首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MK: a pluripotential embryonic stem-cell-derived neuroregulatory factor.   总被引:4,自引:0,他引:4  
MK is a gene encoding a secreted heparin-binding polypeptide originally isolated by differential screening for genes induced by retinoic acid (RA) in HM-1 embryonal carcinoma cells. Here we report that MK is expressed at high levels in both embryonal carcinoma and pluripotential embryonic stem cells and their differentiated derivatives. MK expression in these cell types is unaffected by the presence or absence of RA. Recombinant MK protein (rMK) was produced by transient expression in COS cells and purified by heparin affinity chromatography. rMK is a weak mitogen for 10T1/2 fibroblast cells but inactive as a mitogen for Swiss 3T3 fibroblasts. rMK is a potent mitogen for neurectodermal precursor cell types generated by treatment of 1009 EC cells with RA but has no mitogenic or neurotrophic effects on more mature 1009-derived neuronal cell types. rMK is active as an in vitro neurotrophic factor for E12 chick sympathetic neurons and its activity is markedly potentiated by binding the factor to tissue-culture plastic in the presence of heparin. Stable 10T1/2 cells lines have been established which express MK. These cells do not exhibit any overt evidence of cell transformation but extracellular matrix preparations derived from these cells are a potent source of MK biological activity. It is concluded that MK is a multifunctional neuroregulatory molecule whose biological activity depends upon association with components of the extracellular matrix.  相似文献   

2.
A retinoic acid responsive gene, MK, specifies for a heparin binding factor termed midkine (MK), which is the initial member of a new protein family involved in regulation of growth and differentiation. A cDNA clone of human MK was isolated from a fetal kidney cDNA library. Human MK mRNA was expressed in PA1 teratocarcinoma cells as well as in the kidney. Sequence analysis of the cDNA clone and of a part of the genomic clone yielded the predicted protein sequence of human MK. Human and mouse MK sequences are highly conserved: 87% of amino acids are identical and all amino acid changes are conservative except for an insertion. Comparison of MK and HB-GAM/pleiotrophin (another member of the family) from various species revealed sequences conserved in the family and those specific for each protein.  相似文献   

3.
MK gene was intensely expressed, when aggregates of HM-1 embryonal carcinoma (EC) cells were treated with retinoic acid for 2 days to induce the differntiation to nerve cells, myoblasts and extraembryonic endoderm cells. The conditions inhibiting nerve cell diffrentiation or extraembryonic endoderm cell differentiation affected MK gene expression only slightly. The maximum level of MK RNA was detected 2 days after initiation of retionic acid treatment, when cells were morphologically indistinguishable from undifferentiated EC cells. Thus, MK gene appears to be expressed in differentiating EC cells irrespective of the direction of differentiation. The degree of MK gene expression in sparsely cultured HM-1 cells correlated with the concentration of retinoic acid, especially between 10-8 and 10-7 M. When retinoic acid treatment was terminated after 1 day, the amount of MK RNA started to decrease. These two results are consistent with the view that retionic acid complexed with the receptor is directly involved in expression of MK gene.  相似文献   

4.
An heparin binding protein (RIHB) was purified from chick embryos. Essentially expressed during early embryogenesis it is mainly localized within basement membranes. Its synthesis and that of the RIHB mRNA are induced by retinoic acid in chicken myoblasts cell culture. This protein belongs to the same family that HBGAM or Pleiotropin and MK protein two other heparin binding proteins exhibiting growth and/or neurotrophic activities.  相似文献   

5.
Haemoglobin-catalysed retinoic acid 5,6-epoxidation.   总被引:3,自引:2,他引:1       下载免费PDF全文
Examination of the subcellular distribution of retinoic acid 5,6-epoxidase activity in rat liver and human liver homogenates showed that there is a prominent peak of activity in a high-density fraction. A corresponding peak was also detected in rat blood and human blood. Retinoic acid 5,6-epoxidation was catalysed by human blood cells but not by human plasma, and purified human haemoglobin also catalysed the epoxidation of retinoic acid to 5,6-epoxyretinoic acid. These results suggest that retinoic acid 5,6-epoxidase activity in human liver and rat liver homogenates is partially due to the presence of residual blood cells, and particularly haemoglobin, in the homogenates. In the retinoic acid 5,6-epoxidation catalysed by human haemoglobin, molecular O2 was required and its reaction was stimulated by Triton X-100. Boiling of haemoglobin solution resulted in an 94% decrease in the activity. NADPH (1 mM) and NADH (1 mM) completely [2-mercaptoethanol (5 mM) almost completely] inhibited the 5,6-epoxidation catalysed by haemoglobin, but catalase, superoxide dismutase and mannitol showed no inhibitory effect. CN- ion (100 mM) inhibited the reaction, but N3- ion (100 mM) did not.  相似文献   

6.
MK is a gene whose expression increases transiently during retinoic acid-induced differentiation of embryonal carcinoma cells. MK polypeptide was secreted by differentiating HM-1 embryonal carcinoma cells and by L-cells transfected with an MK cDNA under the control of the beta-actin promoter and Rous sarcoma virus enhancer. MK polypeptide was found to have heparin binding activity. Conditioned medium of the transfected L-cells promoted growth of PC-12 pheochromocytoma cells. These findings support the view that MK polypeptide is a secreted factor involved in regulation of growth and differentiation.  相似文献   

7.
Pleiotrophin (PTN) is a growth and neurite extension promoting polypeptide which is highly expressed in brain and in tissues derived from mesenchyme. The PTN gene is developmentally regulated and is closely related to the MK and RI-HB genes, both of which are developmentally regulated and induced by retinoic acid. We now have screened 17 cell lines and report that expression of the PTN gene in these cells is restricted to embryo fibroblasts and intestinal smooth muscle cells. However, NIH 3T3 cells stimulated by the platelet-derived growth factor (PDGF) express a marked increase in levels of PTN mRNA whereas retinoic acid failed to increase levels of PTN mRNA in NIH 3T3 cells or in F9 embryonal carcinoma cells within 72 hours of exposure. The results suggest that expression of the PTN gene is highly restricted and that the PTN gene is a new member of the PDGF-induced cytokine family.  相似文献   

8.
9.
10.
Midkine (MK), a retinoic acid-inducible heparin-binding protein, is a mitogen which initiates a cascade of intracellular protein tyrosine phosphorylation mediated by the JAK/STAT pathway after binding to its high affinity p200(+)/MKR cell surface receptor in the G401 cell line [Ratovitski, E. A. (1998) J. Biol. Chem. 273, 3654-3660]. In this study, we determined the biophysical characteristics of purified recombinant murine MK and analyzed the requirements for ligand multimerization and cell surface proteoglycan binding for the G401 cell mitogenic activity of MK. Our studies indicate that the secreted form of MK (M = 13 kDa) exists in solution as an asymmetric monomer with a frictional coefficient of 1. 48 and a Stokes radius of 23.7 A. By constructing bead models of MK using the program AtoB and the program HYDRO to predict the hydrodynamic properties of each model, our data suggest that MK has a dumb-bell shape in solution composed of independent N- and C-terminal domains separated by an extended linker. This asymmetric MK monomer is a biologically active ligand with mitogenic activity on G401 cells in vitro. Neither heparin-induced formation of noncovalent MK multimers nor tissue transglutaminase II covalent multimerization of MK enhanced MK mitogenic activity in this system. Since neither heparin competition nor cell treatment with chondroitinase ABC or heparinase III abolished the mitogenic effects of MK on G401 cells, cell-surface proteoglycan binding by MK does not appear to be a requirement for its observed mitogenic effects. These results provide strong evidence that the MK-specific p200(+)/MKR has distinctive biochemical properties which distinguish it from the receptor tyrosine phosphatase cell-surface proteoglycan PTPzeta/RPTPbeta and support the hypothesis that the diverse biological effects of MK are mediated by multiple cell-specific signal transduction receptors.  相似文献   

11.
We have studied the regulation of lysosomal glycosidases during morphological differentiation of NB2a neuroblastoma cells. Cells treated with dibutyryl cAMP induced axon-like neurites and showed a 2–4 fold increase in the activity of 6 lysosomal glycosidases, reaching their highest level after 5 days of treatment. Cells treated with retinoic acid, which induced dendrite-like neurites, did not show significant changes in the glycosidases activity although cell proliferation was also inhibited. There was no change in the pattern of the enzyme secretion during the dibutyryl cAMP treatment and morphological analysis using electron microscopy and cytochemical staining with acid phosphatase indicated the presence of lysosomes in the induced neurites.  相似文献   

12.
When the 100,000 X g supernatant fractions of several rat organs are incubated with all-trans-[3H]retinoic acid, a binding component for retinoic acid with a sedimentation coefficient of 2 S can be detected by sucrose gradient centrifugation. This tissue binding protein for retinoic acid is distinct from the tissue binding protein for retinol which has been previously described. The tissue retinoic acid-binding protein has been partially purified from rat testis and this partially purified protein would appear to have a molecular weight of 14,500 as determined by gel filtration and high binding specificity for all-trans-retinoic acid. Binding of [3H]retinoic acid is not diminished by a 200-fold molar excess of retinal, retinol, or oleic acid but is reduced by a 200-fold excess of unlabeled retinoic acid. Tissue retinoic acid-binding protein can be detected in extracts of brain, eye, ovary, testis, and uterus but is apparently absent in heart muscle, small intestine, kidney, liver, lung, gastrocnemious muscle, serum, and spleen. This distribution is different than that observed for the tissue retinol-binding protein. Tissue retinol-binding protein was also purified extensively from rat testis. The partially purified protein has an apparent molecular weight of 14,000 and high binding specificity for all-trans-[3H]retinol as only unlabeled all-trans-retinol but not retinal, retinoic acid, retinyl acetate, retinyl palmitate, or oleic acid could diminish binding of the 3H ligand under the conditions employed. The partially purified protein has a fluorescence excitation spectrum with lambda max at 350 nm. In contrast, the retinol-binding protein isolated from rat serum and described by others has a fluorescence excitation spectrum with lambda max at 334 nm and an apparent molecular weight of 19,000. When partially purified tissue retinol-binding protein is extracted with heptane, the heptane extract has a fluorescence excitation spectrum similar to that of all-trans-retinol.  相似文献   

13.
14.
During differentiation neurons increase phospholipid biosynthesis to provide new membrane for neurite growth. We studied the regulation of phosphatidylcholine (PC) biosynthesis during differentiation of two neuronal cell lines: PC12 cells and Neuro2a cells. We hypothesized that in PC12 cells nerve growth factor (NGF) would up-regulate the activity and expression of the rate-limiting enzyme in PC biosynthesis, CTP:phosphocholine cytidylyltransferase (CT). During neurite outgrowth, NGF doubled the amount of cellular PC and CT activity. CTbeta2 mRNA increased within 1 day of NGF application, prior to the formation of visible neurites, and continued to increase during neurite growth. When neurites retracted in response to NGF withdrawal, CTbeta2 mRNA, protein, and CT activity decreased. NGF specifically activated CTbeta2 by promoting its translocation from cytosol to membranes. In contrast, NGF did not alter CTalpha expression or translocation. The increase in both CTbeta2 mRNA and CT activity was inhibited by U0126, an inhibitor of mitogen-activated kinase/extracellular signal-regulated kinase kinase 1/2 (MEK1/2). In Neuro2a cells, retinoic acid significantly increased CT activity (by 54%) and increased CTbeta2 protein, coincident with neurite outgrowth but did not change CTalpha expression. Together, these data suggest that the CTbeta2 isoform of CT is specifically up-regulated and activated during neuronal differentiation to increase PC biosynthesis for growing neurites.  相似文献   

15.

Background

Retinoic acid is the bioactive derivative of vitamin A, which plays an indispensible role in kidney development by activating retinoic acid receptors. Although the location, concentration and roles of endogenous retinoic acid in post-natal kidneys are poorly defined, there is accumulating evidence linking post-natal vitamin A deficiency to impaired renal concentrating and acidifying capacity associated with increased susceptibility to urolithiasis, renal inflammation and scarring. The aim of this study is to examine the presence and the detailed localization of endogenous retinoic acid activity in neonatal, young and adult mouse kidneys, to establish a fundamental ground for further research into potential target genes, as well as physiological and pathophysiological roles of endogenous retinoic acid in the post-natal kidneys.

Methodology/Principal Findings

RARE-hsp68-lacZ transgenic mice were employed as a reporter for endogenous retinoic acid activity that was determined by X-gal assay and immunostaining of the reporter gene product, β-galactosidase. Double immunostaining was performed for β-galactosidase and markers of kidney tubules to localize retinoic acid activity. Distinct pattern of retinoic acid activity was observed in kidneys, which is higher in neonatal and 1- to 3-week-old mice than that in 5- and 8-week-old mice. The activity was present specifically in the principal cells and the intercalated cells of the collecting duct system in all age groups, but was absent from the glomeruli, proximal tubules, thin limbs of Henle''s loop and distal tubules.

Conclusions/Significance

Endogenous retinoic acid activity exists in principal cells and intercalated cells of the mouse collecting duct system after birth and persists into adulthood. This observation provides novel insights into potential roles for endogenous retinoic acid beyond nephrogenesis and warrants further studies to investigate target genes and functions of endogenous retinoic acid in the kidney after birth, particularly in the collecting duct system.  相似文献   

16.
17.
Retinoic acid regulation of one member of the human class I alcohol dehydrogenase (ADH) gene family was demonstrated, suggesting that the retinol dehydrogenase function of ADH may play a regulatory role in the biosynthetic pathway for retinoic acid. Promoter activity of human ADH3, but not ADH1 or ADH2, was shown to be activated by retinoic acid in transient transfection assays of Hep3B human hepatoma cells. Deletion mapping experiments identified a region in the ADH3 promoter located between -328 and -272 bp which confers retinoic acid activation. This region was also demonstrated to confer retinoic acid responsiveness on the ADH1 and ADH2 genes in heterologous promoter fusions. Within a 34-bp stretch, the ADH3 retinoic acid response element (RARE) contains two TGACC motifs and one TGAAC motif, both of which exist in RAREs controlling other genes. A block mutation of the TGACC sequence located at -289 to -285 bp eliminated the retinoic acid response. As assayed by gel shift DNA binding studies, the RARE region (-328 to -272 bp) of ADH3 bound the human retinoic acid receptor beta (RAR beta) and was competed for by DNA containing a RARE present in the gene encoding RAR beta. Since ADH catalyzes the conversion of retinol to retinal, which can be further converted to retinoic acid by aldehyde dehydrogenase, these results suggest that retinoic acid activation of ADH3 constitutes a positive feedback loop regulating retinoic acid synthesis.  相似文献   

18.
1. The effects of retinoic acid, gamma-interferon, cytosine arabinoside, nerve growth factor, tumor necrosis factor, and 12-O-tetradecanoylphorbol 13-acetate on the human neuroblastoma cell line, LAN-5, were studied. Intracellular levels of acetylcholinesterase, neuron-specific enolase, catecholamines and related neurotransmitters, vasointestinal peptide, and substance P were evaluated after induction. 2. Cell morphology was strongly affected by retinoic acid, gamma-interferon, cytosine arabinoside, and 12-O-tetradecanoylphorbol 13-acetate. The main effects of retinoic acid and gamma-interferon were the loosening of cell clusters and the extension of long neurites; cytosine arabinoside induced cell body swelling and marked neuritogenesis. Following 12-O-tetradecanoylphorbol 13-acetate treatment, the cells became small, round, and neuritic. Conversely, modifications induced by nerve growth factor and tumor necrosis factor were mild. Cell proliferation rate was reduced by retinoic acid, gamma-interferon, cytosine arabinoside, and 12-O-tetradecanoylphorbol 13-acetate, while nerve growth factor and tumor necrosis factor were devoid of effects. 3. Acetylcholinesterase activity was significantly stimulated by retinoic acid and by gamma-interferon. Neuron-specific enolase activity was unaffected by all treatments except 12-O-tetradecanoylphorbol 13-acetate, which enhanced it by 1.6-fold. 4. The cellular catecholamine and related metabolite content was lowered by retinoic acid and gamma-interferon, while cytosine arabinoside and, even more, 12-O-tetradecanoylphorbol 13-acetate showed a stimulatory activity on their intracellular accumulation. 5. Finally, the cell-associated vasointestinal peptide level was strikingly increased by gamma-interferon and, to a lesser extent, by retinoic acid, cytosine arabinoside, and 12-O-tetradecanoylphorbol 13-acetate. 6. It is concluded that the most relevant biochemical changes associated with LAN-5 cells differentiation involve the repertoire of neurotransmitters and neuropeptides. These events vary in quality and in quantity, likely due to the pattern complexity of gene expression triggered by each inducer in determining the diversity of neuronal phenotypes.  相似文献   

19.
A partial rat cDNA clone coding for a novel neurotrophic factor HBNF was isolated. Nucleotide sequence determination, in combination with the known N-terminal sequence of rat HBNF, allowed deduction of the amino acid sequence of the first 102 residues of mature rat HBNF. HBNF shares high structural homology (55%) with the MK protein (Tomomura et al., J. Biol. Chem. 265, 10765, 1990). Complete alignment of 9 cysteine residues suggests further that the two proteins have similar 3-dimensional structures. HBNF was reported to stimulate neurite outgrowth in neurons and to be expressed in a developmentally regulated manner in the rat brain. MK mRNA was found in retinoid acid-induced teratocarcinoma cells and during early development of the mouse embryo, but no biological activity for MK is yet known. These data suggest that HBNF and MK are members of a novel family of structurally and probably functionally related proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号