首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Escherichia coli was metabolically engineered for the production of d-ribose, a functional five-carbon sugar, from xylose. For the accumulation of d-ribose, two genes of transketolase catalyzing the conversion of d-ribose-5-phosphate to sedoheptulose-7-phosphate in pentose phosphate pathway were disrupted to create a transketolase-deficient E. coli SGK013. In batch fermentation, E. coli SGK013 grew by utilizing glucose and then started to produce d-ribose from xylose after glucose depletion. E. coli SGK013 produced 0.75 g/L of d-ribose, which was identical to the standard d-ribose as confirmed by HPLC and LC/MS analyses. To improve D-ribose production, the ptsG gene encoding the glucose-specific IICB component was disrupted additionally, resulting in the construction of E. coli SGK015. The carbon catabolite repression-negative E. coli SGK015 utilized xylose and glucose simultaneously and produced up to 3.75 g/L of d-ribose, which is a 5-fold improvement compared to that of E. coli SGK013.  相似文献   

2.
Previously, we described the production of N-acetylneuraminic acid (NeuAc) from N-acetylglucosamine (GlcNAc) in a system combining recombinant Escherichia coli expressing GlcNAc 2-epimerase (slr1975), E. coli expressing NeuAc synthetase (neuB), and Corynebacterium ammoniagenes. However, this system was unsuitable for large-scale production because of its complexity and low productivity. To overcome these problems, we constructed a recombinant E. coli simultaneously overexpressing slr1975 and neuB. This recombinant E. coli produced 81 mM (25 g/L) NeuAc in 22 h without the addition of C. ammoniagenes cells. For manufacturing on an industrial scale, it is preferable to use unconcentrated culture broth as the source of enzymes, and therefore, a high-density cell culture is required. An acetate-resistant mutant strain of E. coli (HN0074) was selected as the host strain because of its ability to grow to a high cell density. The NeuAc aldolase gene of E. coli HN0074 was disrupted by homologous recombination yielding E. coli N18-14, which cannot degrade NeuAc. After a 22 h reaction with 540 mM (120 g/L) GlcNAc in a 5 L jar fermenter, the culture broth of E. coli N18-14 overexpressing slr1975 and neuB contained 172 mM (53 g/L) NeuAc.  相似文献   

3.
Quantitative parameters of phagocytosis of fluorescein-labeled Escherichia coli cells by mouse peritoneal macrophages were studied using a fluorimetric method. E. coli cells were conjugated with fluoresceinisothiocyanate (FITC) and then incubated with macrophages. At the end of incubation, phagocytosis was stopped by the addition of a lysing solution (0.5% Triton X-100 in 0.01 M phosphate buffer in 0.15 M saline, pH 7.4). Trypan blue at a concentration of 0.04% was used as a quenching agent to differentiate between attached and ingested E. coli cells. It was shown that phagocytosis of E. coli cells depended on temperature and opsonization of bacteria. The number of E. coli cells ingested by macrophages increased rapidly for the initial 60 min of incubation at 37°C. To achieve optimal uptake of E. coli cells, their opsonization with 5% native serum was needed. The uptake of nonopsonized bacteria by macrophages was significantly lower than that of the opsonized ones (p < 0.05). Sodium azide was shown to produce a dose-dependent suppression of phagocytosis of E. coli cells by mouse peritoneal macrophages.  相似文献   

4.
Modeling of batch kinetics in minimal synthetic medium was used to characterize Escherichia coli O157:H7 growth, which appeared to be different from the exponential growth expected in minimal synthetic medium and observed for E. coli K-12. The turbidimetric kinetics of 14 of the 15 O157:H7 strains tested (93%) were nonexponential, whereas 25 of the 36 other E. coli strains tested (70%) exhibited exponential kinetics. Moreover, the anomaly was almost corrected when the minimal medium was supplemented with methionine. These observations were confirmed with two reference strains by using plate count monitoring. In mixed cultures, E. coli K-12 had a positive effect on E. coli O157:H7 and corrected its growth anomaly. This demonstrated that commensalism occurred, as the growth curve for E. coli K-12 was not affected. The interaction could be explained by an exchange of methionine, as the effect of E. coli K-12 on E. coli O157:H7 appeared to be similar to the effect of methionine.  相似文献   

5.
We recently reported that phosphate-buffered saline (PBS) treated with nonthermal dielectric-barrier discharge plasma (plasma) acquires strong antimicrobial properties, but the mechanisms underlying bacterial inactivation were not known. The goal of this study is to understand the cellular responses of Escherichia coli and to investigate the properties of plasma-activated PBS. The plasma-activated PBS induces severe oxidative stress in E. coli cells and reactive-oxygen species scavengers, α-tocopherol and catalase, protect E. coli from cell death. Here we show that the response of E. coli to plasma-activated PBS is regulated by OxyR and SoxyRS regulons, and mediated predominantly through the expression of katG that deactivates plasma-generated oxidants. During compensation of E. coli in the absence of both katG and katE, sodA and sodB are significantly overexpressed in samples exposed to plasma-treated PBS. Microarray analysis found that up-regulation of genes involved in DNA repair, and E. coli expressing recA::lux fusion was extremely sensitive to the SOS response upon exposure to plasma-treated PBS. The cellular changes include rapid loss of E. coli membrane potential and membrane integrity, lipid peroxidation, accumulation of 8-hydroxy-deoxyguinosine (8OHdG), and severe oxidative DNA damage; reveal ultimate DNA disintegration, and cell death. Together, these data suggest that plasma-treated PBS contains hydrogen peroxide and superoxide like reactive species or/and their products which lead to oxidative changes to cell components, and are eventually responsible for cell death.  相似文献   

6.
The purpose of this research was to develop new strains of Escherichia coli with improved fatty acid biosynthesis. β-Ketoacyl acyl carrier protein synthase III (fabH) catalyzes the first step in the synthesis of fatty acids in parallel with acetyl-CoA carboxylase (accABC) and malonyl-CoA: acyl carrier protein transacylase (fabD) in Escherichia coli K-12 MG1655. The enzyme encoded by the fabH gene leads to an increase in the synthesis of short-chain-length fatty acids and a strong preference for acetyl-CoA, as it produces only straight chain fatty acids (SCFAs). It also seems to play a role in determining the type and composition of fatty acids produced. In this study, metabolically engineered strains of E. coli K-12 MG1655 containing fabH or accA::accBC::fabD or accA::accBC:: fabD::fabH gene-inserted expression vector (pTrc99A) were constructed. To observe the effects of overexpression, the production of malonic acid, a pathway intermediate, and fatty acids was analyzed. The resulting recombinant strains produced total lipids up to approximately 1.2 ~ 1.6 fold higher than that of wild-type E. coli. The production of hexadecanoic acid was especially enhanced up to approximately 4.8 fold in E. coli SGJS13 as compared to E. coli SGJS11.  相似文献   

7.
Human and chicken erythrocytes are readily coated in vitro by blood group active protein-lipopolysaccharides and lipopolysaccharides from E. coli O86 and E. coli O128. Serum albumin, α2- and β-lipoproteins inhibit this sensitization. Blood group B specific agglutination of erythrocytes with B or B-like antigens was obtained with antibodies purified by adsorption on and elution from B erythrocytes. Anti-blood group B and E. coli O86-specific antibodies could be eluted from E. coli O86-coated O erythrocytes. Eel anti-H(O) serum agglutinated O erythrocytes and only those A1B red cells which were coated with blood group H(O) active E. coli products. Blood group active substances specifically inhibited agglutination of lipopolysaccharide-coated erythrocytes by anti-B and anti-H(O) agglutinins. Demonstrable amounts of lipopolysaccharide could only be removed from coated erythrocytes by washing them at elevated temperatures (58°C) in physiological solutions. Red cell sensitization with B active E. coli O86 substances was achieved in vivo in a minority of severely diseased infants and in germ-free and ordinary chicks which were in tourniquet shock after treatment with cathartics. Therefore, a possible mode by which erythrocytes of patients with severe intestinal disorders acquire antigens is the fixation of bacterial substances to their surfaces, if there are not enough of the normally interfering plasma factors present.  相似文献   

8.
Enteric bacteria, such as Escherichia coli, are exposed to a variety of stresses in the nonhost environment. The development of biofilms provides E. coli with resistance to environmental insults, such as desiccation and bleach. We found that biofilm formation, specifically production of the matrix components curli and cellulose, protected E. coli against killing by the soil-dwelling nematode Caenorhabditis elegans and the predatory bacterium Myxococcus xanthus. Additionally, matrix-encased bacteria at the air-biofilm interface exhibited ∼40-fold-increased survival after C. elegans and M. xanthus killing compared to the non-matrix-encased cells that populate the interior of the biofilm. To determine if nonhost Enterobacteriaceae reservoirs supported biofilm formation, we grew E. coli on media composed of pig dung or commonly contaminated foods, such as beef, chicken, and spinach. Each of these medium types provided a nutritional environment that supported matrix production and biofilm formation. Altogether, we showed that common, nonhost reservoirs of E. coli supported the formation of biofilms that subsequently protected E. coli against predation.  相似文献   

9.
Consumption of E. coli cells by Daphnia magna was studied. It was found that this organism not only ingested E. coli cells but digested them as demonstrated by the release of 14CO2 originating from E. coli grown on 14C-glucose, and by the transfer of the radioactive label from parental Daphnia to their progenies. In addition the effect of antibiotics on the consumption of E. coli cells by Daphnia magna was studied. In long incubation times, antibiotics inhibited bacterial uptake by Daphnia. The microflora isolated from Daphnia was found to be capable of causing leakage of enzymes out of E. coli cells thus playing at least a partial role in the digestion of E. coli cells by Daphnia.  相似文献   

10.
Many intracellular bacterial pathogens possess virulence factors that prevent detection and killing by macrophages. However, similar virulence factors in non-pathogenic bacteria are less well-characterized and may contribute to the pathogenesis of chronic inflammatory conditions such as Crohn’s disease. We hypothesize that the small heat shock proteins IbpAB, which have previously been shown to reduce oxidative damage to proteins in vitro and be upregulated in luminal non-pathogenic Escherichia strain NC101 during experimental colitis in vivo, protect commensal E. coli from killing by macrophage-derived reactive oxygen species (ROS). Using real-time PCR, we measured ibpAB expression in commensal E. coli NC101 within wild-type (wt) and ROS-deficient (gp91phox-/-) macrophages and in NC101 treated with the ROS generator paraquat. We also quantified survival of NC101 and isogenic mutants in wt and gp91phox-/- macrophages using gentamicin protection assays. Similar assays were performed using a pathogenic E. coli strain O157:H7. We show that non-pathogenic E. coli NC101inside macrophages upregulate ibpAB within 2 hrs of phagocytosis in a ROS-dependent manner and that ibpAB protect E. coli from killing by macrophage-derived ROS. Moreover, we demonstrate that ROS-induced ibpAB expression is mediated by the small E. coli regulatory RNA, oxyS. IbpAB are not upregulated in pathogenic E. coli O157:H7 and do not affect its survival within macrophages. Together, these findings indicate that ibpAB may be novel virulence factors for certain non-pathogenic E. coli strains.  相似文献   

11.
Intestinal pathogenic Escherichia coli represents a global health problem for mammals, including humans. At present, diarrheagenic E. coli bacteria are grouped into seven major pathotypes that differ in their virulence factor profiles, severity of clinical manifestations, and prognosis. In this study, we developed and evaluated a one-step multiplex PCR (MPCR) for the straightforward differential identification of intestinal pathotypes of E. coli. The specificity of this novel MPCR was validated by using a subset of reference strains and further confirmed by PCR-independent pheno- and genotypic characterization. Moreover, we tested 246 clinical E. coli isolates derived from diarrhea patients from several distinct geographic regions. Interestingly, besides strains belonging to the defined and well-described pathotypes, we identified five unconventional strains expressing intermediate virulence factor profiles. These strains have been further characterized and appear to represent intermediate strains carrying genes and expressing factors associated with enteropathogenic E. coli, Shiga toxin-producing E. coli, enterotoxigenic E. coli, and enteroaggregative E. coli alike. These strains represent further examples of the extraordinary plasticity of the E. coli genome. Moreover, this implies that the important identification of specific pathotypes has to be based on a broad matrix of indicator genes. In addition, the presence of intermediate strains needs to be accounted for.  相似文献   

12.
Energy medicine (EM) provides a new medical choice for patients, and its advantages are the noninvasive detection and nondrug treatment. An electromagnetic signal, a kind of EM, induced from antibiotic coupling with weak, extremely low-frequency pulsed electromagnetic fields (PEMFs) is utilized for investigating the growth speed of Escherichia coli (E. coli). PEMFs are produced by solenoidal coils for coupling the electromagnetic signal of antibiotics (penicillin). The growth retardation rate (GRR) of E. coli is used to investigate the efficacy of the electromagnetic signal of antibiotics. The E. coli is cultivated in the exposure of PEMFs coupling with the electromagnetic signal of antibiotics. The maximum GRR of PEMFs with and without the electromagnetic signal of antibiotics on the growth of E. coli cells in the logarithmic is 17.4 and 9.08 %, respectively. The electromagnetic signal of antibiotics is successfully coupled by the electromagnetic signal coupling instrument to affect the growth of E. coli. In addition, the retardation effect on E. coli growth can be improved of by changing the carrier frequency of PEMFs coupling with the electromagnetic signal of antibiotics. GRR caused by the electromagnetic signal of antibiotics can be fixed by a different carrier frequency in a different phase of E. coli growth.  相似文献   

13.
Xylose isomerase from Geobacillus kaustophilus HTA426 was functionally expressed in Escherichia coli BL21 (DE3) and the recombinant E. coli cells were used together with conventional Saccharomyces cerevisiae to produce ethanol from xylose by simultaneous xylose isomerisation and fermentation. When recombinant E. coli cells were used as the source of xylose isomerase, a significant amount of ethanol was produced from xylose, whereas the control without recombinant E. coli cells did not produce any detectable amount of ethanol from xylose. Ethanol production was increased by 38% by feeding more recombinant E. coli at 48 h compared to adding recombinant E. coli only in the beginning, resulting in more ethanol production than P. stipitis CBS6054 under the same conditions. The xylitol accumulation by the in situ process was only 57% of that produced by the P. stipitis CBS6054.  相似文献   

14.
We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars.Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation.In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.  相似文献   

15.
UDP-glucose dehydrogenase (Ugd) generates UDP-glucuronic acid, an important precursor for the production of many hexuronic acid-containing bacterial surface glycostructures. In Escherichia coli K-12, Ugd is important for biosynthesis of the environmentally regulated exopolysaccharide known as colanic acid, whereas in other E. coli isolates, the same enzyme is required for production of the constitutive group 1 capsular polysaccharides, which act as virulence determinants. Recent studies have implicated tyrosine phosphorylation in the activation of Ugd from E. coli K-12, although it is not known if this is a feature shared by bacterial Ugd proteins. The activities of Ugd from E. coli K-12 and from the group 1 capsule prototype (serotype K30) were compared. Surprisingly, for both enzymes, site-directed Tyr → Phe mutants affecting the previously proposed phosphorylation site retained similar kinetic properties to the wild-type protein. Purified Ugd from E. coli K-12 had significant levels of NAD substrate inhibition, which could be alleviated by the addition of ATP and several other nucleotide triphosphates. Mutations in a previously identified UDP-glucuronic acid allosteric binding site decreased the binding affinity of the nucleotide triphosphate. Ugd from E. coli serotype K30 was not inhibited by NAD, but its activity still increased in the presence of ATP.  相似文献   

16.
Escherichia coli O157:H7 is a food-borne bacterium that causes hemorrhagic diarrhea and hemolytic uremic syndrome in humans. While cattle are a known source of E. coli O157:H7 exposure resulting in human infection, environmental reservoirs may also be important sources of infection for both cattle and humans. Bacteriophage-encoded Shiga toxins (Stx) carried by E. coli O157:H7 may provide a selective advantage for survival of these bacteria in the environment, possibly through their toxic effects on grazing protozoa. To determine Stx effects on protozoan grazing, we co-cultured Paramecium caudatum, a common ciliate protozoon in cattle water sources, with multiple strains of Shiga-toxigenic E. coli O157:H7 and non-Shiga toxigenic cattle commensal E. coli. Over three days at ambient laboratory temperature, P. caudatum consistently reduced both E. coli O157:H7 and non-Shiga toxigenic E. coli populations by 1–3 log cfu. Furthermore, a wild-type strain of Shiga-toxigenic E. coli O157:H7 (EDL933) and isogenic mutants lacking the A subunit of Stx 2a, the entire Stx 2a-encoding bacteriophage, and/or the entire Stx 1-encoding bacteriophage were grazed with similar efficacy by both P. caudatum and Tetrahymena pyriformis (another ciliate protozoon). Therefore, our data provided no evidence of a protective effect of either Stx or the products of other bacteriophage genes on protozoan predation of E. coli. Further research is necessary to determine if the grazing activity of naturally-occurring protozoa in cattle water troughs can serve to decrease cattle exposure to E. coli O157:H7 and other Shiga-toxigenic E. coli.  相似文献   

17.
The simple reversible intercalating agent isopropyl-OPC (iPr-OPC) induces frameshift-1 mutations in Salmonella typhimurium and Escherichia coli. The mutagenic responses of S. typhimurium and E. coli wild-type strains are not proportional to the amount of drug intercalated into double-stranded nucleic acids in living bacteria; it occurs only above a minimum level of binding. The fact that mismatch-repair-deficient (mutS) as well as adenine-methylation-deficient (dam) E. coli mutants are hypermutable at low concentrations of iPr-OPC suggests that the majority of mutants induced by this intercalating drug occur as mismatch-repairable mutations (or lesions) in the newly synthesized DNA strand close to the replication fork.  相似文献   

18.
Microbial systems have become the preferred testing grounds for experimental work on the evolution of traits that benefit other group members. This work, based on conceptual and theoretical models of frequency-dependent selection within populations, has proven fruitful in terms of understanding the dynamics of group beneficial or ‘public goods’ traits within species. Here, we expand the scope of microbial work on the evolution of group-beneficial traits to the case of multi-species communities, particularly those that affect human health. We examined whether β-lactamase-producing Escherichia coli could protect ampicillin-sensitive cohorts of other species, particularly species that could cause human disease. Both β-lactamase-secreting E. coli and, surprisingly, those engineered to retain it, allowed for survival of a large number of ampicillin-sensitive cohorts of Salmonella enterica serovar Typhimurium, including both laboratory and clinical isolates. The Salmonella survivors, however, remained sensitive to ampicillin when re-plated onto solid medium and there was no evidence of gene transfer. Salmonella survival did not even require direct physical contact with the resistant E. coli. The observed phenomenon appears to involve increased release of β-lactamase from the E. coli when present with S. enterica. Significantly, these findings imply that resistant E. coli, that are not themselves pathogenic, may be exploited, even when they are normally selfish with respect to other E. coli. Thus, Salmonella can gain protection against antibiotics from E. coli without gene transfer, a phenomenon not previously known. As a consequence, antibiotic-resistant E. coli can play a decisive role in the survival of a species that causes disease and may thereby interfere with successful treatment.  相似文献   

19.
Human interferon β synthesized in Escherichia coli is unstable and toxic for the bacterial cell. Zinc ions are able to stabilise interferon β in E. coli probably by inhibiting the action of cell internal proteinase(s) which affect the half-life of this foreign protein. As a result up to one order of magnitude more active IFN-β can be detected in Zn2+-treated E. coli cells.  相似文献   

20.
Lysis of Escherichia coli from without by excess of phage ghost has been shown to give excellent yield of several enzymes. The application of lysis from without to a continuous determination of enzymes in growing cultures of E. coli is illustrated with β-galactosidase. This application can be used in studies on changes of a large number of enzymes during metabolic perturbation (induction, repression, etc.) of growing cultures of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号