protein of 62 kDa; in developing seeded fruits of either the parthenocarpic or the non-parthenocarpic line, its rate of decline was much faster than in seedless fruits. In seeded fruits larger than 4-6 mm in diameter it was scarcely detected, whereas in parthenocarpic seedless 8–10 mm fruits it was still abundant. This protein is fruit specific; it is also enhanced in chemically (n-n-tolyl phthalamic acid) – induced parthenocarpic fruits of the non-parthenocarpic line. The prolonged manifestation in the parthenocarpic fruits results from de novo synthesis of this protein. There are indications that it is not a stress-related protein. This is the first demonstration of an association between the pattern of modulation of a protein and the phenotypic expression of genetically controlled parthenocarpy. 相似文献
4.
Glycosyl-linkage composition of tomato fruit cell wall hemicellulosic fractions during ripening 总被引:4,自引:0,他引:4
Hemicelluloses were extracted from isolated tomato ( Lycopersicon esculentum Mill. cv. Rutgers) pericarp cell wall material at 3 different stages of ripeness with 4 M and 8 M KOH. Little change in molecular weight or composition of 4 M KOH-extracted material was observed during ripening. However, the composition of 8 M KOH-extracted material changed, and a relative increase in polymers of < 40 kDa was observed during ripening. Changes in glycosyl linkage composition of the 8 M KOH hemicellulosic material were detected, including increases in 4-linked mannosyl, 4,6-linked mannosyl, and 4-linked glucosyl, and decreases in 5-linked arabinosyl residues in polymers of < 40 kDa, and decreases in terminal glocosyl residues in polymers of > 40 kDa. These data may indicate that de novo hemicellulose synthesis occurs throughout tomato fruit ripening, even at the red ripe stage. 相似文献
5.
In extracts from pericarp tissue of ripening tomato ( Lycopersicon esculentum Mill. cv, Sonato) fruits, two isoenzymes of polygalacturonase (E.C. 3.2.1.15), PG1 and PG2, are usually found. Also in such extracts, or as part of PG1, a convertor (CV) occurs. Incubation of PG2 with this CV gives rise to PG1 or a different isoenzyme, PGx, that is also stable at 65°C but differs in p H optimum and size from PG1. It appears that CV has two affinity sites that can bind with PG2 or with a polydextran. PG1 is an extraction artifact, consisting of one molecule of CV and two molecules of PG2. PGx is made up of one molecule of CV and one molecule of PG2. It is the CV part of PGx that binds to polydextrans such as Blue Dextran 2000, Sephadex G-100, and cell wall preparations. In this last form PGx is the physiologically active form of the enzyme, solubilizing demethylated pectin.
On Sephacryl S-300, CV appears to have a molecular weight of 81 kDa, but because of its heat stability and partial leakage through a 10 kDa cut-off membrane, it might be a much smaller, rod-like molecule. The polygalacturonase convertor might be a lectin without intrinsic enzyme activity, with a function to immobilize, stabilize and activate enzymic proteins in the cell wall. 相似文献
On Sephacryl S-300, CV appears to have a molecular weight of 81 kDa, but because of its heat stability and partial leakage through a 10 kDa cut-off membrane, it might be a much smaller, rod-like molecule. The polygalacturonase convertor might be a lectin without intrinsic enzyme activity, with a function to immobilize, stabilize and activate enzymic proteins in the cell wall. 相似文献
6.
MADS-box genes expressed during tomato seed and fruit development 总被引:11,自引:0,他引:11
Busi MV Bustamante C D'Angelo C Hidalgo-Cuevas M Boggio SB Valle EM Zabaleta E 《Plant molecular biology》2003,52(4):801-815
7.
Peroxidase isozyme patterns in the skin of maturing tomato fruit 总被引:10,自引:0,他引:10
J. Andrews M. Malone D. S. Thompson L. C. Ho & K. S. Burton 《Plant, cell & environment》2000,23(4):415-422
The cessation of tomato fruit growth is thought to be induced by an increase in the activity of enzymes which rigidify cell walls in the fruit skin. Peroxidase could catalyse such wall‐stiffening reactions, and marked rises in peroxidase activity were recently reported in skin cell walls towards fruit maturity. Peroxidase isoforms in the fruit are here analysed using native gel electrophoresis. New isoforms of apparent Mr 44, 48 and 53 kDa are shown to appear in cell walls of the fruit skin at around the time of cessation of growth. It is inferred that these isozymes are present in the cell wall in vivo. Fruit from a range of non‐ripening mutants were also examined. Some of these do not soften or ripen for many weeks after achieving their final size. The new isozymes were found in skin cell walls of mature fruit in each of these mutants, as in the wild‐type and commercial varieties. It is concluded that the late‐appearing isozymes are not associated with fruit ripening or softening, and are probably not ethylene‐induced. They may act to control fruit growth by cross‐linking wall polymers within the fruit skin, thus mechanically stiffening the walls and terminating growth. 相似文献
8.
The carbon dioxide and ethylene concentrations in tomato fruit ( Lycopersicon esculentum cv. Castelmart) and their stage of ripeness (characteristic external color changes) were periodically measured in fruit attached to and detached from the plant. An external collection apparatus was attached to the surface of individual tomato fruit to permit non-destructive sampling of internal gases. The concentration of carbon dioxide and ethylene in the collection apparatus reached 95% of the concentration in the fruit after 8 h. Gas samples were collected every 24 h. A characteristic climacteric surge in carbon dioxide (2-fold) and ethylene (10-fold) concentration occurred coincident with ripening of detached tomato fruit. Fruit attached to the plant exhibited a climacteric rise in ethylene (20-fold) concentration during ripening, but only a linear increase in carbon dioxide concentration. The carbon dioxide concentration increases in attached fruit during ripening, but the increase is a continuation of the linear increase seen in both attached and detached fruit before ripening and does not exhibit the characteristic pattern normally associated with ripening climacteric fruit. In tomato fruit, it appears that a respiratory climacteric per se, which has been considered intrinsic to the ripening of certain fruit, may not be necessary for the ripening of "climacteric" fruit at all, but instead may be an artifact of using harvested fruit. 相似文献
9.
Betty K. Ishida Elizabeth A. Baldwin Ron G. Buttery Suzanne H. Chui Louisa C. Ling 《Physiologia plantarum》1993,89(4):861-867
Previous studies showed that the developmental program of calyces of a tomato cultivar ( Lycopersicon esculentum , cv. VFNT Cherry) changed in many aspects to that of fruit when cultured in vitro. The calyces turned red, produced ethylene, had increased tissue content of 1-aminocyclopropane-1-carboxylic acid, had increased levels of the mRNA of polygalacturonase and developed ultrastructural changes in their cell walls that were indistinguishable from those of ripe tomato fruit tissue. We report in the present study the synthesis of volatile flavor compounds, changes in sugar concentrations and color development in cultured calyces that are characteristic of ripening tomato fruit. These ripening parameters of in vitro-cultured tomato fruit were also compared to those of fruit grown in the greenhouse. 相似文献
10.
Hormonal changes associated with fruit set and development in mandarins differing in their parthenocarpic ability 总被引:2,自引:0,他引:2
Satsuma [Citrus unshiu (Mak) Marc.] and Clementine [Citrus reticulata (Hort.) Ex. Tanaka, cv. Oroval] are two related species of seedless mandarins which differ in their tendency to set parthenocarpic fruits. Satsuma fruits naturally set parthenocarpically whereas Clementine mandarins show very low ability to set fruit in the absence of cross-pollination. The endogenous levels of gibberellins (GAs) and free and conjugated indole-acetic acid (IAA) and abscisic acid (ABA) throughout early stages of fruit development were investigated in seedless cultivars of both species. Analyses performed by full-scan combined gas chromatography-mass spectrometry (GC-MS) of extracts from ovaries at anthesis demonstrated the presence of GA19, GA20, GA29, GA1, GA8, GA3 and iso-GA3 in Satsuma mandarin, whereas only GA29, GA3 and trace levels of GA8 were detected in Clementine. At this developmental stage GA-like substances, as estimated by bioassay, reached their highest levels in Satsuma, while Clementine mandarins contained relatively lower levels. In both species the highest levels of free IAA were found at petal-fall stage at which time free ABA levels also peaked. Developing fruits of Clementine had higher amounts of both free IAA and ABA. In Satsuma, levels of conjugated IAA remained low throughout reproductive development whereas in Clementine they increased as the free form declined. In contrast, conjugated ABA was at low levels in Clementine but reached higher concentrations in Satsuma. These results suggest that in these mandarins the potential for setting parthenocarpic fruits is mainly influenced by the hormonal status of the fruit during the later stages of cell division and early stages of cell enlargement. Thus, the condition of low ability to set parthenocarpic fruits appears to be associated with lower levels of active GAs, lower capability to catabolize ABA to conjugated ABA and higher ability to conjugate IAA during this period. 相似文献
11.
Protoplast hexose carrier activity is a determinate of genotypic difference in hexose storage in tomato fruit 总被引:5,自引:1,他引:5
Post-phloem sugar transport in developing tomato (Lycopersicon esculentum Mill. cv. Flora-Dade) fruit follows an apoplastic route during the rapid phase of sugar accumulation. The pathway is characterized by sugar retrieval by the storage parenchyma cells from the fruit apoplast. Two tomato genotypes differing in fruit hexose content were compared in terms of the transport and transfer processes controlling fruit sugar levels. The genotypic difference in fruit sugar content was independent of photoassimilate export from source leaves. Discs of pericarp tissue were cultured in a medium based on analyses of the fruit apoplastic sap. The cultured discs maintained a composition, a relative growth rate and a respiration rate similar to those of the pericarp tissue of intact fruit. Estimates of hexose fluxes into metabolic and storage pools suggested that membrane transport regulated the genotypic difference in hexose accumulation. Short-term [14C]hexose uptake experiments demonstrated a genotypic difference in Vmax for glucose, fructose and 3-O-methyl-glucose, and this difference was abolished in the presence of the inhibitor p-chloromercuribenzenesulphonic acid (PCMBS). The results support the hypothesis that the activity of energized hexose carriers on the plasma membranes of storage parenchyma cells is a significant determinate of the genotypic difference in hexose accumulation. 相似文献
12.
Water relations and growth of tomato fruit pericarp tissue 总被引:2,自引:0,他引:2
R. I. GRANGE 《Plant, cell & environment》1995,18(11):1311-1318
The water relations of young tomato fruit pericarp tissue were examined and related to tissue expansion. The relationship between bulk turgor pressure and tissue expansion (as change in fresh mass or length of tissue) was determined in slices of pericarp cut from young, growing fruit by incubation in different osmotic concentrations of polyethylene glycol 6000 or mannitol. The bulk turgor of this tissue was low (about 0.2 MPa), even in fruit from plants that were otherwise fully turgid, whether measured psychrometrically or by length change in osmotic solutions. The rate of tissue growth at maximum turgor was less than that at moderate turgor unless calcium was added to the incubation medium. However, added calcium also decreased the rate of growth at lower turgor pressures. Yield turgor was < 0.1 MPa, but it was increased by the addition of calcium ions. Electrolyte leakage from tissue was greatest at maximum turgor pressure but was decreased by the addition of calcium ions or osmoticum. Tissue growth was unaffected by a range of plant growth regulators (IAA, abscisic acid, benzyladenine and GA3) but was inhibited, particularly at high turgor, by low concentrations of malic or citric acid. The low turgor pressure of pericarp tissue could be due to the presence of apoplastic solutes within the pericarp, and evidence for this is discussed. Thus, fruit tissue may be able to maintain optimal expansion rates only at moderate turgor and low calcium concentration. 相似文献
13.
Donald J. Huber 《Physiologia plantarum》1992,86(1):25-32
An approach commonly employed to assess the potential role of the enzyme polygalacturonase (PG, EC 3.2.1.15) in tomato fruit cell-wall pectin metabolism includes correlating levels of extractable PG with changes in specific characteristics of cell wall pectins, most notably solubility and molecular weight. Since information on these features of pectins is generally derived from analyses of subfractions of isolated cell wall, assurance of inactivation of the various isoforms of wall-associated PG is imperative. In the present study, cell wall prepared from ripe tomato (Lycopersicon esculentum Mill. cv. Rutgers) fruit was examined for the presence of active PG and for the ability of phenolic solvents to inactivate the enzyme. Using pectin solubility and Mr (relative molecular mass) changes as criteria for the presence of wall-associated PG activity, pectins from phenol-treated and nonphenol-treated (enzymically active) cell wall from ripe fruit incubated in 50 mM Na-acetate, 50 mM cyclohexanetrans-1,2-diamine tetraacetic acid (CDTA), pH 6.5 (outside the catalytic range of PG), were of similar Mr and exhibited no change in size with incubation time. Wall prepared without exposure to the phenolic protein-denaturants exhibited extensive pectin solubilization and depolymerization when incubated in 50 mM Na-acetate, 50 mM CDTA at pH 4.5, indicating the presence of active PG. Based on the changes in the Mr of pectins solubilized in 50 mM Na-acetate, 50 mM CDTA, pH 4.5, active PG was also detected in wall exposed during isolation to phenolacetic acid-water (PAW, 2:1:1, w/v/v), a solvent commonly employed as an enzyme denaturant. Although the depolymerization of pectins in PAW-treated wall was extensive, oligouronides constituted minor reaction products. Interestingly, PAW-treated wall did not exhibit PG-mediated pectin release when incubated under conditions (30 mM Na-acetate, 150 mM NaCl, pH 4.5) in which nonphenol-treated cell wall exhibited high autolytic activity. In an alternative protocol designed to inactivate PG, cell wall was exposed to Tris-buffered phenol (BP). In contrast to pectins released from PAW-treated wall, pectins solubilized from BP-treated wall at pH 4.5 were indistinguishable in Mr from those recovered from BP-treated wall at pH 6.5 Even when incubated at pH 4.5 at 34°C, conditions under which pectins from PAW-treated wall underwent more rapid and extensive depolymerization, pectins from BP-treated wall exhibited no change in Mr, providing evidence that active PG was not present in these wall preparations. The implications of this study in interpreting the solubility and Mr of pectin in cell wall from ripening fruit are discussed. 相似文献
14.
This work investigated how calcium regulates the ethylene biosynthesis in the fruits of wild-type tomato (Lycopersicon esculentum L.) and their ethylene receptor never-ripe (Nr) mutants. In Nr tomato, the ethylene perception was blocked. When both materials were treated with calcium, the content of 1-aminocyclopropane-1-carboxylic
acid (ACC)/malonyl-ACC and the activity of ACC oxidase (ACO) in tomato fruit discs increased, whereas the production of ethylene,
content of malondialdehyde, and membrane permeability decreased. Calcium treatment did not affect the activity of ACC synthase,
which is the first committed step in the ethylene biosynthesis pathway. The expression of LeACO1 in mature green fruit was inhibited significantly by calcium treatment in wild-type and Nr tomatoes, but the expression of LeACS2, the key ACC synthase gene in ethylene synthesis during tomato fruit maturing, was not affected. These results revealed that
the effect of calcium on ethylene biosynthesis in tomato mature green fruit was independent of ethylene perception. The results
also revealed that the targeting step of calcium preventing ethylene production was located at the ACC conversion to ethylene,
by means of inhibiting ACC availability for ACO through enhancing cell membrane integrity and by means of preventing LeACO1 gene expression.
Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 1, pp. 60–67.
The text was submitted by the authors in English. 相似文献
15.
Salt stress increases ferredoxin-dependent glutamate synthase activity and protein level in the leaves of tomato 总被引:3,自引:0,他引:3
Francisco Berteli Elena Corrales Consuelo Guerrero María J. Ariza Fernando Pliego Victoriano Valpuesta 《Physiologia plantarum》1995,93(2):259-264
Ferredoxin-dependent glutamate synthase (EC 1.4.7.1) catalyzes an essential step in the pathway of glutamate biosynthesis. Exposing detached tomato ( Lycopersicon esculentum ) leaves for 6 h to 12 g l−1 NaCl resulted in a significant two-fold increase in the activity of ferredoxin-dependent glutamate synthase extracted from the leaves. Western blot studies demonstrated that salt treatment also increased the ferredoxin-dependent glutamate synthase content of the leaves. A similar effect of salt on the concentration of this enzyme was found in the leaves of hydroponically-grown tomato plants. The induction of ferredoxin-dependent glutamate synthase under salt stress may provide the glutamate required for the proline synthesis which is a common response to salt stress. 相似文献
16.
H. L. Xu J. Lopez F. Rachii N. Tremblay L. Gauthier Y. Desjardins A. Gosselin 《Physiologia plantarum》1996,96(4):722-726
Sulphate accumulates in the rhizosphere of plants grown in hydroponic systems. To avoid such sulphate accumulation and promote the use of environmentally sound hydroponic systems, we examined the effects of four sulphate concentrations (0.1, 5,2, 10.4 and 20.8 m M ) on photosynthesis, ribulose-l,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) activities and related physiological processes in greenhouse–grown tomato plants ( Lycopersicon esculentum Mill. cv. Trust). The lowest sulphate concentration (0.1 m M ) significantly decreased photosynthetic capacity (Pc ) and Rubisco activities on a leaf area basis. This result was supported by our data for dry matter per plant, which was low for plants in the 0.1 m M treatment. The photosynthesis-related variables such as leaf conductance, chlorophyll and soluble protein were lowest for the 0.1 m M treatment. Both total Rubisco activity and the activated ratio were reduced with this treatment. However, Rubisco activities expressed per g of protein or per g of chlorophyll were not significantly affected. These results suggest that sulphur deficiency depressed Pc – by reducing the amount of both Rubisco and chlorophyll and by causing an inactivation of Rubisco. The ratio of organic sulphur vs organic nitrogen (S/N) in plants of the 0.1 m M treatment was far below the normal values. This low S/N ratio might be accountable for the negative effect of low sulphate on Pc and plant growth. Pc and dry matter were not affected until sulphate concentration in the nutrient solution reached a high level of 20.8 m M . 相似文献
17.
Agrobacterium tumefaciens strain LBA4404 carrying a binary vector pTOK233, which contained the GUS reporter gene and a kanamycin-resistance gene nptII, was employed for optimizing the transformation efficiency evaluated by a GUS gene transient expression level. Eight factors including explant types, explant size and source, the concentration of cytokinin,
inoculation time, pH of inoculation and cocultivation media, bacterial concentration, acetosyringone concentration, and cocultivation
duration were investigated in detail. This optimized protocol was then adopted to obtain transgenic tomato plants resistant
to cucumber mosaic virus (CMV) mediated by Agrobacterium tumefaciens, strain LBA4404, carrying a binary vector pR-ΔGDD containing the kanamy cin-resistance gene and CMV replicase gene with GDD
deletion. The presence of the CMV-RNA2 gene was confirmed by genomic DNA Southern blot analysis in all transformants analyzed. Field spray test showed that the
transgenic tomato plants were resistant to 100 mg/l kanamycin.
Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 2, pp. 280–284.
The text was submitted by the authors in English. 相似文献
18.
Differential expression of expansin gene family members during growth and ripening of tomato fruit 总被引:20,自引:0,他引:20
cDNA clones encoding homologues of expansins, a class of cell wall proteins involved in cell wall modification, were isolated from various stages of growing and ripening fruit of tomato (Lycopersicon esculentum). cDNAs derived from five unique expansin genes were obtained, termed tomato Exp3 to Exp7, in addition to the previously described ripening-specific tomato Exp1 (Rose et al. (1997) Proc Natl Acad Sci USA 94: 5955–5960). Deduced amino acid sequences of tomato Exp1, Exp4 and Exp6 were highly related, whereas Exp3, Exp5 and Exp7 were more divergent. Each of the five expansin genes showed a different and characteristic pattern of mRNA expression. mRNA of Exp3 was present throughout fruit growth and ripening, with highest accumulation in green expanding and maturing fruit, and lower, declining levels during ripening. Exp4 mRNA was present only in green expanding fruit, whereas Exp5 mRNA was present in expanding fruit but had highest levels in full-size maturing green fruit and declined during the early stages of ripening. mRNAs from each of these genes were also detected in leaves, stems and flowers but not in roots. Exp6 and Exp7 mRNAs were present at much lower levels than mRNAs of the other expansin genes, and were detected only in expanding or mature green fruit. The results indicate the presence of a large and complex expansin gene family in tomato, and suggest that while the expression of several expansin genes may contribute to green fruit development, only Exp1 mRNA is present at high levels during fruit ripening. 相似文献
19.
Polyamine levels in pollinated and auxin-induced fruit of tomato (Lycopersicon esculentum) during development 总被引:1,自引:0,他引:1
Marcos Egea-Cortines Ephraim Coben Shoshana Arad Nello Bagni Yosef Mizrahi 《Physiologia plantarum》1993,87(1):14-20
The changes taking place during fruit development in the concentration of the 3 polyamine fractions, i.e. free, perchloric acid-soluble conjugates and perchloric acid-insoluble bound polyamines, were analyzed in tomato fruits ( Lycopersicon esculentum Mill, cv. F121) induced to set by either pollination or auxin application. Before the onset of cell division, total polyamines were 50% higher in auxin-treated fruits than in pollinated ones, most of the polyamines being found as perchloric acid-soluble conjugates in both fruit set treatments. At the onset the level of polyamines in both fruit types was 100 times higher than during cell expansion or ripening. The highest polyamine found during cell division was perchloric acid-soluble conjugated spermidine in both fruit set treatments. After cell division, polyamine concentration was similar in both fruit set treatments. The concentration of polyamines in the jelly was similar in pollinated and auxin-induced fruits during cell expansion but not during ripening. At the onset of ripening there was an increase of one order of magnitude in the concentration of perchloric acid-insoluble bound putrescine in the jelly of pollinated fruits. Polyamines were more than 5-fold higher in unpollinated ovaries than in fruits induced to set by either pollination or auxins. It is suggested that pollinated and parthenocarpic fruits differ in their polyamine metabolism during the initial stages of development, but not after cell division. It is also suggested that polyamines undergo rapid turnover during cell division. Perchloric acid-insoluble bound putrescine might play a role in seed formation in tomatoes. 相似文献
20.
An analysis of the accumulation of water and dry matter in tomato fruit 总被引:18,自引:6,他引:18
Abstract Previously published data from tomato plants grown in nutrient solutions having one of three electrical conductivities (2, 12 and 17 mS cm?1) were analysed. The rate of water import into the fruit, and the proportion of this conducted by the xylem stream were calculated from the daily rates of transpiration and the net accumulation of water and calcium. The rate of water import decreased as the conductivity of the nutrient solution rose, the maximum daily import rates in the third week after pollination being 3.2, 3.0 and 1.8 g fruit?1 d?1 for fruit grown at 2, 12 and 17 mS cm?1, respectively. During fruit development, the proportion of water imported via the xylem fell from 8–15% to 1–2% at maturity. The principal source of water for tomato fruit growth was phloem sap. Based on the daily rates of net dry matter accumulation, respiration and phloem water import, the calculated dry matter concentration of the phloem sap declined from 7 to 3%, or from 12.5 to 7.8% during fruit development in low or high salinity, respectively. The similar dry matter accumulation of fruit grown at different salinities was due to changes in both volume and concentration of phloem sap. Potassium salts in tomato fruit were calculated lo have contributed –0.29, –0.48 and –0.58 MPa to total fruit osmotic potential in the 2, 12 and 17 mS cm?1 treatments, respectively, which accounted for 38% or 49% of the measured total osmotic potential of the 2 mS cm?1 or 17 mS cm?1 treatments. The contribution of hexoses to total fruit osmotic potential in the young fruit was from about –0.1 to –0.2 MPa at all salinities. The osmotic potential of tomato fruit is regulated more by potassium salts than by hexoses. 相似文献