首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Protein functional sites control most biological processes and are important targets for drug design and protein engineering. To characterize them, the evolutionary trace (ET) ranks the relative importance of residues according to their evolutionary variations. Generally, top‐ranked residues cluster spatially to define evolutionary hotspots that predict functional sites in structures. Here, various functions that measure the physical continuity of ET ranks among neighboring residues in the structure, or in the sequence, are shown to inform sequence selection and to improve functional site resolution. This is shown first, in 110 proteins, for which the overlap between top‐ranked residues and actual functional sites rose by 8% in significance. Then, on a structural proteomic scale, optimized ET led to better 3D structure‐function motifs (3D templates) and, in turn, to enzyme function prediction by the Evolutionary Trace Annotation (ETA) method with better sensitivity of (40% to 53%) and positive predictive value (93% to 94%). This suggests that the similarity of evolutionary importance among neighboring residues in the sequence and in the structure is a universal feature of protein evolution. In practice, this yields a tool for optimizing sequence selections for comparative analysis and, via ET, for better predictions of functional site and function. This should prove useful for the efficient mutational redesign of protein function and for pharmaceutical targeting.  相似文献   

2.
3.
Cation-pi interactions play an important role in the stability of protein structures. In this work, we have analyzed the influence of cation-pi interactions in DNA binding proteins. We observed cation-pi interactions in 45 out of 62 DNA binding proteins and there is no significant correlation between the number of amino acid residues and number of cation-pi interactions. These interactions are mainly formed by long-range contacts, and the role of short and medium-range contacts is minimal. The preference of Arg is higher than Lys to form cation-pi interactions. The pair-wise cation-pi interaction energy between aromatic and positively charged residues shows that Arg-Tyr energy is the strongest among the possible six pairs. The structural analysis of cation-pi interaction forming residues shows that Lys, Trp, and Tyr prefer to be in the binding site of protein-DNA complexes. Further, the accessible surface areas of cation-pi interaction forming cationic residues are significantly less than that of other residues. The preference of cation-pi interaction forming residues in different secondary structures shows that Lys prefers to be in strand and Phe prefers to be in turn regions. The results obtained in the present study will be useful in understanding the contribution of cation-pi interactions to the stability and specificity of protein-DNA complexes.  相似文献   

4.
Protein-DNA recognition plays an essential role in the regulation of gene expression. The protein-DNA binding specificity is based on direct atomic contacts between protein and DNA and/or the conformational properties of DNA. In this work, we have analyzed the influence of DNA stiffness (E) to the specificity of protein-DNA complexes. The average DNA stiffness parameters for several protein-DNA complexes have been computed using the structure based sequence dependent stiffness scale. The relationship between DNA stiffness and experimental protein-DNA binding specificity has been brought out. We have investigated the importance of DNA stiffness with the aid of experimental free energy changes (DeltaDeltaG) due to binding in several protein-DNA complexes, such as, ETS proteins, 434, lambda, Mnt and trp repressors, 434 cro protein, EcoRV endonuclease V and zinc fingers. We found a correlation in the range 0.65-0.97 between DeltaDeltaG and E in these examples. Further, we have qualitatively analyzed the effect of mutations in the target sequence of lambda repressor and we observed that the DNA stiffness could correctly identify 70% of the correct bases among the considered nine positions.  相似文献   

5.
The PI-SceI protein from Saccharomyces cerevisiae is a member of the LAGLIDADG family of homing endonucleases that have been used in genomic engineering. To assess the flexibility of the PI-SceI-binding interaction and to make progress towards the directed evolution of homing endonucleases that cleave specified DNA targets, we applied a two-hybrid method to select PI-SceI variants from a randomized expression library that bind to different DNA substrates. In particular, the codon for Arg94, which is located in the protein splicing domain and makes essential contacts to two adjacent base-pairs, and the codons for four proximal residues were randomized. There is little conservation of the wild-type amino acid residues at the five randomized positions in the variants that were selected to bind to the wild-type site, yet one of the purified derivatives displays DNA-binding specificity and DNA endonuclease activity that is similar to that of the wild-type enzyme. A spectrum of DNA-binding behaviors ranging from partial relaxation of specificity to marked shifts in target site recognition are present in variants selected to bind to sites containing mutations at the two base-pairs. Our results illustrate the inherent plasticity of the PI-SceI/DNA interface and demonstrate that selection based on DNA binding is an effective means of altering the DNA cleavage specificity of homing endonucleases. Furthermore, it is apparent that homing endonuclease target specificity derives, in part, from constraints on the flexibility of DNA contacts imposed by hydrogen bonds to proximal residues.  相似文献   

6.
7.
8.
Although the crystal structure of Cre recombinase complexed with DNA, named loxA, was elucidated a couple of years ago, it has not yet been determined which amino acids of the protein are involved in the specific Cre-loxP interaction. Arg259 and Gln90 interact with DNA substrate in the major groove from which the specificity of protein-DNA interaction comes. In this study, we substituted these residues for other amino acids. Also, two mutated DNA substrates were constructed. In each mutant, one of the bases that interact with Arg259 or Gln90 was changed into another base. In vitro binding assays and recombination assays of variant lox sites with wild-type and mutant-type Cre revealed that Arg259 plays a key role in Cre-loxP binding but Gln90 does not. However, the recombination activity still remained intact, although the binding between Cre and DNA substrate was not ensured.  相似文献   

9.
The Joint Evolutionary Trees (JET) method detects protein interfaces, the core residues involved in the folding process, and residues susceptible to site-directed mutagenesis and relevant to molecular recognition. The approach, based on the Evolutionary Trace (ET) method, introduces a novel way to treat evolutionary information. Families of homologous sequences are analyzed through a Gibbs-like sampling of distance trees to reduce effects of erroneous multiple alignment and impacts of weakly homologous sequences on distance tree construction. The sampling method makes sequence analysis more sensitive to functional and structural importance of individual residues by avoiding effects of the overrepresentation of highly homologous sequences and improves computational efficiency. A carefully designed clustering method is parametrized on the target structure to detect and extend patches on protein surfaces into predicted interaction sites. Clustering takes into account residues' physical-chemical properties as well as conservation. Large-scale application of JET requires the system to be adjustable for different datasets and to guarantee predictions even if the signal is low. Flexibility was achieved by a careful treatment of the number of retrieved sequences, the amino acid distance between sequences, and the selective thresholds for cluster identification. An iterative version of JET (iJET) that guarantees finding the most likely interface residues is proposed as the appropriate tool for large-scale predictions. Tests are carried out on the Huang database of 62 heterodimer, homodimer, and transient complexes and on 265 interfaces belonging to signal transduction proteins, enzymes, inhibitors, antibodies, antigens, and others. A specific set of proteins chosen for their special functional and structural properties illustrate JET behavior on a large variety of interactions covering proteins, ligands, DNA, and RNA. JET is compared at a large scale to ET and to Consurf, Rate4Site, siteFiNDER|3D, and SCORECONS on specific structures. A significant improvement in performance and computational efficiency is shown.  相似文献   

10.
Functional sites determine the activity and interactions of proteins and as such constitute the targets of most drugs. However, the exponential growth of sequence and structure data far exceeds the ability of experimental techniques to identify their locations and key amino acids. To fill this gap we developed a computational Evolutionary Trace method that ranks the evolutionary importance of amino acids in protein sequences. Studies show that the best-ranked residues form fewer and larger structural clusters than expected by chance and overlap with functional sites, but until now the significance of this overlap has remained qualitative. Here, we use 86 diverse protein structures, including 20 determined by the structural genomics initiative, to show that this overlap is a recurrent and statistically significant feature. An automated ET correctly identifies seven of ten functional sites by the least favorable statistical measure, and nine of ten by the most favorable one. These results quantitatively demonstrate that a large fraction of functional sites in the proteome may be accurately identified from sequence and structure. This should help focus structure-function studies, rational drug design, protein engineering, and functional annotation to the relevant regions of a protein.  相似文献   

11.
12.
13.
14.
15.
We conducted molecular dynamics simulations on several wild-type and mutant homeodomain-DNA complexes to investigate the role of residue 50 in homeodomain-DNA interaction and the behavior of interfacial hydration water. Our results suggest that this residue interacts more favorably with its consensus sequence and thus plays a considerable role in DNA recognition. However, residue 50 was not responsible for DNA recognition alone. Other residues in the vicinity could interact with residue 50 in cooperation upon DNA binding. We also found the lifetime for some water in the protein-DNA interface can be as high as nanoseconds and that a few well-conserved sites for water-mediated hydrogen bonds from protein to DNA are occupied by high-mobility hydrating waters.  相似文献   

16.
17.
18.
Although DNA flexibility is known to play an important role in DNA-protein interactions, the importance of protein flexibility is less well understood. Here, we show that protein dynamics are important in DNA recognition using the well-characterized human papillomavirus (HPV) type 6 E2 protein as a model system. We have compared the DNA binding properties of the HPV 6 E2 DNA binding domain (DBD) and a mutant lacking two C-terminal leucine residues that form part of the hydrophobic core of the protein. Deletion of these residues results in increased specific and non-specific DNA binding and an overall decrease in DNA binding specificity. Using (15)N NMR relaxation and hydrogen/deuterium exchange, we demonstrate that the mutation results in increased flexibility within the hydrophobic core and loop regions that orient the DNA binding helices. Stopped-flow kinetic studies indicate that increased flexibility alters DNA binding by increasing initial interactions with DNA but has little or no effect on the structural rearrangements that follow this step. Taken together these data demonstrate that subtle changes in protein dynamics have a major influence on protein-DNA interactions.  相似文献   

19.
20.
Binding of the estrogen receptor to DNA. The role of waters.   总被引:2,自引:0,他引:2  
Molecular dynamics simulations are carried out to investigate the binding of the estrogen receptor, a member of the nuclear hormone receptor family, to specific and non-specific DNA. Two systems have been simulated, each based on the crystallographic structure of a complex of a dimer of the estrogen receptor DNA binding domain with DNA. One structure includes the dimer and a consensus segment of DNA, ds(CCAGGTCACAGTGACCTGG); the other structure includes the dimer and a nonconsensus segment of DNA, ds(CCAGAACACAGTGACCTGG). The simulations involve an atomic model of the protein-DNA complex, counterions, and a sphere of explicit water with a radius of 45 A. The molecular dynamics package NAMD was used to obtain 100 ps of dynamics for each system with complete long-range electrostatic interactions. Analysis of the simulations revealed differences in the protein-DNA interactions for consensus and nonconsensus sequences, a bending and unwinding of the DNA, a slight rearrangement of several amino acid side chains, and inclusion of water molecules at the protein-DNA interface region. Our results indicate that binding specificity and stability is conferred by a network of direct and water mediated protein-DNA hydrogen bonds. For the consensus sequence, the network involves three water molecules, residues Glu-25, Lys-28, Lys-32, Arg-33, and bases of the DNA. The binding differs for the nonconsensus DNA sequence in which case the fluctuating network of hydrogen bonds allows water molecules to enter the protein-DNA interface. We conclude that water plays a role in furnishing DNA binding specificity to nuclear hormone receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号