首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostate cancer is the most common noncutaneous malignancy in men. The prostate stem cell Ag (PSCA) is a promising target for immunotherapy of advanced disease. Based on a novel mAb directed to PSCA, we established and compared a series of murine and humanized anti-CD3-anti-PSCA single-chain bispecific Abs. Their capability to redirect T cells for killing of tumor cells was analyzed. During these studies, we identified a novel bispecific humanized Ab that efficiently retargets T cells to tumor cells in a strictly Ag-dependent manner and at femtomolar concentrations. T cell activation, cytokine release, and lysis of target cells depend on a cross-linkage of redirected T cells with tumor cells, whereas binding of the anti-CD3 domain alone does not lead to an activation or cytokine release. Interestingly, both CD8(+) and CD4(+) T cells are activated in parallel and can efficiently mediate the lysis of tumor cells. However, the onset of killing via CD4(+) T cells is delayed. Furthermore, redirecting T cells via the novel humanized bispecific Abs results in a delay of tumor growth in xenografted nude mice.  相似文献   

2.
There is currently growing interest in retargeting of effector T cells to tumor cells via bispecific antibodies (bsAbs). Usually, bsAbs are directed on the one hand to the CD3 complex of T cells and on the other hand to a molecule expressed on the surface of the target cell. A bsAb-mediated cross-linkage via CD3 leads to an activation of CD8+ T cells and consequently to killing of the target cells. In parallel, CD4+ T cells including TH1, TH2, TH17 cells and even regulatory T cells (Tregs) will be activated as well. Cytokines produced by CD4+ T cells can contribute to severe side effects e. g. life-threatening cytokine storms and, thinking of the immunosupressive function of Tregs, can even be counterproductive. Therefore, we asked whether or not it is feasible to limit retargeting to CD8+ T cells e. g. via targeting of the co-receptor CD8 instead of CD3. In order to test for proof of concept, a novel bsAb with specificity for CD8 and a tumor-associated surface antigen was constructed. Interestingly, we found that pre-activated (but not freshly isolated) CD8+ T cells can be retargeted via CD8-engaging bsAbs leading to an efficient lysis of target cells.  相似文献   

3.
Recombinant bispecific antibodies such as tandem scFv molecules (taFv), diabodies (Db), or single chain diabodies (scDb) have shown to be able to retarget T lymphocytes to tumor cells, leading to their destruction. However, therapeutic efficacy is hampered by a short serum half-life of these small molecules having molecule masses of 50-60 kDa. Thus, improvement of the pharmacokinetic properties of small bispecific antibody formats is required to enhance efficacy in vivo. In this study, we generated several recombinant bispecific antibody-albumin fusion proteins and analyzed these molecules for biological activity and pharmacokinetic properties. Three recombinant antibody formats were produced by fusing two different scFv molecules, bispecific scDb or taFv molecules, respectively, to human serum albumin (HSA). These constructs (scFv(2)-HSA, scDb-HSA, taFv-HSA), directed against the tumor antigen carcinoembryonic antigen (CEA) and the T cell receptor complex molecule CD3, retained full binding capacity to both antigens compared with unfused scFv, scDb, and taFv molecules. Tumor antigen-specific retargeting and activation of T cells as monitored by interleukin-2 release was observed for scDb, scDb-HSA, taFv-HSA, and to a lesser extent for scFv(2)-HSA. T cell activation could be further enhanced by a target cell-specific costimulatory signal provided by a B7-DbCEA fusion protein. Furthermore, we could demonstrate that fusion to serum albumin strongly increases circulation time of recombinant bispecific antibodies. In addition, our comparative study indicates that single chain diabody-albumin fusion proteins seem to be the most promising format for further studying cytotoxic activities in vitro and in vivo.  相似文献   

4.
Bispecific antibodies capable of redirecting the lytic potential of immune effector cells to kill tumor targets have long been recognized as a potentially potent biological therapeutic intervention. Unfortunately, efforts to produce such molecules have been limited owing to inefficient production and poor stability properties. Here, we describe a novel Fv-derived strategy based on a covalently linked bispecific diabody structure that we term dual-affinity re-targeting (DART). As a model system, we linked an Fv specific for human CD16 (FcγRIII) on effector cells to an Fv specific for mouse or human CD32B (FcγRIIB), a normal B-cell and tumor target antigen. DART proteins were produced at high levels in mammalian cells, retained the binding activity of the respective parental Fv domains as well as bispecific binding, and showed extended storage and serum stability. Functionally, the DART molecules demonstrated extremely potent, dose-dependent cytotoxicity in retargeting human PBMC against B-lymphoma cell lines as well as in mediating autologous B-cell depletion in culture. In vivo studies in mice demonstrated effective B-cell depletion that was dependent on the transgenic expression of both CD16A on the effector cells and CD32B on the B-cell targets. Furthermore, DART proteins showed potent in vivo protective activity in a human Burkitt's lymphoma cell xenograft model. Thus, DART represents a biologically potent format that provides a versatile platform for generating bispecific antibody fragments for redirected killing and, with the selection of appropriate binding partners, applications outside of tumor cell cytotoxicity.  相似文献   

5.
《MABS-AUSTIN》2013,5(2):381-391
Various constructs of bispecific antibodies (bsAbs) to redirect effector T cells for the targeted killing of tumor cells have shown considerable promise in both preclinical and clinical studies. The single-chain variable fragment (scFv)-based formats, including bispecific T-cell engager (BiTE) and dual-affinity re-targeting (DART), which provide monovalent binding to both CD3 on T cells and to the target antigen on tumor cells, can exhibit rapid blood clearance and neurological toxicity due to their small size (~55 kDa). Herein, we describe the generation, by the modular DOCK-AND-LOCKTM (DNLTM) method, of novel T-cell redirecting bispecific antibodies, each comprising a monovalent anti-CD3 scFv covalently conjugated to a stabilized dimer of different anti-tumor Fabs. The potential advantages of this design include bivalent binding to tumor cells, a larger size (~130 kDa) to preclude renal clearance and penetration of the blood-brain barrier, and potent T-cell mediated cytotoxicity. These prototypes were purified to near homogeneity, and representative constructs were shown to provoke the formation of immunological synapses between T cells and their target tumor cells in vitro, resulting in T-cell activation and proliferation, as well as potent T-cell mediated anti-tumor activity. In addition, in vivo studies in NOD/SCID mice bearing Raji Burkitt lymphoma or Capan-1 pancreatic carcinoma indicated statistically significant inhibition of tumor growth compared with untreated controls.  相似文献   

6.
Various constructs of bispecific antibodies (bsAbs) to redirect effector T cells for the targeted killing of tumor cells have shown considerable promise in both preclinical and clinical studies. The single-chain variable fragment (scFv)-based formats, including bispecific T-cell engager (BiTE) and dual-affinity re-targeting (DART), which provide monovalent binding to both CD3 on T cells and to the target antigen on tumor cells, can exhibit rapid blood clearance and neurological toxicity due to their small size (~55 kDa). Herein, we describe the generation, by the modular DOCK-AND-LOCKTM (DNLTM) method, of novel T-cell redirecting bispecific antibodies, each comprising a monovalent anti-CD3 scFv covalently conjugated to a stabilized dimer of different anti-tumor Fabs. The potential advantages of this design include bivalent binding to tumor cells, a larger size (~130 kDa) to preclude renal clearance and penetration of the blood-brain barrier, and potent T-cell mediated cytotoxicity. These prototypes were purified to near homogeneity, and representative constructs were shown to provoke the formation of immunological synapses between T cells and their target tumor cells in vitro, resulting in T-cell activation and proliferation, as well as potent T-cell mediated anti-tumor activity. In addition, in vivo studies in NOD/SCID mice bearing Raji Burkitt lymphoma or Capan-1 pancreatic carcinoma indicated statistically significant inhibition of tumor growth compared with untreated controls.  相似文献   

7.
The therapeutic efficacy of recombinant antibodies such as single-chain Fv fragments and small bispecific or bifunctional molecules is often limited by rapid elimination from the circulation because of their small size. Here, we have investigated the effects of N-glycosylation on the activity and pharmacokinetics of a small bispecific single-chain diabody (scDb CEACD3) developed for the retargeting of cytotoxic T cells to CEA-expressing tumor cells. We could show that the introduction of N-glycosylation sequons into the flanking linker and a C-terminal extension results in the production of N-glycosylated molecules after expression in transfected HEK293 cells. N-Glycosylated scDb variants possessing 3, 6, or 9 N-glycosylation sites, respectively, retained antigen binding activity and bispecificity for target and effector cells as shown in a target cell-dependent IL-2 release assay, although activity was reduced approximately 3-5-fold compared with the unmodified scDb. All N-glycosylated scDb variants exhibited a prolonged circulation time compared with scDb, leading to a 2-3-fold increase of the area under curve (AUC). In comparison, conjugation of a branched 40-kDa PEG chain increased AUC by a factor of 10.6, while a chimeric anti-CEA IgG1 molecule had the longest circulation time with a 17-fold increase in AUC. Thus, N-glycosylation complements the repertoire of strategies to modulate pharmacokinetics of small recombinant antibody molecules by an approach that moderately prolongs circulation time.  相似文献   

8.
Treatment of mice bearing BCL1 lymphoma with bispecific antibodies   总被引:1,自引:0,他引:1  
Bispecific antibodies with specificity for the CD3/TCR complex of CTL and a target cell Ag can bridge both cell types and trigger cellular cytoxicity. We have produced bispecific antibodies, directed against the surface-expressed Id of the mouse BCL1 lymphoma and the mouse CD3 complex, by hybrid-hybridoma fusion. Two recombination Ig were purified to homogeneity: B1 X 7D6F, which is univalent for Id and CD3 binding and B1 X 7D6M, which is univalent for Id binding but has lost the CD3 binding because of association of the anti-CD3 H chain with the inappropriate L chain. In vitro studies indicate that bridging the TCR/CD3 complex of resting T cells with tumor IgM Id and the appropriate bispecific antibody induced proliferation and secretion of IL-2. Furthermore, in cytotoxicity assays using 51Cr-labeled tumor cells, preactivated T cells could be targeted with the bispecific antibody to give complete lysis of the Ag+ tumor. Finally, the activity of the bispecific antibody was confirmed in vivo. Animals treated i.v. with 5 micrograms of bispecific antibody 9 days after receiving BCL1 cells were cured. Furthermore, when these animals were checked at 150 days for dormant or variant tumors, as have been reported after other forms of immunotherapy in this model, none could be found. Immunotherapy experiments comparing a mixture of control antibodies with the bispecific antibody demonstrate that tumor cell-T cell bridging is established in vivo and is required for therapeutic success. These results indicate the importance of bispecific antibodies as a novel form of treatment for cancer.  相似文献   

9.
For tumor therapy with unprimed effector cells, we developed a novel combination of a CD2 x tumor Ag bispecific targeting Ab and an anti-CD2 triggering Ab. These Ab constructs were derived from two novel CD2 mAbs, termed M1 and M2 that, together, but not individually activate T cells. Unlike many other CD2 Abs, M1 and M2 do not interfere with TCR/CD3 triggering nor do they inhibit binding of CD2 to its ligand CD58, thus preserving the physiological functions of these important effector cell molecules. M2 was chemically conjugated with an Ab recognizing the epidermal growth factor-receptor (EGF-R). Incubation of unprimed peripheral blood mononuclear cells with the bispecific F(ab')2 construct (M2xEGF-R) in the presence of trigger Ab M1 led to efficient selective lysis of EGF-R-positive targets by CTL and NK cells. Importantly, the need for trigger Ab M1 for effector cell stimulation allowed to separate targeting from triggering steps in vitro and should thus enable to focus immune responses to sites of target Ag expression in vivo.  相似文献   

10.
Many studies have demonstrated that prostate stem cell antigen (PSCA) is an attractive target for immunotherapy based on its overexpression in prostate tumor tissue, especially in some metastatic tissues. In this study, we evaluated dendritic cell (DC)-directed lentiviral vector (DCLV) encoding murine PSCA (DCLV-PSCA) as a novel tumor vaccine for prostate cancer in mouse models. We showed that DCLV-PSCA could preferentially deliver the PSCA antigen gene to DC-SIGN-expressing 293T cells and bone marrow-derived DCs (BMDCs). Direct immunization with the DCLV-PSCA in male C57BL/6 mice elicited robust PSCA-responsive CD8+ and CD4+ T cells in vivo. In a transgenic adenocarcinoma mouse prostate cell line (TRAMP-C1) synergetic tumor model, we further demonstrated that DCLV-PSCA-vaccinated mice could be protected from lethal tumor challenge in a prophylactic model, whereas slower tumor growth was observed in a therapeutic model. This DCLV-PSCA vaccine also showed efficacy in inhibiting tumor metastases using a PSCA-expressing B16-F10 model. Taken together, these data suggest that DCLV is a potent vaccine carrier for PSCA in delivering anti-prostate cancer immunity.  相似文献   

11.
We have recently demonstrated that a recombinant single-chain bispecific Ab construct, bscCD19xCD3, in vitro induces rapid B lymphoma-directed cytotoxicity at picomolar concentrations with unstimulated peripheral T cells. In this study, we show that treatment of nonobese diabetic SCID mice with submicrogram doses of bscCD19xCD3 could prevent growth of s.c. human B lymphoma xenografts and essentially cured animals when given at an early tumor stage. The effect was dose dependent, dependent on E:T ratio and the time between tumor inoculation and administration of bscCD19xCD3. No therapeutic effect was seen in the presence of human lymphocytes alone, a vehicle control, or with a bispecific single-chain construct of identical T cell-binding activity but different target specificity. In a leukemic nonobese diabetic SCID mouse model, treatment with bscCD19xCD3 prolonged survival of mice in a dose-dependent fashion. The human lymphocytes used as effector cells in both animal models did not express detectable T cell activation markers at the time of coinoculation with tumor cells. The bispecific Ab therefore showed an in vivo activity comparable to that observed in cell culture with respect to high potency and T cell costimulus independence. These properties make bscCD19xCD3 superior to previously investigated CD19 bispecific Ab-based therapies.  相似文献   

12.
Diabodies (Dbs) and tandem single-chain variable fragments (taFv) are the most widely used recombinant formats for constructing small bispecific antibodies. However, only a few studies have compared these formats, and none have discussed their binding kinetics and cross-linking ability. We previously reported the usefulness for cancer immunotherapy of a humanized bispecific Db (hEx3-Db) and its single-chain format (hEx3-scDb) that target epidermal growth factor receptor and CD3. Here, we converted hEx3-Db into a taFv format to investigate how format affects the function of a small bispecific antibody; our investigation included a cytotoxicity assay, surface plasmon resonance spectroscopy, thermodynamic analysis, and flow cytometry. The prepared taFv (hEx3-taFv) showed an enhanced cytotoxicity, which may be attributable to a structural superiority to the diabody format in cross-linking target cells but not to differences in the binding affinities of the formats. Comparable cross-linking ability for soluble antigens was observed among hEx3-Db, hEx3-scDb, and hEx3-taFv with surface plasmon resonance spectroscopy. Furthermore, drastic increases in cytotoxicity were found in the dimeric form of hEx3-taFv, especially when the two hEx3-taFv were covalently linked. Our results show that converting the format of small bispecific antibodies can improve their function. In particular, for small bispecific antibodies that target tumor and immune cells, a functional orientation that avoids steric hindrance in cross-linking two target cells may be important in enhancing the growth inhibition effect.  相似文献   

13.
Summary Two different bispecific hybrid antibodies were established by fusing a hybridoma producing monoclonal antibody (mAb) against the pancarcinoma antigen KS1/4 with either of the two hybridomas OKT3 and 9.3, secreting antibodies reactive with the T cell determinants CD3 and CD28, respectively. The KS1/4 antibody reacts with a 40-kDa cell-surface glycoprotein antigen that is expressed on the surface of a variety of adenocarcinoma cells, including ovarian carcinoma. The ability of the bispecific antibodies 9.3KS1/4 and OKT3KS1/4 to direct peripheral blood mononuclear cells (PBMC) specifically against OVCAR-3 ovarian carcinoma target cells was measured in a 4-h51Cr-release assay. The bispecific antibodies were four to six times more potent in killing the OVCAR-3 target cells when compared to their parental antibodies either alone or in combination. A dose-dependent response was observed in the 10–10000 ng/ml range. The specificity of the targeting was demonstrated by the complete inhibition of cytotoxic activity following pre-incubation of tumor target cells with the parental mAb and by the lack of killing of KS1/4-negative target cell lines. An evaluation of the efficacy of PBMC from ovarian cancer patients as effector cells revealed that their specific cytotoxicity against OVCAR-3 cells was enhanced severalfold by bispecific antibodies as compared to parental antibodies. Furthermore, stimulation of PBMC with immobilized CD3 and interleukin-2 for 4 days resulted in an enhanced directed killing of human ovarian carcinoma cells by human T effector cells and the bispecific antibodies.  相似文献   

14.
 T cells play a key role in the control of abnormal B cell proliferation. Factors that play a role in inadequate T cell responses include absence of expression of costimulatory and adhesion molecules by the malignant B cells and lack of cytotoxic T cells specific for tumor-associated antigens. A number of approaches have been used to enhance T cell response against malignant B cells. Agents such as soluble CD40 ligand can enhance expression of costimulatory molecules by the malignant B cells and improve their ability to activate T cells. Anti-CD3-based bispecific antibodies can retarget T cells toward the tumor cells irrespective of T cell specificity. We used the V 38C13 murine lymphoma model to assess whether the combination of soluble CD40 ligand and anti-CD3-based bispecific antibody can enhance T cell activation induced by malignant B cells more effectively than either approach alone. Expression of CD80, CD86, and ICAM-1 on lymphoma cells was up-regulated by soluble CD40 ligand. Syngeneic T cells were activated more extensively by lymphoma cells when the lymphoma cells were pre-treated with soluble CD40 ligand. Bispecific-antibody induced T cell activation was more extensive when lymphoma cells pretreated with soluble CD40 ligand were present. The combination of soluble CD40 ligand plus bispecific antibody enhanced the median survival of mice compared to mice treated with bispecific anibody alone. We conclude that pretreatment of tumor cells with agents capable of inducing costimulatory molecule expression, such as soluble CD40 ligand can enhance the ability of malignant B cells to activate T cells. This effect is enhanced by the addition of bispecific antibody. The combination of enhanced expression of costimulatory molecules and retargeting of T cells by bispecific antibody may allow for a more effective T-cell-based immunotherapy. Accepted: 14 October 1997  相似文献   

15.
 This report summarizes our experimental data concerning the use of bispecific antibodies (bsAb) for the treatment of the murine BCL1 B cell lymphoma model. Initially we used a hybrid-hybridoma-derived bsAb with specificity for the TcR/CD3 complex on T cells and the idiotype of the membrane-bound IgM on the tumor cells. The bsAb used as a single agent could cure animals with a low tumor load (resembling minimal residual disease). However, in experiments aimed at increasing the therapeutic effect in animals with a higher tumor burden, we could demonstrate the importance of additional T-cell-costimulatory signals and the careful timing of the bsAb administration. Recently we have generated a bispecific single-chain Fv (bsscFv) fusion protein with the same dual specificity as the hybrid-hybridoma-derived bsAb. Immunotherapy with this smaller molecule also resulted in tumor elimination in BCL1-bearing mice. A second bsscFv (α-CDl9×α-CD3) with a broader applicability is now being characterized and tested in vivo. Accepted: 14 October 1997  相似文献   

16.
Antibody-based targeted immunotherapy has shown promise as an approach to treat cancer. However, many known tumor-associated antigens are not expressed as integral membrane proteins and cannot be utilized as targets for antibody-based therapeutics. In order to expand the limited target range of antibodies, we have constructed a soluble single-chain T-cell receptor (TCR) fusion protein designated 264scTCR/IL-2. This fusion protein is comprised of a three-domain HLA-A2-restricted TCR specific for a peptide epitope of the human p53 tumor suppressor protein, which is overexpressed in a broad range of human malignancies. The 264scTCR/IL-2 fusion protein has been expressed at high levels in mammalian cells, and milligram quantities have been purified. MHC-restricted antigen-specific binding properties are maintained in the single-chain, three-domain TCR portion of the fusion protein, and the IL-2 portion retains bioactivity similar to that of free recombinant IL-2. Moreover, this fusion protein is capable of conjugating target and effector cells, remains intact in the blood and substantially increases the half life of the IL-2 portion of the molecule. Finally, the 264scTCR/IL-2 fusion protein can be used to stain tumor cells and is capable of reducing lung metastases in an experimental model of metastasis. Thus, TCR-based fusion proteins may provide a novel class of targeted immunotherapeutics for cancer.  相似文献   

17.
 Unlike monoclonal antibodies, clinical application of bispecific antibodies has so far lagged behind because of difficult, low-yield production techniques as well as considerable toxicity attributed to bispecific antibody preparations containing immunoglobulin-Fc parts and anti-CD3 homodimers [10, 2]. These difficulties were overcome by recombinant generation of a bispecific single-chain antibody (bscAb) joining two single-chain Fv fragments via a five-amino-acid glycine-serine linker. The anti-CD3 specificity directed against human T cells was combined with another specificity against the epithelial 17-1A antigen. The following domain arrangement was critical in this individual case to obtain a fully functional bscAb: VL17-1A-VH17-1A-VHCD3-VLCD3. The bscAb was expressed in chinese hamster ovary cells with a yield of 15 mg/l culture supernatant whereas numerous attempts to obtain a functional protein expression in Escherichia coli failed. The low-molecular-mass bispecific construct (60 kDa) could easily be purified by its C-terminal histidine tail. The antigen-binding properties are indistinguishable from those of the corresponding univalent single-chain Fv fragments as shown by enzyme immunoassay and flow cytometry. We could show that the bscAb, which lacks Fc parts and anti-CD3 homodimers is highly cytotoxic for 17-1A positive tumor cells in nanomolar concentrations and in the presence of human T cells. Most remarkably, it does not stimulate T lymphocyte proliferation in the absence of tumor cells and, moreover, does not induce CD25 up-regulation and the secretion of potentially toxic lymphokines such as tumor necrosis factor α, interleukin-6 and interferon γ. Maximal cytotoxicity (51Cr release) was achieved without notable costimulation and was not further enhanced by adding costimulatory signals such as those delivered by anti-CD28 antibodies. CD8+ as well as CD4+ T cell subpopulations were recruited to exert cytotoxicity against tumor cells with different kinetics. CD8+ cells induced high 51Cr release within 4 h while CD4+ cells required a 20-h incubation. The systemic application of the 17-1A/CD3-bscAb could be a major improvement in therapy against disseminated micrometastatic tumor cells. A prospective, randomized clinical trial showing that an anti-17-1A monoclonal antibody could prolong survival of colorectal cancer patients after 5 and 7 years, warrants an assessment of the clinical efficacy of this bscAb exhibiting a 1000-fold higher specific cytotoxicity against tumor cells in virto. Accepted: 14 October 1997  相似文献   

18.
Background Although cancer of the prostate is one of the most commonly diagnosed cancers in men, no curative treatment currently exists after its progression beyond resectable boundaries. Therefore, new agents for targeted treatment strategies are needed. Cross-linking of tumor antigens with T-cell associated antigens by bispecific monoclonal antibodies have been shown to increase antigen-specific cytotoxicity in T-cells. Since the prostate-specific membrane antigen (PSMA) represents an excellent tumor target, immunotherapy with bispecific diabodies could be a promising novel treatment option for prostate cancer. Methods A heterodimeric diabody specific for human PSMA and the T-cell antigen CD3 was constructed from the DNA of anti-CD3 and anti-PSMA single chain Fv fragments (scFv). It was expressed in E. coli using a vector containing a bicistronic operon for co-secretion of the hybrid scFv VHCD3-VLPSMA and VHPSMA-VLCD3. The resulting PSMAxCD3 diabody was purified from the periplasmic extract by immobilized metal affinity chromatography (IMAC). The binding properties were tested on PSMA-expressing prostate cancer cells and PSMA-negative cell lines as well as on Jurkat cells by flow cytometry. For in vitro functional analysis, a cell viability test (WST) was used. For in vivo evaluation the diabody was applied together with human peripheral blood lymphocytes (PBL) in a C4-2 xenograft-SCID mouse model. Results By Blue Native gel electrophoresis, it could be shown that the PSMAxCD3 diabody is mainly a tetramer. Specific binding both to CD3-expressing Jurkat cells and PSMA-expressing C4-2 cells was shown by flow cytometry. In vitro, the diabody proved to be a potent agent for retargeting PBL to lyze C4-2 prostate cancer cells. Treatment of SCID mice inoculated with C4-2 tumor xenografts with the diabody and PBL efficiently inhibited tumor growth. Conclusions The PSMAxCD3 diabody bears the potential for facilitating immunotherapy of prostate cancer and for the elimination of minimal residual disease. P. Bühler and P. Wolf equally contributed to the work.  相似文献   

19.
We combined the specificity of tumor-specific antibody with the chemokine function of interferon-gamma inducible protein 10 (IP-10) to recruit immune effector cells in the vicinity of tumor cells. A novel fusion protein of IP10-scFv was constructed by fusing mouse IP-10 to V(H) region of single-chain Fv fragment (scFv) against acidic isoferritin (AIF), and expressed in NS0 murine myeloma cells. The IP10-scFv fusion protein was shown to maintain the specificity of the antiAIF scFv with similar affinity constant, and bind to the human hepatocarcinoma SMMC 7721 cells secreting AIF as well as the activated mouse T lymphocytes expressing CXCR3 receptor. Furthermore, the IP10-scFv protein either in solution or bound on the surface of SMMC 7721 cells induced significant chemotaxis of mouse T cells in vitro. The results indicate that the IP10-scFv fusion protein possesses both bioactivities of the tumor-specific antibody and IP-10 chemokine, suggesting its possibility to induce an enhanced immune response against the residual tumor cells in vivo.  相似文献   

20.
We previously reported the marked in vitro and in vivo antitumor activity of hEx3, a humanized diabody (small recombinant bispecific antibody) with epidermal growth factor receptor (EGFR) and CD3 retargeting. Here, we fabricated a tetravalent IgG-like bispecific antibody with two kinds of single-chain Fv (scFv), i.e. humanized anti-EGFR scFv and anti-CD3 scFv, that contains the same four variable domains as hEx3, on the platform of human IgG1 (hEx3-scFv-Fc). hEx3-scFv-Fc prepared from mammalian cells showed specific binding to both EGFR and CD3 target antigens. At one-thousandth (0.1-100 fmol/ml) of the dose of normal hEx3, hEx3-scFv-Fc showed intense cytotoxicity to an EGFR-positive cell line in a growth-inhibition assay using lymphokine-activated killer cells with the T-cell phenotype (T-LAK cells). The enhanced antitumor effect was more clearly observed when peripheral blood mononuclear cells (PBMCs) were used as effector cells, indicating the utility of IgG-like fabrication. These results suggested that the intense antitumor activity is attributable to the multivalency and the presence of the fused human Fc, a hypothesis that was supported by the results of flow cytometry, PBMC proliferation assay, and protein kinase inhibition assay. Furthermore, the growth inhibition effects of hEx3-scFv-Fc were considerably superior to those of the approved therapeutic antibody, cetuximab, which recognizes the same EGFR antigen even when using PBMCs as effector cells. The high potency of hEx3-scFv-Fc may translate into improved antitumor therapy and lower costs of production because of the smaller doses needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号