首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Warburg Micro syndrome and Martsolf syndrome are heterogenous autosomal-recessive developmental disorders characterized by brain, eye, and endocrine abnormalities. Previously, identification of mutations in RAB3GAP1 and RAB3GAP2 in both these syndromes implicated dysregulation of the RAB3 cycle (which controls calcium-mediated exocytosis of neurotransmitters and hormones) in disease pathogenesis. RAB3GAP1 and RAB3GAP2 encode the catalytic and noncatalytic subunits of the hetrodimeric enzyme RAB3GAP (RAB3GTPase-activating protein), a key regulator of the RAB3 cycle. We performed autozygosity mapping in five consanguineous families without RAB3GAP1/2 mutations and identified loss-of-function mutations in RAB18. A c.71T > A (p.Leu24Gln) founder mutation was identified in four Pakistani families, and a homozygous exon 2 deletion (predicted to result in a frameshift) was found in the fifth family. A single family whose members were compound heterozygotes for an anti-termination mutation of the stop codon c.619T > C (p.X207QextX20) and an inframe arginine deletion c.277_279 del (p.Arg93 del) were identified after direct gene sequencing and multiplex ligation-dependent probe amplification (MLPA) of a further 58 families. Nucleotide binding assays for RAB18(Leu24Gln) and RAB18(Arg93del) showed that these mutant proteins were functionally null in that they were unable to bind guanine. The clinical features of Warburg Micro syndrome patients with RAB3GAP1 or RAB3GAP2 mutations and RAB18 mutations are indistinguishable, although the role of RAB18 in trafficking is still emerging, and it has not been linked previously to the RAB3 pathway. Knockdown of rab18 in zebrafish suggests that it might have a conserved developmental role. Our findings imply that RAB18 has a critical role in human brain and eye development and neurodegeneration.  相似文献   

2.
Warburg Micro syndrome and Martsolf syndrome are clinically overlapping autosomal recessive conditions characterized by congenital cataracts, microphthalmia, postnatal microcephaly, and developmental delay. The neurodevelopmental and ophthalmological phenotype is more severe in Warburg Micro syndrome in which cerebral malformations and severe motor and mental retardation are common. While biallelic loss-of-function mutations in RAB3GAP1 are present in the majority of patients with Warburg Micro syndrome; a hypomorphic homozygous splicing mutation of RAB3GAP2 has been reported in a single family with Martsolf syndrome. Here, we report a novel homozygous RAB3GAP2 small in-frame deletion, c.499_507delTTCTACACT (p.Phe167_Thr169del) that causes Warburg Micro syndrome in a girl from a consanguineous Turkish family presenting with congenital cataracts, microphthalmia, absent visually evoked potentials, microcephaly, polymicrogyria, hypoplasia of the corpus callosum, and severe developmental delay. No RAB3GAP2 mutations were detected in ten additional unrelated patients with RAB3GAP1-negative Warburg Micro syndrome, consistent with further genetic heterogeneity. In conclusion, we provide evidence that RAB3GAP2 mutations are not specific to Martsolf syndrome. Rather, our findings suggest that loss-of-function mutations of RAB3GAP1 as well as functionally severe RAB3GAP2 mutations cause Warburg Micro syndrome while hypomorphic RAB3GAP2 mutations can result in the milder Martsolf phenotype. Thus, a phenotypic severity gradient may exist in the RAB3GAP-associated disease continuum (the “Warburg–Martsolf syndrome”) which is presumably determined by the mutant gene and the nature of the mutation.  相似文献   

3.
The authors describe seven Egyptian patients (5 males and two females) with microcephaly, mild microphthalmia, microcornea, congenital cataracts and hypogenitalism (only in males). These features (after excluding possible non-genetic causes) are consistent with the diagnosis of Micro syndrome. Clinical, neurological, ophthalmologic examinations and brain imaging and electrophysiological studies were performed in all patients. Three cases had characteristic facial features consistent with those originally described in the Micro syndrome whilst the rest of the cases had clearly different facies to that of the original patients of Micro syndrome but similar to those described in Martsolf syndrome. The patients had a variable degree of brain atrophy but hypogenesis of the corpus callosum was evident only in five patients. Abnormal gyral pattern, small cerebellum, vermian hypoplasia and delayed myelination were additional imaging findings in 3 cases. All patients had delayed visual evoked potential but normal electroretinogram. The frequently-reported parental consanguinity emphasizes the major role of the single gene inheritance. Mutation analysis for two patients showed homozygous nonsense mutation of RAB3GAP1 in one while the other showed no evidence of linkage to either RAB3GAP1 or RAB2GAP2. Based on these cases and review of the literature, RAB3GAP genes dysregulation may result in a spectrum of phenotypes that range from Micro syndrome to Martsolf syndrome.  相似文献   

4.
RAB18, RAB3GAP1, RAB3GAP2 and TBC1D20 are each mutated in Warburg Micro syndrome, a rare autosomal recessive multisystem disorder. RAB3GAP1 and RAB3GAP2 form a binary ‘RAB3GAP’ complex that functions as a guanine-nucleotide exchange factor (GEF) for RAB18, whereas TBC1D20 shows modest RAB18 GTPase-activating (GAP) activity in vitro. Here, we show that in the absence of functional RAB3GAP or TBC1D20, the level, localization and dynamics of cellular RAB18 is altered. In cell lines where TBC1D20 is absent from the endoplasmic reticulum (ER), RAB18 becomes more stably ER-associated and less cytosolic than in control cells. These data suggest that RAB18 is a physiological substrate of TBC1D20 and contribute to a model in which a Rab-GAP can be essential for the activity of a target Rab. Together with previous reports, this indicates that Warburg Micro syndrome can be caused directly by loss of RAB18, or indirectly through loss of RAB18 regulators RAB3GAP or TBC1D20.  相似文献   

5.
《Autophagy》2013,9(12):2297-2309
Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal and rapamycin-induced conditions. Correlating the activity of RAB3GAP1/2 with ATG3 and ATG16L1 and analyzing ATG5 punctate structures, we illustrate that the RAB3GAPs modulate autophagosomal biogenesis. Significant levels of RAB3GAP1/2 colocalize with members of the Atg8 family at lipid droplets, and their autophagy modulatory activity depends on the GTPase-activating activity of RAB3GAP1 but is independent of the RAB GTPase RAB3. Moreover, we analyzed RAB3GAP1/2 in relation to the previously reported suppressive autophagy modulators FEZ1 and FEZ2 and demonstrate that both reciprocally regulate autophagy. In conclusion, we identify RAB3GAP1/2 as novel conserved factors of the autophagy and proteostasis network.  相似文献   

6.
Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal and rapamycin-induced conditions. Correlating the activity of RAB3GAP1/2 with ATG3 and ATG16L1 and analyzing ATG5 punctate structures, we illustrate that the RAB3GAPs modulate autophagosomal biogenesis. Significant levels of RAB3GAP1/2 colocalize with members of the Atg8 family at lipid droplets, and their autophagy modulatory activity depends on the GTPase-activating activity of RAB3GAP1 but is independent of the RAB GTPase RAB3. Moreover, we analyzed RAB3GAP1/2 in relation to the previously reported suppressive autophagy modulators FEZ1 and FEZ2 and demonstrate that both reciprocally regulate autophagy. In conclusion, we identify RAB3GAP1/2 as novel conserved factors of the autophagy and proteostasis network.  相似文献   

7.
The ancestral Rab GTPase Rab18 and both subunits of the Rab3GAP complex are mutated in the human neurological and developmental disorder Warburg Micro syndrome. Here, we demonstrate that the Rab3GAP complex is a specific Rab18 guanine nucleotide exchange factor (GEF). The Rab3GAP complex localizes to the endoplasmic reticulum (ER) and is necessary for ER targeting of Rab18. It is also sufficient to promote membrane recruitment of Rab18. Disease-associated point mutations of conserved residues in either the Rab3GAP1 (T18P and E24V) or Rab3GAP2 (R426C) subunits result in loss of the Rab18 GEF and membrane-targeting activities. Supporting the view that Rab18 activity is important for ER structure, in the absence of either Rab3GAP subunit or Rab18 function, ER tubular networks marked by reticulon 4 were disrupted, and ER sheets defined by CLIMP-63 spread out into the cell periphery. Micro syndrome is therefore a disease characterized by direct loss of Rab18 function or loss of Rab18 activation at the ER by its GEF Rab3GAP.  相似文献   

8.
Liu  Yanchen  Tian  Fenfang  Li  Shuiming  Chen  Wei  Gong  Weibo  Xie  Hong  Liu  Dan  Huang  Rongzhong  Liao  Wei  Yi  Faping  Zhou  Jian 《Amino acids》2021,53(9):1339-1350

Mounting studies have demonstrated that RAB3GAP1 expression is modified in brain diseases with multiple neurobiological functions and processes and acts as a potentially significant target. However, the cellular and molecular events arising from RAB3GAP1 dysexpression are still incompletely understood. In this work, underexpression and overexpression of RAB3GAP1 were first induced into cultured mouse cortical neurons by transfection with lentivirus plasmids. Then we globally explored the effects of RAB3GAP1 dysexpression on the proteome of the neurons through the use of isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics with bioinformatics. A total of 364 proteins in the RAB3GAP1-underexpression group and 314 proteins in the RAB3GAP1-overexpression group were identified to be differentially expressed. Subsequent bioinformatics analysis indicated that the proteome functional expression profiles induced by RAB3GAP1 underexpression and overexpression were different, suggesting the potential differences in biological processes and cellular effects. Subsequent intergroup cross-comparison revealed some candidate target proteins regulated directly by RAB3GAP1. Further parallel reaction monitoring (PRM) analysis illustrated that Sub1, Ssrp1, and Top1 proteins might serve as new potentially important linkers in the RAB3GAP1-mediated autophagy pathway in the cortical neurons. Collectively, the current proteomics data furnished new valuable insights to better understand the regulatory molecular mechanism of neuronal RAB3GAP1.

  相似文献   

9.
In humans, loss of TBC1D20 (TBC1 domain family, member 20) protein function causes Warburg Micro syndrome 4 (WARBM4), an autosomal recessive disorder characterized by congenital eye, brain, and genital abnormalities. TBC1D20-deficient mice exhibit ocular abnormalities and male infertility. TBC1D20 is a ubiquitously expressed member of the family of GTPase-activating proteins (GAPs) that increase the intrinsically slow GTP-hydrolysis rate of small RAB-GTPases when bound to GTP. Biochemical studies have established TBC1D20 as a GAP for RAB1B and RAB2A. However, the cellular role of TBC1D20 still remains elusive, and there is little information about how the functional loss of TBC1D20 causes clinical manifestations in WARBM4-affected children. Here we evaluate the role of TBC1D20 in cells carrying a null mutant allele, as well as TBC1D20-deficient mice, which display eye and testicular abnormalities. We demonstrate that TBC1D20, via its RAB1B GAP function, is a key regulator of autophagosome maturation, a process required for maintenance of autophagic flux and degradation of autophagic cargo. Our results provide evidence that TBC1D20-mediated autophagosome maturation maintains lens transparency by mediating the removal of damaged proteins and organelles from lens fiber cells. Additionally, our results show that in the testes TBC1D20-mediated maturation of autophagosomes is required for autophagic flux, but is also required for the formation of acrosomes. Furthermore TBC1D20-deficient mice, while not mimicking severe developmental brain abnormalities identified in WARBM4 affected children, display disrupted neuronal autophagic flux resulting in adult-onset motor dysfunction. In summary, we show that TBC1D20 has an essential role in the maturation of autophagosomes and a defect in TBC1D20 function results in eye, testicular, and neuronal abnormalities in mice implicating disrupted autophagy as a mechanism that contributes to WARBM4 pathogenesis.  相似文献   

10.
Energy transduction in mitochondria involves five oligomeric complexes embedded within the inner membrane. They are composed of catalytic and noncatalytic subunits, the role of these latter proteins often being difficult to assign. One of these complexes, the bc1 complex, is composed of three catalytic subunits including cytochrome b and seven or eight noncatalytic subunits. Recently, several mutations in the human cytochrome b gene have been linked to various diseases. We have studied in detail the effects of a cardiomyopathy generating mutation G252D in yeast. This mutation disturbs the biogenesis of the bc1 complex at 36 degrees C and decreases the steady-state level of the noncatalytic subunit Qcr9p. In addition, the G252D mutation and the deletion of QCR9 show synergetic defects that can be partially bypassed by suppressor mutations at position 252 and by a new cytochrome b mutation, P174T. Altogether, our results suggest that the supernumerary subunit Qcr9p enhances or stabilizes the interactions between the catalytic subunits, this role being essential at high temperature.  相似文献   

11.
The C5 convertase is a serine protease that consists of two subunits: a catalytic subunit which is bound in a Mg2+-dependent complex to a noncatalytic subunit. To understand the functional role of the noncatalytic subunit, we have determined the C5-cleaving properties of the cobra venom factor-dependent C5 convertase (CVF, Bb) made with CVF purified from the venom of Naja naja (CVFn) and Naja haje (CVFh) and compared them to those for two C3b-dependent C5 convertases (ZymC3b,Bb and C3b,Bb). A comparison of the kinetic parameters indicated that although the four C5 convertases (CVFn,Bb, ZymC3b,Bb, CVFh,Bb, and C3b,Bb) had similar catalytic rate constants (kcat = 0.004-0.012 s-1) they differed 700-fold in their affinity for the substrate as indicated by the Km values (CVFn,Bb = 0.036 microM, ZymC3b,Bb = 1.24 microM, CVFh,Bb = 14.0 microM, and C3b,Bb = 24 microM). Analysis of binding interactions between C5 and the noncatalytic subunits (CVFh or C3b, or CVFn) using the BIAcore, revealed dissociation binding constants (Kd) that were similar to the Km values of the respective enzymes. The kinetic and binding data demonstrate that the binding site for C5 resides in the noncatalytic subunit of the enzyme, the affinity for the substrate is solely determined by the noncatalytic subunit and the catalytic efficiency of the enzyme appears not to be influenced by the nature of this subunit.  相似文献   

12.
ZFYVE26/Spastizin and SPG11/Spatacsin encode 2 large proteins that are mutated in hereditary autosomal-recessive spastic paraplegia/paraparesis (HSP) type 15 (AR-SPG15) and type 11 (AR-SPG11), respectively. We previously have reported that AR-SPG15-related ZFYVE26 mutations lead to autophagy defects with accumulation of immature autophagosomes. ZFYVE26 and SPG11 were found to be part of a complex including the AP5 (adaptor related protein complex 5) and to have a critical role in autophagic lysosomal reformation with identification of autophagic and lysosomal defects in cells with both AR-SPG15- and AR-SPG11-related mutations. In spite of these similarities between the 2 proteins, here we report that ZFYVE26 and SPG11 are differently involved in autophagy and endocytosis. We found that both ZFYVE26 and SPG11 interact with RAB5A and RAB11, 2 proteins regulating endosome trafficking and maturation, but only ZFYVE26 mutations affected RAB protein interactions and activation. ZFYVE26 mutations lead to defects in the fusion between autophagosomes and endosomes, while SPG11 mutations do not affect this step and lead to a milder autophagy defect. We thus demonstrate that ZFYVE26 and SPG11 affect the same cellular physiological processes, albeit at different levels: both proteins have a role in autophagic lysosome reformation, but only ZFYVE26 acts at the intersection between endocytosis and autophagy, thus representing a key player in these 2 processes. Indeed expression of the constitutively active form of RAB5A in cells with AR-SPG15-related mutations partially rescues the autophagy defect. Finally the model we propose demonstrates that autophagy and the endolysosomal pathway are central processes in the pathogenesis of these complicated forms of hereditary spastic paraparesis.

Abbreviations: ALR, autophagic lysosome reformation; AP5, adaptor related protein complex 5; AR, autosomal-recessive; HSP, hereditary spastic paraplegia/paraparesis; ATG14, autophagy related 14; BafA, bafilomycin A1; BECN1, beclin 1; EBSS, Earle balanced salt solution; EEA1, early endosome antigen 1; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; GDP, guanosine diphosphate; GFP, green fluorescent protein; GTP, guanosine triphosphate; HSP, hereditary spastic paraplegias; LBPA, lysobisphosphatidic acid; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; MVBs, multivesicular bodies; PIK3C3, phosphatidylinositol 3-kinase, catalytic subunit type 3; PIK3R4, phosphoinositide-3-kinase regulatory subunit 4; PtdIns3P, phosphatidylinositol-3-phosphate; RFP, red fluorescent protein; RUBCN, RUN and cysteine rich domain containing beclin 1 interacting protein; shRNA, short hairpin RNA; SQSTM1/p62, sequestosome 1; TCC: thin corpus callosum; TF, transferrin; UVRAG, UV radiation resistance associated.  相似文献   

13.
ABSTRACT

Autophagy selectively targets invading bacteria to defend cells, whereas bacterial pathogens counteract autophagy to survive in cells. The initiation of canonical autophagy involves the PIK3C3 complex, but autophagy targeting Group A Streptococcus (GAS) is PIK3C3-independent. We report that GAS infection elicits both PIK3C3-dependent and -independent autophagy, and that the GAS effector NAD-glycohydrolase (Nga) selectively modulates PIK3C3-dependent autophagy. GAS regulates starvation-induced (canonical) PIK3C3-dependent autophagy by secreting streptolysin O and Nga, and Nga also suppresses PIK3C3-dependent GAS-targeting-autophagosome formation during early infection and facilitates intracellular proliferation. This Nga-sensitive autophagosome formation involves the ATG14-containing PIK3C3 complex and RAB1 GTPase, which are both dispensable for Nga-insensitive RAB9A/RAB17-positive autophagosome formation. Furthermore, although MTOR inhibition and subsequent activation of ULK1, BECN1, and ATG14 occur during GAS infection, ATG14 recruitment to GAS is impaired, suggesting that Nga inhibits the recruitment of ATG14-containing PIK3C3 complexes to autophagosome-formation sites. Our findings reveal not only a previously unrecognized GAS-host interaction that modulates canonical autophagy, but also the existence of multiple autophagy pathways, using distinct regulators, targeting bacterial infection.

Abbreviations: ATG5: autophagy related 5; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; BECN1: beclin 1; CALCOCO2: calcium binding and coiled-coil domain 2; GAS: group A streptococcus; GcAV: GAS-containing autophagosome-like vacuole; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; Nga: NAD-glycohydrolase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; RAB: RAB, member RAS oncogene GTPases; RAB1A: RAB1A, member RAS oncogene family; RAB11A: RAB11A, member RAS oncogene family; RAB17: RAB17, member RAS oncogene family; RAB24: RAB24, member RAS oncogene family; RPS6KB1: ribosomal protein S6 kinase B1; SLO: streptolysin O; SQSTM1: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2  相似文献   

14.
Previous studies have suggested that the plastid translation elongation factor, elongation factor thermo unstable (EF-Tu), encoded by RAB GTPASE HOMOLOG 8D (RAB8D) is essential for plant growth. Here, through analyzing the root phenotypes of two knock-down alleles of RAB8D (rab8d-1 and rab8d-2), we further revealed a vital role for RAB8D in primary root development through the maintenance of both the stem cell niche (SCN) and the meristem. Our results showed that RAB8D deficiency affects the root auxin response and SCN maintenance signaling. RAB8D interacts with GENOMES UNCOUPLED 1 (GUN1) in vivo. Further analysis revealed that GUN1 is over-accumulated and is required for both stem cell death and maintenance of root architecture in rab8d Arabidopsis mutants. The ATAXIA-TELANGIECTASIA-MUTATED (ATM)–SUPPRESSOR OF GAMMA RESPONSE 1 pathway is involved in the regulation of root meristem size through upregulating SIAMESE-RELATED 5 expression in the rab8d-2 allele. Moreover, ETHYLENE RESPONSE FACTOR 115 is highly expressed in rab8d-2, which plays a role in further quiescent center division. Our observations not only characterized the role of RAB8D in root development, but also uncovered functions of GUN1 and ATM in response to plastid EF-Tu deficiency.  相似文献   

15.
The rab3A gene product is a 25-kilodalton guanine nucleotide-binding protein, expressed at high levels in neural tissue, which has about 30% homology to ras. Recombinant rab3A protein and p25rab3A purified from bovine brain membranes have been used as substrates to look for factors that regulate its biochemical activity. A detergent-soluble factor associated with rat brain membranes exists that accelerates the GTPase activity of both mammalian and recombinant p25rab3A. The activity was thermolabile, sensitive to trypsin, and behaved like an integral membrane protein. GTPase-activating protein (GAP) activity toward p25rab3A was also detected in the cytosolic fraction. This activity was observed in all other tissues examined, in addition to brain. Based upon dose-response data, the rab3A-GAP activity from rat brain was approximately equally distributed between cytosolic and membrane fractions; no activity was found in the nuclear fraction. Recombinant ras-specific GAP had no effect upon the GTPase activity of p25rab3A. By gel filtration chromatography, the factor in rat brain cytosol has a molecular size of 400,000 daltons.  相似文献   

16.
Pleckstrin homology domains are structurally conserved functional domains that can undergo both protein/protein and protein/lipid interactions. Pleckstrin homology domains can mediate inter- and intra-molecular binding events to regulate enzyme activity. They occur in numerous proteins including many that interact with Ras superfamily members, such as p120 GAP. The pleckstrin homology domain of p120 GAP is located in the NH(2)-terminal, noncatalytic region of p120 GAP. Overexpression of the noncatalytic domains of p120 GAP may modulate Ras signal transduction pathways. Here, we demonstrate that expression of the isolated pleckstrin homology domain of p120 GAP specifically inhibits Ras-mediated signaling and transformation but not normal cellular growth. Furthermore, we show that the pleckstrin homology domain binds the catalytic domain of p120 GAP and interferes with the Ras/GAP interaction. Thus, we suggest that the pleckstrin homology domain of p120 GAP may specifically regulate the interaction of Ras with p120 GAP via competitive intra-molecular binding.  相似文献   

17.
Stable reciprocal hybrids between Flaveria pringlei (C3) and F. brownii (C4-like) have been produced by standard breeding techniques. There are no differences in the isoelectric focusing patterns of the catalytic subunits of the ribulose-1,5-bisphosphate carboxylase/oxygenase from F. pringlei, F. brownii, or the reciprocal hybrids. The enzyme from both species also contains an identical noncatalytic subunit polypeptide. However, the carboxylase enzyme from F. brownii contains another isomeric form of noncatalytic subunit polypeptide which is resolveable by isoelectric focusing. This isomeric form constitutes about 50% of the total noncatalytic subunits in this species. It comprises only about 10% of the total noncatalytic subunit population in the C3 x C4 plants, but about 42% of the noncatalytic subunits in the reciprocal cross. The concentrations of the holoenzyme in the reciprocal hybrids are comparable to those of the respective maternal parent. We hypothesize that a differential inheritance of parental chloroplasts by the reciprocal hybrids may be associated with this apparent maternal influence on the expression of the noncatalytic polypeptides and the holoenzyme concentration.  相似文献   

18.
Secretion of beta-endorphin from mouse pituitary AtT20 cells is stimulated by a variety of compounds that raise intracellular cAMP and Ca2+. To investigate the role of cAMP-dependent protein kinases in secretion, AtT20 cells were transfected with an expression vector coding for a regulatory (R) subunit of cAMP-dependent protein kinase containing mutations in both cAMP-binding sites. Expression of the mutant regulatory subunit in stable transformants (RAB cells) results in a dominant inhibition of cAMP-dependent protein kinase activity. Isoproterenol (1 microM) or analogs of cAMP stimulated beta-endorphin secretion from AtT20 cells, but failed to stimulate secretion in RAB cells expressing the mutant R subunit. Secretion in response to CRF (100 nM) was inhibited by 80% in these mutant clones, whereas the secretory response to vasoactive intestinal peptide (VIP; 100 nM) or phorbol ester (100 nM phorbol myristate acetate) was not inhibited by the R subunit mutation. Intracellular cAMP was elevated in response to CRF (11- to 15-fold), isoproterenol (5- to 10-fold), and VIP (4- to 8-fold) in RAB cells. Similar concentrations of VIP were required to evoke beta-endorphin secretion in either RAB cells or AtT20 cells. As with most secretagogues, VIP-induced secretion was inhibited in the presence of either EGTA or a voltage-sensitive Ca2+ channel antagonist, PN200-110. The secretory response to VIP was unaffected by down-regulation of protein kinase-C. These results suggest that CRF and isoproterenol work via cAMP-dependent protein kinase to activate beta-endorphin secretion, whereas VIP can act by a different mechanism that does not involve cAMP-dependent protein kinase or protein kinase-C.  相似文献   

19.
The Ras GTPase-activating protein p120GAP is a multidomain protein consisting of a variety of noncatalytic domains that may be involved in its regulation. RACK1 is a membrane-associated protein that binds the C2 domain of PKC and is related in sequence to the beta subunit of heterotrimeric G-proteins which has been implicated in binding to PH domains. Because p120GAP contains both PH and C2/CaLB domains we determined whether it is also a RACK1 binding protein. Coimmunoprecipitation experiments indicate that p120GAP associates with RACK1, whereas PH or C2/CaLB domain deletion mutants do not. A fusion protein containing the GAP PH domain bound to endogenous RACK1 in lysates in a concentration-dependent manner and directly associated with recombinant RACK1. Finally, serine/threonine phosphorylation appears to be involved in regulating this association. These results suggest that p120GAP and RACK1 interact in vivo in a manner dependent upon both the PH and C2/CaLB domains of GAP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号