首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional (whole body) CYP2E1 knockout mice displayed protection against high-fat diet-induced weight gain, obesity, and hyperlipidemia with increased energy expenditure despite normal food intake and spontaneous locomotor activity. In addition, the CYP2E1 knockout mice displayed a marked improvement in glucose tolerance on both normal chow and high-fat diets. Euglycemic-hyperinsulinemic clamps demonstrated a marked protection against high-fat diet-induced insulin resistance in CYP2E1 knockout mice, with enhanced adipose tissue glucose uptake and insulin suppression of hepatic glucose output. In parallel, adipose tissue was protected against high-fat diet-induced proinflammatory cytokine production. Taken together, these data demonstrate that the CYP2E1 deletion protects mice against high-fat diet-induced insulin resistance with improved glucose homeostasis in vivo.  相似文献   

2.
Mixed background SHP(-/-) mice are resistant to diet-induced obesity due to increased energy expenditure caused by enhanced PGC-1α expression in brown adipocytes. However, congenic SHP(-/-) mice on the C57BL/6 background showed normal expression of PGC-1α and other genes involved in brown adipose tissue thermogenesis. Thus, we reinvestigated the impact of small heterodimer partner (SHP) deletion on diet-induced obesity and insulin resistance using congenic SHP(-/-) mice. Compared with their C57BL/6 wild-type counterparts, SHP(-/-) mice subjected to a 6 month challenge with a Western diet (WestD) were leaner but more glucose intolerant, showed hepatic insulin resistance despite decreased triglyceride accumulation and increased β-oxidation, exhibited alterations in peripheral tissue uptake of dietary lipids, maintained a higher respiratory quotient, which did not decrease even after WestD feeding, and displayed islet dysfunction. Hepatic mRNA expression analysis revealed that many genes expressed higher in SHP(-/-) mice fed WestD were direct peroxisome proliferator-activated receptor alpha (PPARα) targets. Indeed, transient transfection and chromatin immunoprecipitation verified that SHP strongly repressed PPARα-mediated transactivation. SHP is a pivotal metabolic sensor controlling lipid homeostasis in response to an energy-laden diet through regulating PPARα-mediated transactivation. The resultant hepatic fatty acid oxidation enhancement and dietary fat redistribution protect the mice from diet-induced obesity and hepatic steatosis but accelerate development of type 2 diabetes.  相似文献   

3.
Accumulating evidence suggests an association between obesity and adipose tissue inflammation. Chemokines are involved in the regulation of inflammation status. Chemokine (C-X-C motif) ligand 14 (CXCL14) is known to be a chemoattractant for monocyte and dendritic cells. Recently, it was reported that CXCL14-deficient mice show resistance to high-fat diet-induced obesity. In this study, we identified CXCL14 as a growth hormone (GH)-induced gene in HepG2 hepatoma cells. Substantial in vivo expression of CXCL14 was detected in the adipose tissue and liver. Its expression and secretion were strikingly increased by insulin administration and high-fat diet. Intriguingly, incubation of 3T3-L1 adipocytes with CXCL14 stimulated insulin-dependent glucose uptake. Further, this effect was associated with enhanced insulin signaling. CXCL14 enhanced the insulin-induced tyrosine phosphorylation of insulin receptors and insulin receptor substrate-1. These results suggest that CXCL14 plays a causal role in high-fat diet-induced obesity.  相似文献   

4.
5.
The purinergic receptor P2Y2 binds ATP to control chemotaxis of myeloid cells, and global P2Y2 receptor knockout mice are protected in models of acute inflammation. Chronic inflammation mediated by macrophages and other immune cells in adipose tissue contributes to the development of insulin resistance. Here, we investigate whether mice lacking P2Y2 receptors on myeloid cells are protected against acute and chronic inflammation. Wild-type mice were transplanted with either wild-type or P2Y2 receptor null bone marrow and treated with a sublethal dose of endotoxin as a model of acute inflammation, or fed a high-fat diet to induce obesity and insulin resistance as a model of chronic inflammation. P2Y2?/? chimeric mice were protected against acute inflammation. However, high-fat diet feeding induced comparable inflammation and insulin resistance in both WT and P2Y2?/? chimeric mice. Of note, confocal microscopy revealed significantly fewer crown-like structures, assemblies of macrophages around adipocytes, in P2Y2?/? chimeric mice compared to WT chimeric mice. We conclude that P2Y2 receptors on myeloid cells are important in mediating acute inflammation but are dispensable for the development of whole body insulin resistance in diet-induced obese mice.  相似文献   

6.
In this study, we investigated the metabolic phenotype of PKCtheta knockout mice (C57BL/6J) on chow diet and high-fat diet (HFD). The knockout (KO) mice are normal in growth and reproduction. On the chow diet, body weight and food intake were not changed in the KO mice; however, body fat content was increased with a corresponding decrease in body lean mass. Energy expenditure and spontaneous physical activity were decreased in the KO mice. On HFD, energy expenditure and physical activity remained low in the KO mice. The body weight and fat content were increased rapidly in the KO mice. At 8 wk on HFD, severe insulin resistance was detected in the KO mice with hyperinsulinemic euglycemic clamp and insulin tolerance test. Insulin action in both hepatic and peripheral tissues was reduced in the KO mice. Plamsa free fatty acid was increased, and expression of adiponectin in the adipose tissue was decreased, in the KO mice on HFD. This study suggests that loss of PKCtheta reduces energy expenditure and increases the risk of dietary obesity and insulin resistance in mice.  相似文献   

7.
Free fatty acid receptor 2 (Ffar2), also known as GPR43, is activated by short-chain fatty acids (SCFA) and expressed in intestine, adipocytes, and immune cells, suggesting involvement in lipid and immune regulation. In the present study, Ffar2-deficient mice (Ffar2-KO) were given a high-fat diet (HFD) or chow diet and studied with respect to lipid and energy metabolism. On a HFD, Ffar2-KO mice had lower body fat mass and increased lean body mass. The changed body composition was accompanied by improved glucose control and lower HOMA index, indicating improved insulin sensitivity in Ffar2-KO mice. Moreover, the Ffar2-KO mice had higher energy expenditure accompanied by higher core body temperature and increased food intake. The liver weight and content of triglycerides as well as plasma levels of cholesterol were lower in the Ffar2-KO mice fed a HFD. A histological examination unveiled decreased lipid interspersed in brown adipose tissue of the Ffar2-KO mice. Interestingly, no significant differences in white adipose tissue (WAT) cell size were observed, but significantly lower macrophage content was detected in WAT from HFD-fed Ffar2-KO compared with wild-type mice. In conclusion, Ffar2 deficiency protects from HFD-induced obesity and dyslipidemia at least partly via increased energy expenditure.  相似文献   

8.
Diet-related obesity is a major metabolic disorder. Excessive fat mass is associated with type 2 diabetes, hepatic steatosis, and arteriosclerosis. Dysregulation of lipid metabolism and adipose tissue function contributes to diet-induced obesity. Here, we report that β-arrestin-1 knock-out mice are susceptible to diet-induced obesity. Knock-out of the gene encoding β-arrestin-1 caused increased fat mass accumulation and decreased whole-body insulin sensitivity in mice fed a high-fat diet. In β-arrestin-1 knock-out mice, we observed disrupted food intake and energy expenditure and increased macrophage infiltration in white adipose tissue. At the molecular level, β-arrestin-1 deficiency affected the expression of many lipid metabolic genes and inflammatory genes in adipose tissue. Consistently, transgenic overexpression of β-arrestin-1 repressed diet-induced obesity and improved glucose tolerance and systemic insulin sensitivity. Thus, our findings reveal that β-arrestin-1 plays a role in metabolism regulation.  相似文献   

9.
We and others have shown that apple polyphenols decrease adipose tissue mass. To better understand the underlying mechanisms and to expand clinical applicability, we herein examine whether apple polyphenols induce adipose thermogenic adaptations (browning) and prevent diet-induced obesity and related insulin resistance. In mice fed a standard diet, daily apple polyphenol consumption induced thermogenic adaptations in inguinal white adipose tissue (iWAT), based on increases in the expression of brown/beige adipocyte selective genes (Ucp1, Cidea, Tbx1, Cd137) and protein content of uncoupling protein 1 and mitochondrial oxidative phosphorylation enzymes. Among the upstream regulatory factors of browning, fibroblast growth factor 21 (FGF21) and peroxisome proliferator-activated receptor gamma coactivator 1 α (PGC-1α) levels were concomitantly up-regulated by apple polyphenols. In the primary cell culture experiment, the results did not support a direct action of apple polyphenols on beige adipogenesis. Instead, apple polyphenols increased tyrosine hydroxylase (a rate-limiting enzyme of catecholamine synthesis) in iWAT, which activates the adipocyte thermogenic program possibly via intratissue cellular communications. In high-fat fed mice, apple polyphenols induced beige adipocyte development in iWAT, reduced fat accumulation, and increased glucose disposal rates in the glucose and insulin tolerance tests. Taken together, dietary administration of apple polyphenols induced beige adipocyte development in iWAT possibly via activation/induction of the peripheral catecholamine synthesis–FGF21–PGC-1α cascade. Results from diet-induced obese mice indicate that apple polyphenols have therapeutic potential for obesity and related metabolic disorders.  相似文献   

10.
Chronic Inflammation is a key link between obesity and insulin resistance. We previously showed that two nutrient sensors AMP-activated protein kinase (AMPK) and SIRT1 interact to regulate macrophage inflammation. AMPK is also a molecular target of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), which has been shown to reduce insulin resistance in various animal models. Here we aim to determine whether the therapeutic effects of AICAR against insulin resistance involve its anti-inflammatory function, which requires macrophage SIRT1. Long-term administration of low-dose AICAR significantly suppressed adipose inflammation in established diet-induced obese mice. This was associated with improved glucose homeostasis and insulin sensitivity without changes of body weight. In contrast, SIRT1 deletion in myeloid SIRT1 knockout (MSKO) mice increased infiltration of classically activated M1 macrophages and decreased alternatively activated M2 macrophages in adipose tissue. As a result, MSKO mice on high fat (HF) diets exhibited impaired insulin signaling in skeletal muscle, fat, and liver, and developed systemic insulin resistance in glucose tolerance tests, insulin tolerance tests, and hyperinsulinemic-euglycemic clamp experiments. Interestingly, the beneficial effects of AICAR on adipose inflammation and insulin sensitivity were absent in MSKO mice fed HF diets, suggesting that the full capacity of AICAR to antagonize obesity-induced inflammation and insulin resistance requires myeloid SIRT1. In summary, AICAR negatively regulates HF diet-induced inflammation, which requires myeloid SIRT1, thereby contributing to the protection against insulin resistance. Myeloid SIRT1 is a therapeutic target of the anti-inflammatory and insulin-sensitizing effects of AICAR.  相似文献   

11.
The early events that initiate inflammation in the adipose tissue during obesity are not well defined. It is unclear whether the recruitment of CD8 T cells to the adipose tissue during onset of obesity occurs through antigen-dependent or -independent processes. We have previously shown that interaction between NKG2D (natural-killer group 2, member D) and its ligand Rae-1ε is sufficient to recruit cytotoxic T lymphocytes to the pancreas and induce insulitis. Here, we tested whether NKG2D–NKG2D ligand interaction is also involved in obesity-induced adipose tissue inflammation and insulin resistance. We observed a significant induction of NKG2D ligand expression in the adipose tissue of obese mice, especially during the early stages of obesity. However, mice lacking NKG2D developed similar levels of insulin resistance and adipose tissue inflammation compared to control mice when placed on a high-fat diet. Moreover, overexpression of Rae-1ε in the adipose tissue did not increase immune cell infiltration to the adipose tissue either in the setting of a normal or high-fat diet. These results indicate that, unlike in the pancreas, NKG2D–NKG2D ligand interaction does not play a critical role in obesity-induced inflammation in the adipose tissue.  相似文献   

12.
13.
14.
Diets with high fat content induce steatosis, insulin resistance, and type 2 diabetes. The lipid droplet protein adipose differentiation-related protein (ADRP) mediates hepatic steatosis, but whether this affects insulin action in the liver or peripheral organs in diet-induced obesity is uncertain. We fed C57BL/6J mice a high-fat diet and simultaneously treated them with an antisense oligonucleotide (ASO) against ADRP for 4 wk. Glucose homeostasis was assessed with clamp and tracer techniques. ADRP ASO decreased the levels of triglycerides and diacylglycerol in the liver, but fatty acids, long-chain fatty acyl CoAs, ceramides, and cholesterol were unchanged. Insulin action in the liver was enhanced after ADRP ASO treatment, whereas muscle and adipose tissue were not affected. ADRP ASO increased the phosphorylation of insulin receptor substrate (IRS)1, IRS2, and Akt, and decreased gluconeogenic enzymes and PKCepsilon, consistent with its insulin-sensitizing action. These results demonstrate an important role for ADRP in the pathogenesis of diet-induced insulin resistance.  相似文献   

15.
Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is a receptor for oxidized LDL, and is strongly expressed in endothelial cells at an early stage of atherosclerosis. LOX-1 expression in adipocytes is induced by PPARγ (ligands and appears to be involved in adipocyte cholesterol metabolism. However, the role of adipose tissue LOX-1 in high-fat diet-induced obesity is unknown. We found that mRNA levels of adipose tissue LOX-1 were markedly increased in obese mice fed a high-fat diet (HFD) compared with those fed normal chow. The levels were closely correlated with those of a proinflammatory cytokine, monocyte chemoattractant protein-1 (MCP-1). Then, LOX-1 knockout (LOX-1-KO) and wild-type (WT) mice were fed HFD for 16 weeks. HFD feeding increased the body and mesenteric fat weights similarly in WT and LOX-1-KO mice. HFD-induced expressions of proinflammatory cytokines such as MCP-1, MIP-1α, and IL-6 were significantly less in LOX-1-KO than WT mice. Thus, LOX-1 is required for the HFD-induced expression of proinflammatory cytokines in the adipose tissue of obese mice.  相似文献   

16.
17.

Background

Insulin resistance is manifested in muscle, adipose tissue, and liver and is associated with adipose tissue inflammation. The cellular components and mechanisms that regulate the onset of diet-induced insulin resistance are not clearly defined.

Methodology and Principal Findings

We initially observed osteopontin (OPN) mRNA over-expression in adipose tissue of obese, insulin resistant humans and rats which was normalized by thiazolidinedione (TZD) treatment in both species. OPN regulates inflammation and is implicated in pathogenic maladies resulting from chronic obesity. Thus, we tested the hypothesis that OPN is involved in the early development of insulin resistance using a 2–4 week high fat diet (HFD) model. OPN KO mice fed HFD for 2 weeks were completely protected from the severe skeletal muscle, liver and adipose tissue insulin resistance that developed in wild type (WT) controls, as determined by hyperinsulinemic euglycemic clamp and acute insulin-stimulation studies. Although two-week HFD did not alter body weight or plasma free fatty acids and cytokines in either strain, HFD-induced hyperleptinemia, increased adipose tissue inflammation (macrophages and cytokines), and adipocyte hypertrophy were significant in WT mice and blunted or absent in OPN KO mice. Adipose tissue OPN protein isoform expression was significantly altered in 2- and 4-week HFD-fed WT mice but total OPN protein was unchanged. OPN KO bone marrow stromal cells were more osteogenic and less adipogenic than WT cells in vitro. Interestingly, the two differentiation pathways were inversely affected by HFD in WT cells in vitro.

Conclusions

The OPN KO phenotypes we report reflect protection from insulin resistance that is associated with changes in adipocyte biology and adipose tissue inflammatory status. OPN is a key component in the development of HFD-induced insulin resistance.  相似文献   

18.
SRC-1 and TIF2 control energy balance between white and brown adipose tissues   总被引:31,自引:0,他引:31  
We have explored the effects of two members of the p160 coregulator family on energy homeostasis. TIF2-/- mice are protected against obesity and display enhanced adaptive thermogenesis, whereas SRC-1-/- mice are prone to obesity due to reduced energy expenditure. In white adipose tissue, lack of TIF2 decreases PPARgamma activity and reduces fat accumulation, whereas in brown adipose tissue it facilitates the interaction between SRC-1 and PGC-1alpha, which induces PGC-1alpha's thermogenic activity. Interestingly, a high-fat diet increases the TIF2/SRC-1 expression ratio, which may contribute to weight gain. These results reveal that the relative level of TIF2/SRC-1 can modulate energy metabolism.  相似文献   

19.
Angiopoietin-related growth factor (AGF), a member of the angiopoietin-like protein (Angptl) family, is secreted predominantly from the liver into the systemic circulation. Here, we show that most (>80%) of the AGF-deficient mice die at about embryonic day 13, whereas the surviving AGF-deficient mice develop marked obesity, lipid accumulation in skeletal muscle and liver, and insulin resistance accompanied by reduced energy expenditure relative to controls. In parallel, mice with targeted activation of AGF show leanness and increased insulin sensitivity resulting from increased energy expenditure. They are also protected from high-fat diet-induced obesity, insulin resistance and nonadipose tissue steatosis. Hepatic overexpression of AGF by adenoviral transduction, which leads to an approximately 2.5-fold increase in serum AGF concentrations, results in a significant (P < 0.01) body weight loss and increases insulin sensitivity in mice fed a high-fat diet. This study establishes AGF as a new hepatocyte-derived circulating factor that counteracts obesity and related insulin resistance.  相似文献   

20.

Background

Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO) regulates the expression of proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis. Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD)-induced insulin resistance.

Methodology/Principal Findings

Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin, implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin resistance in wild type (WT) and 12/15LO knockout (KO) mice after 2–4 weeks on HFD. In adipose tissue from WT mice, HFD resulted in recruitment of CD11b+, F4/80+ macrophages and elevated protein levels of the inflammatory markers IL-1β, IL-6, IL-10, IL-12, IFNγ, Cxcl1 and TNFα. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-fed mice. WT mice developed severe whole body (hepatic and skeletal muscle) insulin resistance after HFD, as measured by hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice.

Conclusions

These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body insulin resistance induced by high fat feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号