首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The denatured protein profiles of developing tomato ( Lycopersicon esculentum Mill.) fruits, from the anthesis stage up to fruits at 30% of their final diameter, were examined in a pai-2l pat-2 parthenocarpic line and in its near isogenic non-partheno-carpic line. At anthesis no differences were detected between the protein patterns of ovaries developed on parthenocarpic and non-parthenocarpic plants. In subsequent stages the seeded and seedless fruits differed in the pattern of manifestation of several abundant proteins, none of which seem to be included in seeds The most prominent difference was found in an insoluble protein of 62 kDa; in developing seeded fruits of either the parthenocarpic or the non-parthenocarpic line, its rate of decline was much faster than in seedless fruits. In seeded fruits larger than 4-6 mm in diameter it was scarcely detected, whereas in parthenocarpic seedless 8–10 mm fruits it was still abundant. This protein is fruit specific; it is also enhanced in chemically (n-n-tolyl phthalamic acid) – induced parthenocarpic fruits of the non-parthenocarpic line. The prolonged manifestation in the parthenocarpic fruits results from de novo synthesis of this protein. There are indications that it is not a stress-related protein. This is the first demonstration of an association between the pattern of modulation of a protein and the phenotypic expression of genetically controlled parthenocarpy.  相似文献   

2.
The role of gibberellins (GAs) in the induction of parthenocarpic fruit-set and growth by the pat-3/pat-4 genetic system in tomato ( Lycopersicon esculentum Mill.) was investigated using wild type (WT; Cuarenteno) and a near-isogenic line derived from the German line RP75/59 (the source of pat-3/pat-4 parthenocarpy). Unpollinated WT ovaries degenerated but GA3 application induced parthenocarpic fruit growth. On the contrary, parthenocarpic growth of pat-3/pat-4 fruits, which occurs in the absence of pollination and hormone treatment, was not affected by applied GA3. Unpollinated pat-3/pat-4 fruit growth was negated by paclobutrazol, an inhibitor of ent -kaurene oxidase, and this inhibitory effect was negated by GA3. The quantification of the main GAs of the early 13-hydroxylation pathway (GA1, GA8, GA19, GA20, GA29 and GA44) in unpollinated ovaries at 3 developmental stages (flower bud, FB; pre-anthesis, PR; and anthesis, AN), by gas chromatography-selected ion monitoring, showed that the concentration of most of them was higher in pat-3/pat-4 than in WT ovaries at PR and AN stages. The concentration of GA1, suggested previously to be the active GA in tomate, was 2–4 times higher. Unpollinated pat-3/pat-4 ovaries at FB, PR and AN stages also contained relatively high amounts (5–12 ng g−1) of GA3, a GA found at less than 0.5 ng g−1 in WT ovaries. It is concluded that the mutations pat-3/pat-4 may induce natural facultative parthenocarpy capacity in tomato by increasing the concentration of GA1 and GA3 in the ovaries before pollination.  相似文献   

3.
We investigated the role of gibberellins (GAs) in the effect of pat-2, a recessive mutation that induces facultative parthenocarpic fruit development in tomato (Lycopersicon esculentum Mill.) using near-isogenic lines with two different genetic backgrounds. Unpollinated wild-type Madrigal (MA/wt) and Cuarenteno (CU/wt) ovaries degenerated, but GA(3) application induced parthenocarpic fruit growth. On the contrary, parthenocarpic growth of MA/pat-2 and CU/pat-2 fruits, which occurs in the absence of pollination and hormone application, was not affected by GA(3). Pollinated MA/wt and parthenocarpic MA/pat-2 ovary development was negated by paclobutrazol, and this inhibitory effect was counteracted by GA(3). The main GAs of the early-13-hydroxylation pathway (GA(1), GA(3), GA(8), GA(19), GA(20), GA(29), GA(44), GA(53), and, tentatively, GA(81)) and two GAs of the non-13-hydroxylation pathway (GA(9) and GA(34)) were identified in MA/wt ovaries by gas chromatography-selected ion monitoring. GAs were quantified in unpollinated ovaries at flower bud, pre-anthesis, and anthesis. In unpollinated MA/pat-2 and CU/pat-2 ovaries, the GA(20) content was much higher (up to 160 times higher) and the GA(19) content was lower than in the corresponding non-parthenocarpic ovaries. The application of an inhibitor of 2-oxoglutarate-dependent dioxygenases suggested that GA(20) is not active per se. The pat-2 mutation may increase GA 20-oxidase activity in unpollinated ovaries, leading to a higher synthesis of GA(20), the precursor of an active GA.  相似文献   

4.
Parthenocarpic fruit development in tomato   总被引:5,自引:0,他引:5  
Abstract: Parthenocarpic fruit development is a very attractive trait for growers and consumers. In tomato, three main sources of facultative parthenocarpy, pat, pat-2, pat-3/pat-4, are known to have potential applications in agriculture. The parthenocarpic fruit development in these lines is triggered by a deregulation of the hormonal balance in some specific tissues. Auxins and gibberellins are considered as the key elements in parthenocarpic fruit development of those lines. An increased level of these hormones in the ovary can substitute for pollination and trigger fruit development. This has opened up genetic engineering approaches for parthenocarpy that have given promising results, both in quality and quantity of seedless fruit production.  相似文献   

5.
6.
The inheritance of the tendency to set parthenocarpic fruit in the summer squash (Cucurbita pepo L.) line Whitaker was studied. Two parental lines, Whitaker (parthenocarpic) and Caserta (non-parthenocarpic), and the F1 and F2 generations and backcrosses to both parents were tested. The parthenocarpic tendency of individual plants was scored on a scale from 1 (non-parthenocarpic fruit) to 5 (parthenocarpic fruit). The Whitaker line produced parthenocarpic fruit and had a mean score of 4.2, whereas Caserta did not set parthenocarpic fruit and had a score of 1.55. The heritability estimates indicated that genetic gains from selection were feasible. The additive-dominant model showed a good fit, with epistasis being negligible or nonexistent. The hypothesis of monogenic inheritance with incomplete dominance was not rejected within the degree of dominance range from 0.2 to 0.5. These results indicate that parthenocarpy is controlled by a single locus, with incomplete dominance in the direction of parthenocarpic expression.  相似文献   

7.
8.
This study aimed to determine if self‐pollination is needed to trigger facultative parthenocarpy in self‐incompatible Clementine mandarins (Citrus clementina Hort. ex Tan.). ‘Marisol’ and ‘Clemenules’ mandarins were selected, and self‐pollinated and un‐pollinated flowers from both cultivars were used for comparison. These mandarins are always seedless after self‐pollination and show high and low ability to develop substantial parthenocarpic fruits, respectively. The time‐course for pollen grain germination, tube growth and ovule abortion was analyzed as well as that for carbohydrates, active gibberellins (GA1 and GA4), auxin (IAA) and abscisic acid (ABA) content in the ovary. ‘Clemenules’ showed higher pollen grain germination, but pollen tube development was arrested in the upper style 9 days after pollination in both cultivars. Self‐pollination did not stimulate parthenocarpy, whereas both un‐pollinated and self‐pollinated ovaries set fruit regardless of the cultivar. On the other hand, ‘Marisol’ un‐pollinated flowers showed greater parthenocarpic ovary growth than ‘Clemenules’ un‐pollinated flowers, i.e. higher ovule abortion rate (+21%), higher fruit set (+44%) and higher fruit weight (+50%). Further, the greater parthenocarpic ability of ‘Marisol’ paralleled higher levels of GA1 in the ovary (+34% at anthesis). ‘Marisol’ ovary also showed higher hexoses and starch mobilization, but lower ABA levels (?64% at anthesis). Self‐pollination did not modify carbohydrates or GA content in the ovary compared to un‐pollination. Results indicate that parthenocarpy in the Clementine mandarin is pollination‐independent with its ability to set depending on the ovary hormone levels. These findings suggest that parthenocarpy in fertile self‐incompatible mandarins is constitutively regulated.  相似文献   

9.
10.
The aim was to assess heterosis in a set of 16 summer-squash hybrids, and evaluate the combining capacity of the respective parental lines, which differed as to the degree of parthenocarpy and resistance to PRSV-W (Papaya Ringspot Virus-Watermelon strain). The hybrids were obtained using a partial diallel cross design (4 × 4). The lines of parental group I were 1 = ABX-037G-77-03-05-01-01-bulk, 2 = ABX-037G-77-03-05-03-10-bulk, 3 = ABX-037G-77-03-05-01-04-bulk and 4 = ABX-037G-77-03-05-05-01-bulk, and of group II, 1' = ABX-037G-77-03-05-04-08-bulk, 2' = ABX-037G-77-03-05-02-11-bulk, 3' = Clarice and 4' = Caserta. The 16 hybrids and eight parental lines were evaluated for PRSV-W resistance, parthenocarpic expression and yield in randomized complete-block designs, with three replications. Parthenocarpy and the resistance to PRSV-W were rated by means of a scale from 1 to 5, where 1 = non-parthenocarpic or high resistance to PRSV-W, and 5 = parthenocarpic or high susceptibility to PRSV-W. Both additive and non-additive gene effects were important in the expression of parthenocarpy and resistance to PRSV-W. Whereas estimates of heterosis in parthenocarpy usually tended towards a higher degree, resistance to PRSV-W was towards higher susceptibility. At least one F(1) hybrid was identified with a satisfactory degree of parthenocarpy, resistance to PRSV-W and high fruit-yield.  相似文献   

11.

Background and Aims

While parthenocarpy (meaning the production of fruits without seeds) may limit fecundity in many plants, its function is not clear; it has been proposed, however, that it might be associated with a strategy to avoid seed predation. Bursera morelensis is a dioecious endemic plant that produces fruits with and without seeds, and its fruits are parasitized by insects. Its reproductive system is not well described and no published evidence of parthenocarpy exists for the species. The purpose of this work was to describe the breeding system of B. morelensis and its relationship to seed predation by insects.

Methods

The breeding system was described using pollination experiments, verifying the presence of parthenocarpic fruits and apomictic seeds. Reproductive structures from flower buds to mature fruits were quantified. For fruits, an anatomical and histological characterization was made. The number of fruits in which seeds had been predated by insects was correlated with parthenocarpic fruit production.

Key Results

The major abortion of reproductive structures occurred during fruit set. The results discard the formation of apomictic seeds. Flowers that were not pollinated formed parthenocarpic fruits and these could be distinguished during early developmental stages. In parthenocarpic fruits in the first stages of development, an unusual spread of internal walls of the ovary occurred invading the locule and preventing ovule development. Unlike fruits with seeds, parthenocarpic fruits do not have calcium oxalate crystals in the ovary wall. Both fruit types can be separated in the field at fruit maturity by the presence of dehiscence, complete in seeded and partial in parthenocarpic fruits. Trees with more parthenocarpic fruits had more parasitized fruits.

Conclusions

This is the first time the anatomy of parthenocarpic fruits in Burseraceae has been described. Parthenocarpic fruits in B. morelensis might function as a deceit strategy for insect seed predators as they are unprotected both chemically and mechanically by the absence of calcium oxalate crystals.Key words: Parthenocarpy, Bursera morelensis, predation, seeds, insects, breeding system, calcium oxalate crystals  相似文献   

12.
13.
14.
15.
16.
The extreme sensitivity of the microsporogenesis process to moderately high or low temperatures is a major hindrance for tomato (Solanum lycopersicum) sexual reproduction and hence year‐round cropping. Consequently, breeding for parthenocarpy, namely, fertilization‐independent fruit set, is considered a valuable goal especially for maintaining sustainable agriculture in the face of global warming. A mutant capable of setting high‐quality seedless (parthenocarpic) fruit was found following a screen of EMS‐mutagenized tomato population for yielding under heat stress. Next‐generation sequencing followed by marker‐assisted mapping and CRISPR/Cas9 gene knockout confirmed that a mutation in SlAGAMOUS‐LIKE 6 (SlAGL6) was responsible for the parthenocarpic phenotype. The mutant is capable of fruit production under heat stress conditions that severely hamper fertilization‐dependent fruit set. Different from other tomato recessive monogenic mutants for parthenocarpy, Slagl6 mutations impose no homeotic changes, the seedless fruits are of normal weight and shape, pollen viability is unaffected, and sexual reproduction capacity is maintained, thus making Slagl6 an attractive gene for facultative parthenocarpy. The characteristics of the analysed mutant combined with the gene's mode of expression imply SlAGL6 as a key regulator of the transition between the state of ‘ovary arrest’ imposed towards anthesis and the fertilization‐triggered fruit set.  相似文献   

17.
18.
19.
This report assembles and pictorially presents observations on the timing of relatively uniform and well-defined developmental events in the cotton flower and its component parts. The first floral bud occurs on the 7–9th node approximately 35–40 days postemergence; 20–25 additional days elapse until anthesis. Floral parts are morphologically well defined by two weeks preanthesis. In about 85 % of the flowers the basal, abaxial surface of two of the three bracts contains an outer involucral nectary; occasionally, none, one, or three nectaries are found. The maximum rate of increase in floral bud length occurs during the 24 hrs preceding anthesis. Flower opening occurs at about daylight, although light is not required. Multipored pollen grains germinate in about ½ hr after deposition on the stigmatic hairs. Fertilization is accomplished, for most ovules, by the end of the first day postanthesis. Stomata are abundant, particularly at the chalazal ends of ovules. Fiber initials (epidermal cells of the ovule) begin their elongation phase on the morning of anthesis and are bounded by a thin primary wall. Areas of contrast (spots) observed through the scanning electron microscope are speculated to be organelles “seen through” the relatively amorphous fiber wall, which lacks extensive fibrillar orientation of cellulose. Fiber elongation ceases by about 24–28 days postanthesis, and by 50–70 days postanthesis fibers are mature and exhibit a thickened secondary wall and spiral twisting. Concomitant with the time of fiber maturity, the ovary wall splits and opens along locular suture lines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号