首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The role of high mobility group (HMG) proteins and their poly-ADP-ribosylation (PAR) in betel nut induced initiation of carcinogenesis in mice has been studied. A known carcinogen, diethylnitrosamine (DEN) was used as a positive control. Swiss albino mice were chronically exposed to aqueous extract of betel nut (AEBN) or DEN at low doses for up to 4 weeks. The poly-ADP-ribosylation (PAR) of spleen cell HMG proteins was monitored using [32P]-NAD+. Parallel to this, chromatin was subjected to DNase I cleavage and the organizational state of the chromatin was monitored. The PAR of HMG proteins showed a marked progressive reduction at different times following AEBN- or DEN treatment. HMG proteins isolated from the control and carcinogen treated mice were allowed to reassociate with the untreated spleen cells chromatin. The reassociated chromatin showed progressive relaxation in its superstructure. The results suggest that under the influence of potential carcinogens AEBN or DEN, the mouse spleen cell HMG proteins created molecular conditions favourable to initiation of cancer.  相似文献   

2.
Allethrin (C(19)H(26)O(3)) is non-cyano-containing pyrethroid insecticide that is used extensively for controlling flies and mosquitoes. Apart from its neurotoxic effects in non-target species, allethrin is reported to be mutagenic in bacterial systems. In this study, we observed oxidative damage-mediated genotoxicity caused by allethrin in Swiss albino mice. The genotoxic potential of allethrin was evaluated using chromosome aberrations (CAs) and a micronuclei (MN) induction assay as genetic end-points. The oral intubation of allethrin (25 and 50mg/kg b.wt.) significantly induces CAs and MN in mouse bone marrow cells. The DNA-damaging potential of allethrin was estimated in mouse liver using the DNA alkaline unwinding assay (DAUA) and by measuring the levels of 8-hydroxy-2'-deoxy-guanosine (8-OH-dG). Furthermore, a dose-dependent increase in reactive oxygen species (ROS) generation and lipid peroxidation (LPO), with a concurrent decrease in superoxide dismutase (SOD) and catalase, confirm its pro-oxidant potential. The DNA-damaging potential of allethrin was found to be mediated through the modulation of p53, p21, GADD45α and MDM-2. These results confirm the genotoxic and the pro-oxidant potential of allethrin in Swiss albino mice.  相似文献   

3.
Aqueous, acetic acid, hydrochloric acid and ethanol extracts of betel nut (Areca catechu L.) have been found to induce unscheduled DNA synthesis in Hep 2 cells obtained from human larynx carcinoma, in vitro. Different concentrations of extracts of betel nut induced dose-dependent unscheduled DNA synthesis in Hep 2 cells. Together with the viability of the Hep 2 cells, our results indicate that the aqueous and acetic acid extracts of betel nut induce relatively more unscheduled DNA synthesis than the hydrochloric acid and ethanol extracts and arecoline. The carcinogenic potency of raw and unprocessed betel nut of North-East India used in this study is discussed.  相似文献   

4.
《Autophagy》2013,9(6):725-737
Areca (betel) chewing was tightly linked to oral tumorigenesis in Asians. Areca nut was a recently confirmed group I carcinogen and a popular addictive substance used by Asians. While, the pathogenetic impact of areca on oral epithelial cells was still unclear. This study investigated the association between the induction of autophagy by areca nut extract (ANE) and the molecular regulation underlying this induction in oral cancer cells. Oral cancer cells were treated with ANE to insight the signaling changes underlying phenotypic alterations. The NFκB activation and reactive oxygen species (ROS) genesis were induced by ANE and the NF-κB activation could be the basis of the ROS genesis. Furthermore, p38 activation and upregulation of MKP-1 phosphatase occurred following ANE treatment. These effects can be inhibited by ROS blockers. ANE treatment induced autophagy among oral cancer cells, which was characterized by LC3-II accumulation, genesis of autophagosomes and the appearance of EGFP-LC3 puncta. This induction was mediated through the activation of p38, MKP-1 and HIF-1α. Knockdown of ANE-modulated HIF-1α expression reduced autophagy. Blockage of ANE-induced autophagy increased the proportion of oral cancer cells undergoing apoptotic death. This study identified for the first time that ANE modulates a signaling cascade that induces HIF-1α expression in oral cancer cells. The eventual induction of autophagy was beneficial to cell survival from ANE-induced apoptosis.  相似文献   

5.
Lackinger D  Kaina B 《Mutation research》2000,457(1-2):113-123
The important regulatory proteins, c-Fos and p53 are induced by exposure of cells to a variety of DNA damaging agents. To investigate their role in cellular defense against genotoxic compounds, we comparatively analysed chromosomal aberrations and apoptosis induced by ultraviolet (UV-C) light and the potent alkylating agent methyl methanesulfonate (MMS) in primary diploid mouse fibroblasts knockout for either c-Fos or p53, or double knockout for both genes. We show that c-Fos and p53 deficient fibroblasts are more sensitive than the corresponding wild-type cells as to the induction of chromosomal aberrations and apoptosis. Double knockout fibroblasts lacking both c-Fos and p53 are viable and were even more sensitive, showing additivity of the chromosomal breakage effects observed in the single knockouts. Regarding the endpoint apoptosis, double knockout fibroblasts displayed a sensitivity similar to c-Fos and p53 deficient cells. The data indicate that (a) both c-Fos and p53 are involved in cellular protection against the clastogenic effect of genotoxic agents, (b) p53 is not required for induction of apoptosis by UV light and MMS, but rather prevents fibroblasts from undergoing apoptotic cell death upon DNA damage, and (c) c-Fos and p53 seem to act independently in determining genotoxic resistance, which is hypothesized to be achieved by impaired DNA repair or differential cell cycle check point control.  相似文献   

6.
The formation of reactive oxygen species (ROS) from betel quid ingredients, namely areca nut, catechu and tobacco, was studied using a chemiluminescence (CL) technique. Aqueous extracts of areca nut and catechu were capable of generating superoxide anion and hydrogen peroxide at pH greater than 9.5. The formation of O2 was enhanced by Fe2+, Fe3+ and Cu2+ but inhibited by Mn2+. Tobacco extract failed to generate ROS under similar conditions. Saliva was found to inhibit both O2 and H2O2 formation from betel quid ingredients. Upon incubation of DNA at alkaline pH with areca nut extract and Fe3+ or catechu, 8-hydroxydeoxyguanosine was formed as quantified by high performance liquid chromatography (HPLC)/electrochemical detection. The data suggest a possible role of reactive oxygen species in the etiology of oral cancer in betel quid chewers.  相似文献   

7.
The SH compound glutathione (GSH) is involved in several fundamental functions in the cell, including protection against reactive oxygen species (ROS). Here, we studied the effect on oxidative DNA damage in cultured skin fibroblasts from patients with hereditary GSH synthetase deficiency. Our hypothesis was that GSH-deficient cells are more prone to DNA damage than control cells. Single cell gel electrophoresis (the comet assay) in combination with the formamidopyrimidine DNA glycosylase enzyme, which recognizes oxidative base modifications, was used on cultured fibroblasts from 11 patients with GSH synthetase deficiency and five control subjects. Contrary to this hypothesis, we found no significant difference in background levels of DNA damage between cells from patients and control subjects. To study the induction of oxidative DNA damage without simultaneous DNA repair, the cells were γ-irradiated on ice and DNA single-strand breaks measured. The patient and control cells were equally sensitive to induction of single strand breaks by γ-irradiation. Therefore, factors other than GSH protect DNA from oxidative damage. However, cells with a high background level of oxidative DNA damage were found to be more sensitive to ionizing radiation. This suggests that differences in background levels of oxidative DNA damage may depend on the cells' intrinsic protection against induction of oxidative damage.  相似文献   

8.
9.
A Sinha  A R Rao 《Mutation research》1985,158(3):189-192
The ability of arecoline, an alkaloid of betel nut, to induce abnormality in the shape of sperm heads and unscheduled DNA synthesis (UDS) in the early spermatid stages of Swiss albino mice was studied. Treatment of mice with arecoline at the dose levels of 20, 40 and 80 mg/kg elicited dose-related increase in the number of abnormal sperm heads, as well as the unscheduled incorporation of [3H]thymidine into the DNA of early spermatids. Such increase in the production of abnormally shaped sperms and UDS response of the early spermatids following arecoline treatment expressed its genotoxic potential in the mouse germ cells.  相似文献   

10.
The influence of pH on the convertogenic activity of plant phenolics   总被引:2,自引:0,他引:2  
M P Rosin 《Mutation research》1984,135(2):109-113
The genotoxicity of plant phenolics, including pyrogallol, gallic acid, resorcinol and catechin, and a water extract and tannin fraction of betel nut (Areca catechu) was examined at pH levels ranging from 5 to 10. Strain D7 of Saccharomyces cerevisiae was used since the cells can withstand a wide range of pH levels without any loss of viability. At alkaline pH ranges, the examined phenolics and betel nut extracts induced mitotic conversion, whereas they lacked this capacity at acid pH levels. This phenomenon may be due to the rapid autoxidation of phenolics under alkaline conditions, which leads to the generation of H2O2 and free radicals. The results indicate that plant phenolics may pose a genotoxic hazard during chewing of lime-containing betel quid and tobacco which causes the salivary pH to rise above 8.  相似文献   

11.
12.
Cellular supply of dNTPs is essential in the DNA replication and repair processes. Here we investigated the regulation of thymidine kinase 1 (TK1) in response to DNA damage and found that genotoxic insults in tumor cells cause up-regulation and nuclear localization of TK1. During recovery from DNA damage, TK1 accumulates in p53-null cells due to a lack of mitotic proteolysis as these cells are arrested in the G2 phase by checkpoint activation. We show that in p53-proficient cells, p21 expression in response to DNA damage prohibits G1/S progression, resulting in a smaller G2 fraction and less TK1 accumulation. Thus, the p53 status of tumor cells affects the level of TK1 after DNA damage through differential cell cycle control. Furthermore, it was shown that in HCT-116 p53−/− cells, TK1 is dispensable for cell proliferation but crucial for dTTP supply during recovery from DNA damage, leading to better survival. Depletion of TK1 decreases the efficiency of DNA repair during recovery from DNA damage and generates more cell death. Altogether, our data suggest that more dTTP synthesis via TK1 take place after genotoxic insults in tumor cells, improving DNA repair during G2 arrest.  相似文献   

13.
Induction of cellular senescence is a common response of a normal cell to a DNA-damaging agent, which may contribute to cancer chemotherapy- and ionizing radiation-induced normal tissue injury. The induction has been largely attributed to the activation of p53. However, the results from the present study suggest that busulfan (BU), an alkylating agent that causes DNA damage by cross-linking DNAs and DNA and proteins, induces senescence in normal human diploid WI38 fibroblasts through the extracellular signal-regulated kinase (Erk) and p38 mitogen-activated protein kinase (p38 MAPK) cascade independent of the p53-DNA damage pathway. The induction of WI38 cell senescence is initiated by a transient depletion of intracellular glutathione (GSH) and followed by a continuous increase in reactive oxygen species (ROS) production via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which leads to the activation of the Erk and p38 MAPK pathway. Incubation of WI38 cells with N-acetylcysteine (NAC) replenishes intracellular GSH, abrogates the increased production of ROS, ameliorates Erk and p38 MAPK activation, and attenuates senescence induction by BU. Thus, inhibition of senescence induction using a potent antioxidant or specific inhibitor of the Erk and p38 MAPK pathway has the potential to be developed as a mechanism-based strategy to ameliorate cancer therapy-induced normal tissue damage.  相似文献   

14.
The p53 tumor suppressor protein functions as a critical component of genotoxic stress response by regulating the expression of effector gene products that control the fate of a cell following DNA damage. Unstressed cells maintain p53 at low levels through regulated degradation, and p53 levels and activity are rapidly elevated upon genotoxic stress. Biochemical mechanisms that control the levels and activity of p53 are therefore of great interest. We and others have recently identified hAda3 (human homologue of yeast alteration/deficiency in activation 3) as a p53-interacting protein and enhancer of p53 activity. Here, we show that endogenous levels of p53 and Ada3 interact with each other, and by using inducible overexpression and short hairpin RNA-mediated knockdown strategies we demonstrate that hAda3 stabilizes p53 protein by promoting its acetylation. Use of a p53 mutant with mutations of known p300/CREB-binding protein acetylation sites demonstrated that hAda3-dependent acetylation is required for increase in p53 stability and target gene induction. Importantly, we demonstrate that endogenous hAda3 is essential for DNA damage-induced acetylation and stabilization of p53 as well as p53 target gene induction. Overall, our results establish hAda3, a component of coactivator complexes that include histone acetyltransferase p300/CREB-binding protein, as a critical mediator of acetylation-dependent stabilization and activation of p53 upon genotoxic stress in mammalian cells.  相似文献   

15.
Chromium(VI) is a toxic and carcinogenic metal that causes the formation of DNA phosphate-based adducts. Cr-DNA adducts are genotoxic in human cells, although they do not block replication in vitro. Here, we report that induction of cytotoxicity in Cr(VI)-treated human colon cells and mouse embryonic fibroblasts requires the presence of all major mismatch repair (MMR) proteins. Cr-DNA adducts lost their ability to block replication of Cr-modified plasmids in human colon cells lacking MLH1 protein. The presence of functional mismatch repair caused induction of p53-independent apoptosis associated with activation of caspases 2 and 7. Processing of Cr-DNA damage by mismatch repair resulted in the extensive formation of gamma-H2AX foci in G(2) phase, indicating generation of double-stranded breaks as secondary toxic lesions. Induction of gamma-H2AX foci was observed at 6 to 12 h postexposure, which was followed by activation of apoptosis in the absence of significant G(2) arrest. Our results demonstrate that mismatch repair system triggers toxic responses to Cr-DNA backbone modifications through stress mechanisms that are significantly different from those for other forms of DNA damage. Selection for Cr(VI) resistant, MMR-deficient cells may explain the very high frequency of lung cancers with microsatellite instability among chromate workers.  相似文献   

16.
We have investigated the roles of the antioxidant glutathione and p53 in the response of embryonic stem (ES) cells to oxidative stress. ES cells express gammaGCS, a critical enzyme in glutathione (GSH) biosynthesis. Treatment with the pro-oxidant menadione led to elevation of GSH, a strong apoptotic response and reduced clonogenic survival. Addition of BSO, a specific gammaGCS inhibitor depleted GSH pools and prevented the menadione-induced increase in GSH, sensitizing cells to oxidative insult. Although p53 status had no bearing on either the basal levels of GSH or the menadione-induced GSH response, the levels of menadione-induced apoptosis were reduced in the absence of p53. We conclude that the pathways involving p53 and GSH act independently to protect against the deleterious effects of oxidative damage. Furthermore, the presence of an intact p53 pathway confers a long-term growth advantage post oxidative stress. Thus, in the absence of p53 ES cells bearing genotoxic damage are less likely to be propagated, suggesting that p53-dependent apoptosis acts to limit the deleterious effects of oxidative stress during early development.  相似文献   

17.
18.
Bile acids have been suggested to be involved in biliary carcinogenesis, although the underlying mechanisms are yet to be established. The aim of this study was to investigate the carcinogenic effect of bile acids in the biliary tract in relation to oxidative stress. Immortalized mouse cholangiocytes were incubated with various bile acids, followed by measurement of reactive oxygen species (ROS) and the glutathione (GSH) level. As a marker of oxidative DNA damage, 8-hydroxydeoxyguanosine (8-OHdG) expression in cholangiocytes was analyzed by flow cytometry. Then the expression of oxidative DNA repair enzymes in cholangiocytes was examined by real-time PCR. In addition, the long-term effect of bile acid-induced oxidative DNA damage on cholangiocytes was investigated using a mouse oligo DNA microarray. It was found that glycochenodeoxycholate (GCDC) induced the generation of ROS and the depletion of GSH. In contrast, no marked changes were induced by the other bile acids. The percentage of 8-OHdG-positive cells was also increased by GCDC, but the expression of oxidative DNA repair enzymes was not up-regulated. DNA microarray analysis showed marked changes of various genes associated with carcinogenesis (genes related to cell proliferation, angiogenesis, invasion, and metastasis). In conclusion, the long-term effect of oxidative DNA damage due to GCDC may promote carcinogenesis in the biliary tract. Furthermore, accumulation of 8-OHdG due to GCDC might contribute to the dysfunction of oxidative DNA repair enzymes.  相似文献   

19.
Interaction between Vitamin C (VitC) and transition metals can induce the formation of reactive oxygen species (ROS). VitC may also act as an ROS scavenger and as a metal chelant. To examine these possibilities, we tested in vivo the effect of two doses of VitC (1 and 30 mg/kg of mouse body weight) on the genotoxicity of known mutagens and transition metals. We used the alkaline version of the comet assay to assess DNA damage in peripheral white blood cells of mice. Animals were orally given either water (control), cyclophosphamide (CP), methyl methanesulfonate (MMS), cupric sulfate or ferrous sulfate. A single treatment with each VitC dose was administered after treatment with the mutagens or the metal sulfates. Both doses of VitC enhanced DNA damage caused by the metal sulfates. DNA damage caused by MMS was significantly reduced by the lower dose, but not by the higher dose of VitC. For CP, neither post-treatment dose of VitC affected the DNA damage level. These results indicate a modulatory role of Vitamin C in the genotoxicity/repair effect of these compounds. Single treatment with either dose of VitC showed genotoxic effects after 24 h but not after 48 h, indicating repair. Double treatment with VitC (at 0 and 24 h) induced a cumulative genotoxic response at 48 h, more intense for the higher dose. The results suggest that VitC can be either genotoxic or a repair stimulant, since the alkaline version of the comet assay does not differentiate "effective" strand breaks from those generated as an intermediate step in excision repair (incomplete excision repair sites). Further data is needed to shed light upon the beneficial/noxious effects of VitC.  相似文献   

20.
The human AP-endonuclease (APE1/Ref-1), an essential multifunctional protein, plays a central role in the repair of oxidative base damage via the DNA base excision repair (BER) pathway. The mammalian AP-endonuclease (APE1) overexpression is often observed in tumor cells, and confers resistance to various anticancer drugs; its downregulation sensitizes tumor cells to those agents via induction of apoptosis. Here we show that wild type (WT) but not mutant p53 negatively regulates APE1 expression. Time-dependent decrease was observed in APE1 mRNA and protein levels in the human colorectal cancer line HCT116 p53(+/+), but not in the isogenic p53 null mutant after treatment with camptothecin, a DNA topoisomerase I inhibitor. Furthermore, ectopic expression of WTp53 in the p53 null cells significantly reduced both endogenous APE1 and APE1 promoter-dependent luciferase expression in a dose-dependent fashion. Chromatin immunoprecipitation assays revealed that endogenous p53 is bound to the APE1 promoter region that includes a Sp1 site. We show here that WTp53 interferes with Sp1 binding to the APE1 promoter, which provides a mechanism for the downregulation of APE1. Taken together, our results demonstrate that WTp53 is a negative regulator of APE1 expression, so that repression of APE1 by p53 could provide an additional pathway for p53-dependent induction of apoptosis in response to DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号