首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduced glutathione (GSH) from fermentation broth of Saccharomyces cerevisiae was extracted with ethanol without disruption of the cells. The effects of ethanol concentration, extraction temperature and extraction time were assessed by using 2(3) full factorial designs (FFD). Preliminary studies showed that ethanol concentration had the most influence on GSH yield by ethanol extraction, based on the first order regression coefficients derived using MINITAB software, and an optimal ethanol concentration (25%, v/v) was obtained. However, compared to the conventional extraction technique (hot water extraction), there was no significant advantage in yield of GSH from yeast cells using ethanol extraction under these optimized conditions. But ethanol extraction has several advantages, such as lower energy consumption and lower protein concentration of extraction broth, which may reduce the complexity and cost of the purification process. Hence, ethanol extraction which does not disrupt yeast cells could be an inexpensive, simple and efficient alternative to conventional extraction techniques in the GSH industry.  相似文献   

2.
An integrated cell cultivation and protein product separation process was developed using a new type of supermacroporous polyacrylamide gel, called cryogel (pAAm-cryogel) support matrix. Human fibrosarcoma HT1080 and human colon cancer HCT116 cell lines were used to secrete urokinase (an enzyme of immense therapeutic utility) into the culture medium. The secreted protein was isolated from the circulating medium using a chromatographic capture column. A pAAm cryogel support with covalently coupled gelatin (gelatin-pAAm cryogel) was used for the cultivation of anchorage dependent cells in the continuous cell culture mode in 5% carbon dioxide atmosphere. The cells were attached to the matrix within 4-6 h of inoculation and grew as a tissue sheet inside the cryogel matrix. Continuous urokinase secretion into the circulating medium was monitored as a parameter of growth and viability of cells inside the bioreactor. No morphological changes were observed in the cells eluted from the gelatin-cryogel support and re-cultured in T-flask. The gelatin-pAAm cryogel bioreactor was further connected to a pAAm cryogel column carrying Cu(II)-iminodiacetic acid (Cu(II)-IDA)-ligands (Cu(II)-IDA-pAAm cryogel), which had been optimized for the capture of urokinase from the conditioned medium of the cell lines. Thus an automated system was built, which integrated the features of a hollow fiber reactor with a chromatographic protein separation system. The urokinase was continuously captured by the Cu(II)-IDA-pAAm cryogel column and periodically recovered through elution cycles. The urokinase activity increased from 250 PU/mg in the culture fluid to 2,310 PU/mg after recovery from the capture column which gave about ninefold purification of the enzyme. Increased productivity was achieved by operating integrated bioreactor system continuously for 32 days under product inhibition free conditions during which no backpressure or culture contamination was observed. A total 152,600 Plough units of urokinase activity was recovered from 500 mL culture medium using 38 capture columns over a period of 32 days.  相似文献   

3.
4.
Cell culture and fermentation broth media are used in the manufacture of biotherapeutics and many other biological materials. Characterizing the amino acid composition in cell culture and fermentation broth media is important because deficiencies in these nutrients can reduce desired yields or alter final product quality. Anion-exchange (AE) chromatography using sodium hydroxide (NaOH) and sodium acetate gradients, coupled with integrated pulsed amperometric detection (IPAD), determines amino acids without sample derivatization. AE-IPAD also detects carbohydrates, glycols, and sugar alcohols. The presence of these compounds, often at high concentrations in cell culture and fermentation broth media, can complicate amino acid determinations. To determine whether these samples can be analyzed without sample preparation, we studied the effects of altering and extending the initial NaOH eluent concentration on the retention of 42 different carbohydrates and related compounds, 30 amino acids and related compounds, and 3 additional compounds. We found that carbohydrate retention is impacted in a manner different from that of amino acid retention by a change in [NaOH]. We used this selectivity difference to design amino acid determinations of diluted cell culture and fermentation broth media, including Bacto yeast extract-peptone-dextrose (yeast culture medium) broth, Luria-Bertani (bacterial culture medium) broth, and minimal essential medium and serum-free protein-free hybridoma medium (mammalian cell culture media). These media were selected as representatives for both prokaryotic and eukaryotic culture systems capable of challenging the analytical technique presented in this paper. Glucose up to 10mM (0.2%, w/w) did not interfere with the chromatography, or decrease recovery greater than 20%, for the common amino acids arginine, lysine, alanine, threonine, glycine, valine, serine, proline, isoleucine, leucine, methionine, histidine, phenylalanine, glutamate, aspartate, cystine, and tyrosine.  相似文献   

5.
L-阿拉伯糖是木质纤维素原料中一种重要的五碳糖组分,但传统的乙醇生产菌株酿酒酵母( Saccharomyces cerevisiae)不能利用L 阿拉伯糖。通过代谢途径工程手段,在酿酒酵母中引入L 阿拉伯糖初始代谢途径可以获得能利用L 阿拉伯糖乙醇发酵的重组菌株。并且,通过代谢途径的疏通以及吸收系统的优化可以强化重组菌株代谢L 阿拉伯糖的能力。笔者从以上角度综述了近年来酿酒酵母转化L 阿拉伯糖生产乙醇的研究进展。  相似文献   

6.
To obtain a high cell density of recombinant Saccharomyces cerevisiae (INVSc 1 strain bearing a 2 microm plasmid, pYES2 containing a GAL1 promoter for expression of the beta-galactosidase gene), the yeast was grown with glycerol as the substrate by fed-batch fermentation. The feeding strategy was based on an on-line response of the medium pH to the consumption of glycerol. The approach was to feed excess carbon into the medium to create a benign environment for rapid biomass buildup. During cell growth in the presence of glycerol, the release of protons in the medium caused a decrease in pH and the consumption rate of ammonium phosphate served as an on-line indicator for the metabolic rate of the organism. The extent of glycerol feeding in a fed-batch mode with pH control at 5.0 +/- 0.1 was ascertained from the automatic addition of ammonium phosphate to the medium. The glycerol feeding to ammonium phosphate addition ratio was found to be 2.5-3.0. On the basis of the experiments, a maximum dry cell biomass of 140 g per liter and a productivity of 5.5 g DCW/L/h were achieved. The high cell density of S. cerevisiae obtained with good plasmid stability suggested a simple and efficient fermentation protocol for recombinant protein production.  相似文献   

7.
Anion-exchange chromatography with integrated pulsed amperometric detection (AE-IPAD) separates and directly detects amino acids, carbohydrates, alditols, and glycols in the same injection without pre- or post-column derivatization. These separations use a combination of NaOH and NaOH/sodium acetate eluents. We previously published the successful use of this technique, also known as AAA-Direct, to determine free amino acids in cell culture and fermentation broth media. We showed that retention of carbohydrates varies with eluent NaOH concentration differently than amino acids, and thus separations can be optimized by varying the initial NaOH concentration and its duration. Unfortunately, some amino acids eluting in the acetate gradient portion of the method were not completely resolved from system-related peaks and from unknown peaks in complex cell culture and fermentation media. In this article, we present changes in method that improve amino acid resolution and system ruggedness. The success of these changes and their compatibility with the separations previously designed for fermentation and cell culture are demonstrated with yeast extract-peptone-dextrose broth, M199, Dulbecco's modified Eagle's (with F-12), L-15 (Leibovitz), and McCoy's 5A cell culture media.  相似文献   

8.
AIMS: To enhance the fermentation of maltotriose by industrial Saccharomyces cerevisiae strains. METHODS AND RESULTS: The capability to ferment maltotriose by an industrial yeast strain that uses this sugar aerobically was tested in shake flasks containing rich medium. While the presence of maltose in the medium did not improve maltotriose fermentation, enhanced and constitutive expression of the AGT1 permease not only increased the uptake of maltotriose, but allowed efficient maltotriose fermentation by this strain. Supplementation of the growth medium with 20 mmol magnesium l(-1) also increased maltotriose fermentation. CONCLUSIONS: Over expression of the AGT1 permease and magnesium supplementation improved maltotriose fermentation by an industrial yeast strain that respired but did not ferment this sugar. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes to the elucidation of the roles of the AGT1 permease and nutrients in the fermentation of all sugars present in starch hydrolysates, a highly desirable trait for several industrial yeasts.  相似文献   

9.
Solid Substrate Fermentation system (SSF) was used to produce ethanol from various starchy substrates like sweet sorghum, sweet potato, wheat flour, rice starch, soluble starch and potato starch using thermotolerant yeast isolate (VS3) by simultaneous saccharification and fermentation process. Alcohol produced was estimated by gas chromatography after an incubation time of 96 hrs at 37v°C and 42v°C. More ethanol was produced from rice starch and sweet sorghum. The maximum amount of ethanol produced from these substrates using VS3 was 10 g/100 g and 3.5 g/100 g substrate (rice starch) and 8.2 g and 7.5 g/100 g substrate (sweet sorghum) at 37v°C and 42v°C respectively.  相似文献   

10.
Yeast cells accumulate S-adenosyl-l-methionine (S-AM) when cultivated in the presence of l-methionine. Cell growth is inhibited by the addition of high concentrations of l-methionine. A number of investigators have attributed this to the depletion of adenosine triphosphate (ATP) as a consequence of the utilization of that mucleotide for S-AM formation. The cellular ATP pool of Saccharomyces cerevisiae was measured during growth inhibition caused by addition of excess l-methionine. Polyethylenimine thin-layer chromatography and subsequent autoradiography were used to quantitate the extracted ATP. Addition of l-methionine to a level of 5 mg/ml in a culture during exponential growth caused an increase in the doubling time of 40 to 50%. During this period, the cellular ATP level continued increasing normally and, as the cells entered stationary growth, receded to a level characteristic of an uninhibited stationary culture growth. After the addition of methionine, there was never an observed depletion of the ATP pool other than the normal fluctuation which occurs in an uninhibited culture. We have concluded that growth inhibition by excessive methionine does not result from limiting availability of ATP.  相似文献   

11.
Nystatin-resistant mutants of haploid and polyploid strains of Saccharomyces cerevisiae were isolated by plating on gradient plates with increasing nystatin concentrations (60-3000 U/ml). Some of the mutants were defective in ergosterol biosynthesis, and produced zymosterol and cholestatetraenol-like sterols. Those mutants which do not form ergosterol produce less ethanol than the parent strains. They also had lower viability during fermentation of glucose solutions (8-13% vs. 33-47%). This became more pronounced in fermentations of higher concentrations of glucose. A nystatin-resistant but ergosterol-forming mutant had a similar fermentation capacity to the parent strain.  相似文献   

12.
Data obtained on the conversion of d-glucose to alcohol using Saccharomyces cerevisiae in batch culture has been analysed kinetically. The effects of different kinetic parameters, e.g. rates of ethanol and biomass formation, rate of d-glucose utilization and variation of pH have been studied. Analysis of data was made on the basis of Michaelis-Menten, Leudeking-Piret and simple kinetics. Unsteady rate behaviour in the lag phase was observed and explained.  相似文献   

13.
Nystatin-resistant mutants of haploid and polyploid strains of Saccharomyces cerevisiae were isolated by plating on gradient plates with increasing nystatin concentrations (60–3000 U/ml). Some of the mutants were defective in ergosterol biosynthesis, and produced zymosterol and cholestatetraenol-like sterols. Those mutants which do not form ergosterol produce less ethanol than the parent strains. They also had lower viability during fermentation of glucose solutions (8–13% vs. 33–47%). This became more pronounced in fermentations of higher concentrations of glucose. A nystatin-resistant but ergosterol-forming mutant had a similar fermentation capacity to the parent strain.  相似文献   

14.
《Process Biochemistry》2014,49(12):2299-2304
A water-soluble polysaccharide from lily bulbs was isolated and purified by Saccharomyces cerevisiae fermentation. Proteins present in lily bulb extract were removed by extracellular proteases secreted by S. cerevisiae during fermentation. This novel method differs from traditional protein removal methods. A suitable yeast strain was selected. Culture conditions were optimized. Response surface methodology (RSM) was utilized to evaluate the effects of variables on the lily polysaccharide (LP) yield and the protein removal ratio (PRR). The results of applying RSM revealed that the optimum fermentation conditions were 87.5 g L−1 lily bulb powder, pH 5.6, and temperature 27.9 °C. When lily bulb extract was cultured with S. cerevisae under optimum conditions, the LP yield and the PRR were 6.56% and 91.46%, respectively. These values are in close agreement with the value predicted by the model. The resulting LP curding was further purified by DEAE Sepharose Fast Flow chromatography after isolation by alcohol precipitation post-fermentation. DEAE chromatography resulted in a fraction, LP-1 (yield: 4.46%) with a molecular weight of 65.0 kDa. LP-1 consisted of glucose and mannose in a molar ratio of 1:1.2.  相似文献   

15.
This work presents a multi-route, non-structural kinetic model for interpretation of ethanol fermentation of lactose using a recombinant flocculent Saccharomyces cerevisiae strain expressing both the LAC4 (coding for beta-galactosidase) and LAC12 (coding for lactose permease) genes of Kluyveromyces lactis. In this model, the values of different metabolic pathways are calculated applying a modified Monod equation rate in which the growth rate is proportional to the concentration of a key enzyme controlling the single metabolic pathway. In this study, three main metabolic routes for S. cerevisiae are considered: oxidation of lactose, reduction of lactose (producing ethanol), and oxidation of ethanol. The main bioprocess variables determined experimentally were lactose, ethanol, biomass, and dissolved oxygen concentrations. Parameters of the proposed kinetic model were established by fitting the experimental data obtained in a small lab-scale fermentor with the initial lactose concentrations ranging from 5 g/dm3 to 50 g/dm3. A very good agreement between experimental data and simulated profiles of the main variables (lactose, ethanol, biomass, and dissolved oxygen concentrations) was achieved.  相似文献   

16.
The final ethanol concentration achieved was increased by 17% (to 103 g ethanol/l) when excess assimilable nitrogen was added to the batch very high gravity (VHG) ethanolic fermentations by Saccharomyces cerevisiae. The supplementation of the media with 12 g yeast extract l–1, 0.3 g cell walls l–1, 3 g glycine l–1 and 20 g soya flour l–1 led to halving reduction of the fermentation time to 28 h. The ethanol productivity was enhanced by more than 50% (to achieved value 3.3 g l–1 h–1).  相似文献   

17.
Chipped tobacco stalks were subjected to steam pretreatment at 205 °C for either 5 or 10 min before enzymatic hydrolysis. Glucose (15.4–17.1 g/l) and xylose (4.5–5.0 g/l) were the most abundant monosaccharides in the hydrolysates. Mannose, galactose and arabinose were also detected. The hydrolysate produced by pretreatment for 10 min contained higher levels of all sugars than the 5 min-pretreated hydrolysate. The amounts of inhibitory compounds found in the hydrolysates were relatively low and increased with increasing pretreatment time. The hydrolysates were fermented with baker's yeast. Ethanol yield, maximum volumetric productivity and specific productivity were used as criteria of fermentability of the hydrolysates. The fermentation of the hydrolysates was only slightly inhibited compared to reference solutions having a similar composition of fermentable sugars. The ethanol yield in the hydrolysates was 0.38–0.39 g/g of initial fermentable sugars, whereas it was 0.42 g/g in the reference. The biomass yield was twofold lower in the hydrolysates than in the reference. The fermentation inhibition caused by the tobacco stalk hydrolysates was less than that caused by sugarcane bagasse hydrolysates obtained under the same hydrolysis conditions.  相似文献   

18.
《Process Biochemistry》2010,45(4):487-492
A thermotolerant ethanol-fermenting yeast, Saccharomyces cerevisiae KNU5377, isolated from a sludge of a local industrial complex stream in Korea, was evaluated for its capability for lignocellulosic ethanol production from waste newsprint in high temperature. In this fermentation, most of dry-defibrated waste newspaper was first saccharified at 50 °C for 108 h using a commercial cellulase and, then with the last addition of dry-defibrated newsprints to the pre-saccharified broth, simultaneous saccharification and fermentation (SSF) of 1.0 L of reaction mixture was carried out at 40 °C, slowly being dropped from 50 °C, for further 72 h in a 5 L fermentor by inoculating the overnight culture of KNU5377. The maximum production of 8.4% (v/v) ethanol was obtained when 250 g (w/v)/L of dry-defibrated waste newspaper was used for ethanol production by SSF. These results suggest that S. cerevisiae KNU5377 is very useful for cellulose ethanol production by the SSF system.  相似文献   

19.
A repeated batch fermentation system was used to produce ethanol using an osmotolerant Saccharomyces cerevisiae (VS3) immobilized in calcium alginate beads. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Fermentation was carried for six cycles with 125, 250 or 500 beads using 150, 200 or 250 g glucose L−1 at 30°C. The maximum amount of ethanol produced by immobilized VS3 using 150 g L−1 glucose was only 44 g L−1 after 48 h, while the amount of ethanol produced by free cells in the first cycle was 72 g L−1. However in subsequent fed batch cultures more ethanol was produced by immobilized cells compared to free cells. The amount of ethanol produced by free cells decreased from 72 g L−1 to 25 g L−1 after the fourth cycle, while that of immobilized cells increased from 44 to 72 g L−1. The maximum amount of ethanol produced by immobilized VS3 cells using 150, 200 and 250 g glucose L−1 was 72.5, 93 and 87 g ethanol L−1 at 30°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 222–226. Received 16 September 1999/ Accepted in revised form 22 December 1999  相似文献   

20.
Ion exchange chromatography (IEC) and desalting electrodialysis (DSED) processes were developed for the recovery and purification of potassium clavulanate (KCA) from fermentation broth. A strong anion exchanger, Amberlite IRA 400 resin, a potassium acetate solution as equilibrium buffer, and a potassium chloride (KCl) solution as elution buffer were used for the recovery of KCA in IEC. In order to determine optimal operating conditions, the effects of various operating parameters such as equilibrium buffer pH and concentration, elution buffer concentration, gradient length, and volumetric flow rate on KCA recovery and by-product removal were investigated using a simulated fermentation broth. In the subsequent step of DSED, employing cation (Neocepta CMS, Tokuyama, Japan) and anion (Neocepta ACS, Tokuyama, Japan) exchange membranes were carried out to remove KCl that existed in a large amount in the ion exchanged solution. The effects of operation voltage and feed composition on the performance of DSED were investigated. Based on the operating conditions determined above, IEC and DSED were applied in sequence to an ultrafiltered fermentation broth. Almost complete removal of KCl was possible with no significant loss of KCA, although the KCA recovery was slightly lower than that with the simulated fermentation broth. Based on this observation, it was concluded that IEC and DESD could be an effective process combination for the recovery of KCA from fermentation broth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号