首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coenzyme A as the principal acyl carrier is required for many synthetic and degradative reactions in intermediary metabolism. It is synthesized in five steps from pantothenate, and recently the CoaA biosynthetic genes of eubacteria, plants, and human were all identified and cloned. In most bacteria, the so-called Dfp proteins catalyze the synthesis of the coenzyme A precursor 4'-phosphopantetheine. Dfp proteins are bifunctional enzymes catalyzing the synthesis of 4'-phosphopantothenoylcysteine (CoaB activity) and its decarboxylation to 4'-phosphopantetheine (CoaC activity). Here, we demonstrate the functional characterization of the CoaB and CoaC domains of an archaebacterial Dfp protein. Both domains of the Methanocaldococcus jannaschii Dfp protein were purified as His tag proteins, and their enzymatic activities were then identified and characterized by site-directed mutagenesis. Although the nucleotide binding motif II of the CoaB domain resembles that of eukaryotic enzymes, Methanocaldococcus CoaB is a CTP- and not an ATP-dependent enzyme, as shown by detection of the 4'-phosphopantothenoyl-CMP intermediate. The proposed 4'-phosphopantothenoylcysteine binding clamp of the Methanocaldococcus CoaC activity differs significantly from those of other characterized CoaC proteins. In particular, the active site cysteine residue, which otherwise is involved in the reduction of an aminoenethiol reaction intermediate, is not present. Moreover, the conserved Asn residue of the PXMNXXMW motif, which contacts the carboxyl group of 4'-phosphopantothenoylcysteine, is exchanged for His.  相似文献   

2.
Pantothenate is the essential precursor of coenzyme A (CoA), a fundamental cofactor in all aspects of metabolism. In bacteria and eukaryotes, pantothenate synthetase (PS) catalyzes the last step in the pantothenate biosynthetic pathway, and pantothenate kinase (PanK) phosphorylates pantothenate for its entry into the CoA biosynthetic pathway. However, genes encoding PS and PanK have not been identified in archaeal genomes. Recently, a comparative genomic analysis and the identification and characterization of two novel archaea-specific enzymes show that archaeal pantoate kinase (PoK) and phosphopantothenate synthetase (PPS) represent counterparts to the PS/PanK pathway in bacteria and eukaryotes. The TON1374 protein from Thermococcus onnurineus NA1 is a PPS, that shares 54% sequence identity with the first reported archaeal PPS candidate, MM2281, from Methanosarcina mazei and 91% sequence identity with TK1686, the PPS from Thermococcus kodakarensis. Here, we report the apo and ATP-complex structures of TON1374 and discuss the substrate-binding mode and reaction mechanism.  相似文献   

3.
Coenzyme A (CoA) holds a central position in cellular metabolism and therefore can be assumed to be an ancient molecule. Starting from the known E. coli and human enzymes required for the biosynthesis of CoA, phylogenetic profiles and chromosomal proximity methods enabled an almost complete reconstruction of archaeal CoA biosynthesis. This includes the identification of strong candidates for archaeal pantothenate synthetase and pantothenate kinase, which are unrelated to the corresponding bacterial or eukaryotic enzymes. According to this reconstruction, the topology of CoA synthesis from common precursors is essentially conserved across the three domains of life. The CoA pathway is conserved to varying degrees in eukaryotic pathogens like Giardia lamblia or Plasmodium falciparum, indicating that these pathogens have individual uptake-mechanisms for different CoA precursors. Phylogenetic analysis and phyletic distribution of the CoA biosynthetic enzymes suggest that the enzymes required for the synthesis of phosphopantothenate were recruited independently in the bacterial and archaeal lineages by convergent evolution, and that eukaryotes inherited the genes for the synthesis of pantothenate (vitamin B5) from bacteria. Homologues to bacterial enzymes involved in pantothenate biosynthesis are present in a subset of archaeal genomes. The phylogenies of these enzymes indicate that they were acquired from bacterial thermophiles through horizontal gene transfer. Monophyly can be inferred for each of the enzymes catalyzing the four ultimate steps of CoA synthesis, the conversion of phosphopantothenate into CoA. The results support the notion that CoA was initially synthesized from a prebiotic precursor, most likely pantothenate or a related compound.  相似文献   

4.
Coenzyme A (CoA) is a ubiquitous essential cofactor that plays a central role in the metabolism of carboxylic acids, including short- and long-chain fatty acids. In the last few years, all of the genes encoding the CoA biosynthetic enzymes have been identified and the structures of several proteins in the pathway have been determined. CoA is assembled in five steps from pantothenic acid and pathway intermediates are common to both prokaryotes and eukaryotes. In spite of the identical biochemistry, remarkable sequence differences among some of the prokaryotic and eukaryotic enzymes have been revealed by comparative genomics. Renewed interest in CoA has arisen from the realization that the biosynthetic pathway is a target for antibacterial drug discovery and from the unexpected association of a human neurodegenerative disorder with mutations in pantothenate kinase. The purpose of this review is to integrate previous knowledge with the most recent findings in the genetics, enzymology and regulation of CoA biosynthesis in bacteria, plants and mammals.  相似文献   

5.
In bacteria, coenzyme A is synthesized in five steps from pantothenate. The flavoprotein Dfp catalyzes the synthesis of the coenzyme A precursor 4'-phosphopantetheine in the presence of 4'-phosphopantothenate, cysteine, CTP, and Mg(2+) (Strauss, E., Kinsland, C., Ge, Y., McLafferty, F. W., and Begley, T. P. (2001) J. Biol. Chem. 276, 13513-13516). It has been shown that the NH(2)-terminal domain of Dfp has 4'-phosphopantothenoylcysteine decarboxylase activity (Kupke, T., Uebele, M., Schmid, D., Jung, G., Blaesse, M., and Steinbacher, S. (2000) J. Biol. Chem. 275, 31838-31846). Here I demonstrate that the COOH-terminal CoaB domain of Dfp catalyzes the synthesis of 4'-phosphopantothenoylcysteine. The exchange of conserved amino acid residues within the CoaB domain revealed that the synthesis of 4'-phosphopantothenoylcysteine occurs in two half-reactions. Using the mutant protein His-CoaB N210D the putative acyl-cytidylate intermediate of 4'-phosphopantothenate was detectable. The same intermediate was detectable for the wild-type CoaB enzyme if cysteine was omitted in the reaction mixture. Exchange of the conserved Lys(289) residue, which is part of the strictly conserved (289)KXKK(292) motif of the CoaB domain, resulted in complete loss of activity with neither the acyl-cytidylate intermediate nor 4'-phosphopantothenoylcysteine being detectable. Gel filtration experiments indicated that CoaB forms dimers. Residues that are important for dimerization are conserved in CoaB proteins from eubacteria, Archaea, and eukaryotes.  相似文献   

6.
Pantothenate (vitamin B(5)) is the precursor of the 4'-phosphopantetheine moiety of coenzyme A and acyl-carrier protein. It is made by plants and microorganisms de novo, but is a dietary requirement for animals. The pantothenate biosynthetic pathway is well-established in bacteria, comprising four enzymic reactions catalysed by ketopantoate hydroxymethyltransferase (KPHMT), L: -aspartate-alpha-decarboxylase (ADC), pantothenate synthetase (PS) and ketopantoate reductase (KPR) encoded by panB, panD, panC and panE genes, respectively. In higher plants, the genes encoding the first (KPHMT) and last (PS) enzymes have been identified and characterised in several plant species. Commercially, pantothenate is chemically synthesised and used in vitamin supplements, feed additives and cosmetics. Biotransformation is an attractive alternative production system that would circumvent the expensive procedures of separating racemic intermediates. We explored the possibility of manipulating pantothenate biosynthesis in plants. Transgenic oilseed rape (Brassica napus) lines were generated in which the E. coli KPHMT and PS genes were expressed under a strong constitutive CaMV35SS promoter. No significant change of pantothenate levels in PS transgenic lines was observed. In contrast plants expressing KPHMT had elevated pantothenate levels in leaves, flowers siliques and seed in the range of 1.5-2.5 fold increase compared to the wild type plant. Seeds contained the highest vitamin content, indicating that they might be the ideal target for production purposes.  相似文献   

7.
Phosphopantothenoylcysteine decarboxylase catalyzes the decarboxylation of 4'-phosphopantothenoylcysteine (2) to form 4'-phosphopanthetheine (3), an intermediate in the biosynthesis of Coenzyme A. In this study we investigated the stereochemistry of this reaction. Our results show that the decarboxylation proceeds with retention of stereochemistry, and that the pro-R proton at C(beta) of the cysteine moiety of 2 is removed during a reversible oxidation of the thiol to a thioaldehyde intermediate.  相似文献   

8.
The linear biosynthetic pathway leading from alpha-ketoisovalerate to pantothenate (vitamin B5) and on to CoA comprises eight steps in the Bacteria and Eukaryota. Genes for up to six steps of this pathway can be identified by sequence homology in individual archaeal genomes. However, there are no archaeal homologs to known isoforms of pantothenate synthetase (PS) or pantothenate kinase. Using comparative genomics, we previously identified two conserved archaeal protein families as the best candidates for the missing steps. Here we report the characterization of the predicted PS gene from Methanosarcina mazei, which encodes a hypothetical protein (MM2281) with no obvious homologs outside its own family. When expressed in Escherichia coli, MM2281 partially complemented an auxotrophic mutant without PS activity. Purified recombinant MM2281 showed no PS activity on its own, but the enzyme enabled substantial synthesis of [14C]4'-phosphopantothenate from [14C]beta-alanine, pantoate and ATP when coupled with E. coli pantothenate kinase. ADP, but not AMP, was detected as a coproduct of the coupled reaction. MM2281 also transferred the 14C-label from [14C]beta-alanine to pantothenate in the presence of pantoate and ADP, presumably through isotope exchange. No exchange took place when pantoate was removed or ADP replaced with AMP. Our results indicate that MM2281 represents a novel type of PS that forms ADP and is strongly inhibited by its product pantothenate. These properties differ substantially from those of bacterial PS, and may explain why PS genes, in contrast to other pantothenate biosynthetic genes, were not exchanged horizontally between the Bacteria and Archaea.  相似文献   

9.
Metabolism of 4''-phosphopantetheine in Escherichia coli.   总被引:9,自引:6,他引:3       下载免费PDF全文
Coenzyme A (CoA) and acyl carrier protein (ACP) contain 4'-phosphopantetheine moieties that are metabolically derived from the vitamin pantothenate. The utilization of metabolites in the biosynthetic pathway during growth was investigated by using an Escherichia coli beta-alanine auxotroph to specifically and uniformly label the pathway intermediates. Pantothenate and 4'-phosphopantetheine were the two intermediates detected in the highest concentration, both intracellularly and extracellularly. The specific cellular content of CoA and ACP was not constant during growth of strain SJ16 (panD) on 4 microM beta-[3-3H]alanine, and alterations in the utilization of 4'-phosphopantetheine and pantothenate correlated with the observed fluctuations of the intracellular pool sizes of CoA and ACP. Double-label experiments indicated that extracellular 4'-phosphopantetheine was derived from the degradation of ACP, and the extent that this intermediate was utilized by 4'-phosphopantetheine adenylyltransferase exerted control over the degradative aspect of the pathway. Control over the biosynthetic aspect of the biochemical pathway was exerted at the level of pantothenate utilization by pantothenate kinase. Reduction in the specific cellular content of CoA and ACP by 4'-phosphopantetheine excretion was irreversible since, in contrast to pantothenate, strain SJ16 was unable to assimilate exogenous 4'-phosphopantetheine into CoA or ACP.  相似文献   

10.
The biosynthesis of CoA from pantothenic acid (vitamin B5) is an essential universal pathway in prokaryotes and eukaryotes. The CoA biosynthetic genes in bacteria have all recently been identified, but their counterparts in humans and other eukaryotes remained mostly unknown. Using comparative genomics, we have identified human genes encoding the last four enzymatic steps in CoA biosynthesis: phosphopantothenoylcysteine synthetase (EC ), phosphopantothenoylcysteine decarboxylase (EC ), phosphopantetheine adenylyltransferase (EC ), and dephospho-CoA kinase (EC ). Biological functions of these human genes were verified using a complementation system in Escherichia coli based on transposon mutagenesis. The individual human enzymes were overexpressed in E. coli and purified, and the corresponding activities were experimentally verified. In addition, the entire pathway from phosphopantothenate to CoA was successfully reconstituted in vitro using a mixture of purified recombinant enzymes. Human recombinant bifunctional phosphopantetheine adenylyltransferase/dephospho-CoA kinase was kinetically characterized. This enzyme was previously suggested as a point of CoA biosynthesis regulation, and we have observed significant differences in mRNA levels of the corresponding human gene in normal and tumor cells by Northern blot analysis.  相似文献   

11.
Bacteria/eukaryotes share a common pathway for coenzyme A (CoA) biosynthesis. Although archaeal genomes harbor homologs for most of these enzymes, homologs of bacterial/eukaryotic pantothenate synthetase (PS) and pantothenate kinase (PanK) are missing. PS catalyzes the ATP-dependent condensation of pantoate and β-alanine to produce pantothenate, whereas PanK catalyzes the ATP-dependent phosphorylation of pantothenate to produce 4′-phosphopantothenate. When we examined the cell-free extracts of the hyperthermophilic archaeon Thermococcus kodakaraensis, PanK activity could not be detected. A search for putative kinase-encoding genes widely distributed in Archaea, but not present in bacteria/eukaryotes, led to four candidate genes. Among these genes, TK2141 encoded a protein with relatively low PanK activity. However, higher levels of activity were observed when pantothenate was replaced with pantoate. Vmax values were 7-fold higher toward pantoate, indicating that TK2141 encoded a novel enzyme, pantoate kinase (PoK). A search for genes with a distribution similar to TK2141 led to the identification of TK1686. The protein product catalyzed the ATP-dependent conversion of phosphopantoate and β-alanine to produce 4′-phosphopantothenate and did not exhibit PS activity, indicating that TK1686 also encoded a novel enzyme, phosphopantothenate synthetase (PPS). Although the classic PS/PanK system performs condensation with β-alanine prior to phosphorylation, the PoK/PPS system performs condensation after phosphorylation of pantoate. Gene disruption of TK2141 and TK1686 led to CoA auxotrophy, indicating that both genes are necessary for CoA biosynthesis in T. kodakaraensis. Homologs of both genes are widely distributed among the Archaea, suggesting that the PoK/PPS system represents the pathway for 4′-phosphopantothenate biosynthesis in the Archaea.Coenzyme A (CoA)2 and its derivative 4′-phosphopantetheine are essential cofactors in numerous metabolic pathways, including the tricarboxylic acid cycle, the β-oxidation pathway, and fatty acid and polyketide biosynthesis pathways. Acyl-CoA derivatives are key intermediates in energy metabolism due to their high energy thioester bonds and have been identified in all three domains of life.The mechanism of CoA biosynthesis in bacteria and eukaryotes has been well examined and involves common enzymatic conversions (13). CoA is synthesized from pantothenate via five enzymatic reactions; pantothenate kinase (PanK), 4′-phosphopantothenoylcysteine synthetase (PPCS), 4′-phosphopantothenoylcysteine decarboxylase (PPCDC), 4′- phosphopantetheine adenylyltransferase (PPAT), and dephospho-CoA kinase (DPCK). Although many animals rely on exogenous pantothenate to initiate CoA biosynthesis, microorganisms and plants can synthesize pantothenate from 2-oxoisovalerate and β-alanine. This is a three-step pathway catalyzed by ketopantoate hydroxymethyltransferase (KPHMT), ketopantoate reductase, and pantothenate synthetase (PS).In contrast to the wealth of knowledge on CoA biosynthesis in bacteria and eukaryotes, the corresponding pathway in the Archaea remains unclear (4). Sequence data indicate that the bacterial PPCS and PPCDC homologs and eukaryotic PPAT homologs are found on almost all of the archaeal genomes. The archaeal PPCS and PPCDC genes are fused in many cases, and the bifunctional protein from Methanocaldococcus jannaschii has been shown to exhibit both activities (5). The PPAT homolog from Pyrococcus abyssi has also been studied and confirmed to exhibit the expected PPAT activity (6). Bacterial KPHMT and ketopantoate reductase homologs can also be found, to a lesser extent, on the archaeal genomes. They are not found in the methanogens and Thermoplasmatales, and the fact that the structural similarity among archaeal enzymes is not higher than that toward enzymes from hyperthermophilic bacteria suggests that the archaeal KPHMT and ketopantoate reductase are a result of horizontal gene transfer from bacteria (4). In addition, there are candidate genes distantly related to bacterial/eukaryotic DPCK. However, PS homologs are not found in any of the archaeal genomes, and PanK homologs are found only in a few exceptional cases. Recently, Genschel and co-workers have taken a comparative genomics approach to predict the genes corresponding to the archaeal PS and PanK genes, and have also described the identification of a structurally novel PS from Methanosarcina mazei (4, 7).In this study, we describe the identification of the enzymes responsible for the conversion of pantoate to 4′-phosphopantothenate in Thermococcus kodakaraensis. The organism is a hyperthermophilic archaeon isolated from Kodakara Island, Japan (8, 9). The complete genome sequence is available (10), and gene disruption systems have been developed (1113). To our surprise, the conversion of pantoate to 4′-phosphopantothenate in T. kodakaraensis is not brought about by the two classic enzyme reactions catalyzed by PS and PanK, but by two novel enzyme reactions; phosphorylation of pantoate (pantoate kinase) followed by the condensation of 4-phosphopantoate and β-alanine (4′-phosphopantothenate synthetase or 4-phosphopantoate:β-alanine ligase). Homologs of these two genes are distributed on almost all of the archaeal genomes, suggesting that the Archaea utilize different chemistry in the conversion from pantoate to 4′-phosphopantothenate.  相似文献   

12.
Coenzyme A functions as a carrier of acetyl and acyl groups in living cells and is essential for numerous biosynthetic, energy-yielding, and degradative metabolic pathways. There are five enzymatic steps in CoA biosynthesis. To date, molecular cloning of enzymes involved in the CoA biosynthetic pathway in mammals has been only reported for pantothenate kinase. In this study, we present cDNA cloning and functional characterization of CoA synthase. It has an open reading frame of 563 aa and encodes a protein of approximately 60 kDa. Sequence alignments suggested that the protein possesses both phosphopantetheine adenylyltransferase and dephospho-CoA kinase domains. Biochemical assays using wild type recombinant protein confirmed the gene product indeed contained both these enzymatic activities. The presence of intrinsic phosphopantetheine adenylyltransferase activity was further confirmed by site-directed mutagenesis. Therefore, this study describes the first cloning and characterization of a mammalian CoA synthase and confirms this is a bifunctional enzyme containing the last two components of CoA biosynthesis.  相似文献   

13.
The Hal3 protein of Saccharomyces cerevisiae inhibits the activity of PPZ1 type-1 protein phosphatases and functions as a regulator of salt tolerance and cell cycle control. In plants, two HAL3 homologue genes in Arabidopsis thaliana, AtHAL3a and AtHAl3b, have been isolated and the function of AtHAL3a has been investigated through the use of transgenic plants. Expressions of both AtHAL3 genes are induced by salt stress. AtHAL3a overexpressing transgenic plants exhibit improved salt and sorbitol tolerance. In vitro studies have demonstrated that AtHAL3 protein possessed 4'-phosphopantothenoylcysteine decarboxylase activity. This result suggests that the molecular function of plant HAL3 genes is different from that of yeast HAL3. To understand the function of plant HAL3 genes in salt tolerance more clearly, three tobacco HAL3 genes, NtHAL3a, NtHAL3b, and NtHAL3c, from Nicotiana tabacum were identified. NtHAL3 genes were constitutively expressed in all organs and under all conditions of stress examined. Overexpression of NtHAL3a improved salt, osmotic, and lithium tolerance in cultured tobacco cells. NtHAL3 genes could complement the temperature-sensitive mutation in the E. coli dfp gene encoding 4'-phosphopantothenoyl-cysteine decarboxylase in the coenzyme A biosynthetic pathway. Cells overexpressing NtHAL3a had an increased intracellular ratio of proline. Taken together, these results suggest that NtHAL3 proteins are involved in the coenzyme A biosynthetic pathway in tobacco cells.  相似文献   

14.
Coenzyme A (CoASH) is the major low-molecular weight thiol in Staphylococcus aureus and a number of other bacteria; the crystal structure of the S. aureus coenzyme A-disulfide reductase (CoADR), which maintains the reduced intracellular state of CoASH, has recently been reported [Mallett, T.C., Wallen, J.R., Karplus, P.A., Sakai, H., Tsukihara, T., and Claiborne, A. (2006) Biochemistry 45, 11278-89]. In this report we demonstrate that CoASH is the major thiol in Bacillus anthracis; a bioinformatics analysis indicates that three of the four proteins responsible for the conversion of pantothenate (Pan) to CoASH in Escherichia coli are conserved in B. anthracis. In contrast, a novel type III pantothenate kinase (PanK) catalyzes the first committed step in the biosynthetic pathway in B. anthracis; unlike the E. coli type I PanK, this enzyme is not subject to feedback inhibition by CoASH. The crystal structure of B. anthracis PanK (BaPanK), solved using multiwavelength anomalous dispersion data and refined at a resolution of 2.0 A, demonstrates that BaPanK is a new member of the Acetate and Sugar Kinase/Hsc70/Actin (ASKHA) superfamily. The Pan and ATP substrates have been modeled into the active-site cleft; in addition to providing a clear rationale for the absence of CoASH inhibition, analysis of the Pan-binding pocket has led to the development of two new structure-based motifs (the PAN and INTERFACE motifs). Our analyses also suggest that the type III PanK in the spore-forming B. anthracis plays an essential role in the novel thiol/disulfide redox biology of this category A biodefense pathogen.  相似文献   

15.
16.
Strauss E  Zhai H  Brand LA  McLafferty FW  Begley TP 《Biochemistry》2004,43(49):15520-15533
Phosphopantothenoylcysteine decarboxylase (PPC-DC) catalyzes the decarboxylation of the cysteine moiety of 4'-phosphopantothenoylcysteine (PPC) to form 4'-phosphopantetheine (PPantSH); this reaction forms part of the biosynthesis of coenzyme A. The enzyme is a member of the larger family of cysteine decarboxylases including the lantibiotic-biosynthesizing enzymes EpiD and MrsD, all of which use a tightly bound flavin cofactor to oxidize the thiol moiety of the substrate to a thioaldehyde. The thioaldehyde serves to delocalize the charge that develops in the subsequent decarboxylation reaction. In the case of PPC-DC enzymes the resulting enethiol is reduced to a thiol giving net decarboxylation of cysteine, while in EpiD and MrsD it is released as the final product of the reaction. In this paper, we describe the characterization of the novel cyclopropyl-substituted product analogue 4'-phospho-N-(1-mercaptomethyl-cyclopropyl)-pantothenamide (PPanDeltaSH) as a mechanism-based inhibitor of the human PPC-DC enzyme. This inhibitor alkylates the enzyme on Cys(173), resulting in the trapping of a covalently bound enethiolate intermediate. When Cys(173) is exchanged for the weaker acid serine by site-directed mutagenesis the enethiolate reaction intermediate also accumulates. This suggests that Cys(173) serves as an active site acid in the protonation of the enethiolate intermediate in PPC-DC enzymes. We propose that this protonation step is the key mechanistic difference between the oxidative decarboxylases EpiD and MrsD (which have either serine or threonine at the corresponding position in their active sites) and PPC-DC enzymes, which also reduce the intermediate in an overall simple decarboxylation reaction.  相似文献   

17.
We have previously reported that the majority of the archaea utilize a novel pathway for coenzyme A biosynthesis (CoA). Bacteria/eukaryotes commonly use pantothenate synthetase and pantothenate kinase to convert pantoate to 4′-phosphopantothenate. However, in the hyperthermophilic archaeon Thermococcus kodakarensis, two novel enzymes specific to the archaea, pantoate kinase and phosphopantothenate synthetase, are responsible for this conversion. Here, we examined the enzymatic properties of the archaeal phosphopantothenate synthetase, which catalyzes the ATP-dependent condensation of 4-phosphopantoate and β-alanine. The activation energy of the phosphopantothenate synthetase reaction was 82.3?kJ?mol?1. In terms of substrate specificity toward nucleoside triphosphates, the enzyme displayed a strict preference for ATP. Among several amine substrates, activity was detected with β-alanine, but not with γ-aminobutyrate, glycine nor aspartate. The phosphopantothenate synthetase reaction followed Michaelis–Menten kinetics toward β-alanine, whereas substrate inhibition was observed with 4-phosphopantoate and ATP. Feedback inhibition by CoA/acetyl-CoA and product inhibition by 4′-phosphopantothenate were not observed. By contrast, the other archaeal enzyme pantoate kinase displayed product inhibition by 4-phosphopantoate in a non-competitive manner. Based on our results, we discuss the regulation of CoA biosynthesis in the archaea.  相似文献   

18.
Nara T  Hshimoto T  Aoki T 《Gene》2000,257(2):209-222
The de-novo pyrimidine biosynthetic pathway involves six enzymes, in order from the first to the sixth step, carbamoyl-phosphate synthetase II (CPS II) comprising glutamine amidotransferase (GAT) and carbamoyl-phosphate synthetase (CPS) domains or subunits, aspartate carbamoyltransferase (ACT), dihydroorotase (DHO), dihydroorotate dehydrogenase (DHOD), orotate phosphoribosyltransferase (OPRT), and orotidine-5'-monophosphate decarboxylase (OMPDC). In contrast with reports on molecular evolution of the individual enzymes, we attempted to draw an evolutionary picture of the whole pathway using the protein phylogeny. We demonstrate highly mosaic organizations of the pyrimidine biosynthetic pathway in eukaryotes. During evolution of the eukaryotic pathway, plants and fungi (or their ancestors) in particular may have secondarily acquired the characteristic enzymes. This is consistent with the fact that the organization of plant enzymes is highly chimeric: (1) two subunits of CPS II, GAT and CPS, cluster with a clade including cyanobacteria and red algal chloroplasts, (2) ACT not with a cyanobacterium, Synechocystis spp., irrespective of its putative signal sequence targeting into chloroplasts, and (3) DHO with a clade of proteobacteria. In fungi, DHO and OPRT cluster respectively with the corresponding proteobacterial counterparts. The phylogenetic analyses of DHOD and OMPDC also support the implications of the mosaic pyrimidine biosynthetic pathway in eukaryotes. The potential importance of the horizontal gene transfer(s) and endosymbiosis in establishing the mosaic pathway is discussed.  相似文献   

19.
Pantothenate synthetase catalyzes the ATP-dependent condensation of pantoate and beta-alanine to yield pantothenate, the essential precursor to coenzyme A. Bacterial and plant pantothenate synthetases are dimeric enzymes that share significant sequence identity. Here we show that the two-step reaction mechanism of pantothenate synthetase is conserved between the enzymes from Arabidopsis thaliana and Escherichia coli. Strikingly, though, the Arabidopsis enzyme exhibits large allosteric effects, whereas the Escherichia coli enzyme displays essentially non-allosteric behavior. Our data suggest that specific subunit contacts were selected and maintained in the plant lineage of the pantothenate synthetase protein family and that the resulting allosteric interactions are balanced for efficient catalysis at low pantoate levels. This is supported by mutations in the putative subunit interface of Arabidopsis pantothenate synthetase, which strongly attenuated or otherwise modified its allosteric properties but did not affect the dimeric state of the enzyme. At the molecular level, plant pantothenate synthetases exemplify functional adaptation through allostery and without alterations to the active site architecture. We propose that the allosteric behavior confers a selective advantage in the context of the subcellular compartmentation of pantothenate biosynthesis in plants.  相似文献   

20.
Melaminophenyl arsenical drugs are a mainstay of chemotherapy against late-stage African sleeping sickness, but drug resistance is increasingly prevalent. We describe here the characterization of two genes encoding putative metal-thiol conjugate transporters from Trypanosoma brucei. The two proteins, TbMRPA and TbMRPE, were each overexpressed in trypanosomes, with or without co-expression of two key enzymes in trypanothione biosynthesis, ornithine decarboxylase and gamma-glutamyl-cysteine synthetase. Overexpression of gamma-glutamyl-cysteine synthetase resulted in a twofold increase in cellular trypanothione, whereas overexpression of ornithine decarboxylase had no effect on the trypanothione level. The overexpression of TbMRPA resulted in a 10-fold increase in the IC50 of melarsoprol. The overexpression of the trypanothione biosynthetic enzymes alone gave two- to fourfold melarsoprol resistance, but did not enhance resistance caused by MRPA. Overexpression of TbMRPE had little effect on susceptibility to melarsoprol but did give two- to threefold resistance to suramin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号