首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hatchery broodstocks used for genetic conservation or aquaculture may represent their ancestral gene pools rather poorly. This is especially likely when the fish that found a broodstock are close relatives of each other. We re-analysed microsatellite data from a breeding experiment on red sea bream to demonstrate how lost genetic variation might be recovered when gene frequencies have been distorted by consanguineous founders in a hatchery. A minimal-kinship criterion based on a relatedness estimator was used to select subsets of breeders which represented the maximum number of founder lineages (i.e., carried the fewest identical copies of ancestral genes). UPGMA clustering of Nei's genetic distances grouped these selected subsets with the parental gene pool, rather than with the entire, highly drifted offspring generation. The selected subsets also captured much of the expected heterozygosity and allelic diversity of the parental gene pool. Independent pedigree data on the same fish showed that the selected subsets had more contributing parents and more founder equivalents than random subsets of the same size. The estimated mean coancestry was lower in the selected subsets, meaning that inbreeding in subsequent generations would be lower if they were used as breeders. The procedure appears suitable for reducing the genetic distortion due to consanguineous and over-represented founders of a hatchery gene pool.  相似文献   

2.
Complete pedigree information is a prerequisite for modern breeding and the ranking of parents and offspring for selection and deployment decisions. DNA fingerprinting and pedigree reconstruction can substitute for artificial matings, by allowing parentage delineation of naturally produced offspring. Here, we report on the efficacy of a breeding concept called "Breeding without Breeding" (BwB) that circumvents artificial matings, focusing instead on a subset of randomly sampled, maternally known but paternally unknown offspring to delineate their paternal parentage. We then generate the information needed to rank those offspring and their paternal parents, using a combination of complete (full-sib: FS) and incomplete (half-sib: HS) analyses of the constructed pedigrees. Using a random sample of wind-pollinated offspring from 15 females (seed donors), growing in a 41-parent western larch population, BwB is evaluated and compared to two commonly used testing methods that rely on either incomplete (maternal half-sib, open-pollinated: OP) or complete (FS) pedigree designs. BwB produced results superior to those from the incomplete design and virtually identical to those from the complete pedigree methods. The combined use of complete and incomplete pedigree information permitted evaluating all parents, both maternal and paternal, as well as all offspring, a result that could not have been accomplished with either the OP or FS methods alone. We also discuss the optimum experimental setting, in terms of the proportion of fingerprinted offspring, the size of the assembled maternal and paternal half-sib families, the role of external gene flow, and selfing, as well as the number of parents that could be realistically tested with BwB.  相似文献   

3.
The genetic management of captive populations to conserve genetic variation is currently based on analyses of individual pedigrees to infer inbreeding and kinship coefficients and values of individuals as breeders. Such analyses require that individual pedigrees are known and individual pairing (mating) can be controlled. Many species in captivity, however, breed in groups due to various reasons, such as space constraints and fertility considerations for species living naturally in social groups, and thus have no pedigrees available for the traditional genetic analyses and management. In the absence of individual pedigree, such group breeding populations can still be genetically monitored, evaluated and managed by suitable population genetics models using population level information (such as census data). This article presents a simple genetic model of group breeding populations to demonstrate how to estimate the genetic variation maintained within and among populations and to optimise management based on these estimates. A numerical example is provided to illustrate the use of the proposed model. Some issues relevant to group breeding, such as the development and robustness evaluation of the population genetics model appropriate for a particular species under specific management and recording systems and the genetic monitoring with markers, are also briefly discussed.  相似文献   

4.
The South China tiger (Panther tigris amoyensis) is critically endangered with 73 remaining individuals living in captivity, all derived from six wild founders since 1963. The population shows a low level of juvenile survivorship and reproductive difficulties, and faces a huge conservation challenge. In this study, inbreeding depression and genetic diversity decline were examined by using pedigree data and 17 microsatellites. The constant B, which is related to the number of lethal equivalents, was estimated to be 0 for the offspring of noninbred parents, but was >0 for the offspring of inbred parents and for all offspring. Percentage of successfully breeding tigers inversely correlated with inbreeding level (r = −0.626, α = 0.05). Taken together, these findings suggest the population is suffering from inbreeding depression in juvenile survivorship and fecundity. No significant correlation was detectable for the mean litter size with f of either dams (r = −0.305, α = 0.46) or kittens (r = 0.105, α = 0.71), indicating litter size was not strongly subject to inbreeding depression. The average number of alleles per locus was 4.24 ± 1.03 (SE), but effective number of alleles was only 2.53 ± 0.91. Twenty-one alleles carried by early breeders at 13 loci were absent in the present breeders and potential breeders. Multilocus heterozygosity was inversely correlated with inbreeding levels (r = −0.601, α = 0.004). These findings suggest rapid allelic diversity loss is occurring in this small captive population and that heterozygosity is being lost as it becomes more inbred. Our phylogenetic analysis supports past work indicating introgression from northern Indochinese tigers in the population. As no wild representatives of the South China tiger can be added to the captive population, we may consider the alternate scenario of further introgression in the interest of countering inbreeding depression and declining genetic diversity.  相似文献   

5.
6.
We introduce a computer program for the dynamic and flexible management of conserved subdivided populations. Using molecular marker data or pedigree information, the software determines the optimal contributions (i.e., number of offspring) of each individual, the number of migrants, and the particular subpopulations involved in the exchange of individuals in order to maintain the largest level of gene diversity in the whole population with a desired control in the rate of inbreeding. Restrictions can be introduced for the total number of migrants, and the mating of particular pairs and their contribution. A full genetic diversity analysis of the population is carried out. The optimal contribution from each subpopulation to a pool of maximal gene diversity is also provided by the program.  相似文献   

7.
Several methods have been developed to estimate the selfing rate of a population from a sample of individuals genotyped for several marker loci. These methods can be based on homozygosity excess (or inbreeding), identity disequilibrium, progeny array (PA) segregation or population assignment incorporating partial selfing. Progeny array-based method is generally the best because it is not subject to some assumptions made by other methods (such as lack of misgenotyping, absence of biparental inbreeding and presence of inbreeding equilibrium), and it can reveal other facets of a mixed-mating system such as patterns of shared paternity. However, in practice, it is often difficult to obtain PAs, especially for animal species. In this study, we propose a method to reconstruct the pedigree of a sample of individuals taken from a monoecious diploid population practicing mixed mating, using multilocus genotypic data. Selfing and outcrossing events are then detected when an individual derives from identical parents and from two distinct parents, respectively. Selfing rate is estimated by the proportion of selfed offspring in the reconstructed pedigree of a sample of individuals. The method enjoys many advantages of the PA method, but without the need of a priori family structure, although such information, if available, can be utilized to improve the inference. Furthermore, the new method accommodates genotyping errors, estimates allele frequencies jointly and is robust to the presence of biparental inbreeding and inbreeding disequilibrium. Both simulated and empirical data were analysed by the new and previous methods to compare their statistical properties and accuracies.  相似文献   

8.
Keller MC  Visscher PM  Goddard ME 《Genetics》2011,189(1):237-249
Inbreeding depression, which refers to reduced fitness among offspring of related parents, has traditionally been studied using pedigrees. In practice, pedigree information is difficult to obtain, potentially unreliable, and rarely assessed for inbreeding arising from common ancestors who lived more than a few generations ago. Recently, there has been excitement about using SNP data to estimate inbreeding (F) arising from distant common ancestors in apparently "outbred" populations. Statistical power to detect inbreeding depression using SNP data depends on the actual variation in inbreeding in a population, the accuracy of detecting that with marker data, the effect size, and the sample size. No one has yet investigated what variation in F is expected in SNP data as a function of population size, and it is unclear which estimate of F is optimal for detecting inbreeding depression. In the present study, we use theory, simulated genetic data, and real genetic data to find the optimal estimate of F, to quantify the likely variation in F in populations of various sizes, and to estimate the power to detect inbreeding depression. We find that F estimated from runs of homozygosity (Froh), which reflects shared ancestry of genetic haplotypes, retains variation in even large populations (e.g., SD=0.5% when Ne=10,000) and is likely to be the most powerful method of detecting inbreeding effects from among several alternative estimates of F. However, large samples (e.g., 12,000-65,000) will be required to detect inbreeding depression for likely effect sizes, and so studies using Froh to date have probably been underpowered.  相似文献   

9.
In populations with a known pedigree, exact joint probability distributions of numbers of surviving of genes from each founder can now be calculated for moderately large complex pedigrees (1,000–2,000 individuals and much inbreeding). The usefulness of such calculations is shown by our analysis of gene survival in the Asian wild horse (Equus przewalskii), a species now extinet in the wild with a captive population with 1,516 individuals in the known pedigree (12 generations). We calculate the genetic diversity of subsets of the current population interesting to the North American Species Survival Plan, trace the loss of genetic diversity in this species through its history in captivity, and determine genetically important individuals in the North American population—those with relatively high probabilities of having unique copy genes (genes not found in any other living individual in North America).  相似文献   

10.
A pedigree is a diagram of family relationships, and it is often used to determine the mode of inheritance (dominant, recessive, etc.) of genetic diseases. Along with rapidly growing knowledge of genetics and accumulation of genealogy information, pedigree data is becoming increasingly important. In large pedigree graphs, path-based methods for efficiently computing genealogical measurements, such as inbreeding and kinship coefficients of individuals, depend on efficient identification and processing of paths. In this paper, we propose a new compact path encoding scheme on large pedigrees, accompanied by an efficient algorithm for identifying paths. We demonstrate the utilization of our proposed method by applying it to the inbreeding coefficient computation. We present time and space complexity analysis, and also manifest the efficiency of our method for evaluating inbreeding coefficients as compared to previous methods by experimental results using pedigree graphs with real and synthetic data. Both theoretical and experimental results demonstrate that our method is more scalable and efficient than previous methods in terms of time and space requirements.  相似文献   

11.
ABSTRACT Recently, a number of papers have addressed the use of pedigrees in the study of wild populations, highlighting the value of pedigrees in conservation management. We used pedigrees to study the horses (Equus caballus) of Assateague Island National Seashore, Maryland, USA, one of a small number of free-ranging animal populations that have been the subject of long-term studies. This population grew from 28 in 1968 to 175 in 2001, causing negative impacts on the island ecosystem. To minimize these effects, an immunocontraception program was instituted, and horse numbers are slowly decreasing. However, there is concern that this program may negatively affect the genetic health of the herd. We found that although mitochondrial DNA diversity is low, nuclear diversity is comparable to that of established breeds. Using genetic data, we verified and amended maternal pedigrees that had been primarily based on behavioral data and inferred paternity using genetic data along with National Park Service records of the historic ranges of males. The resulting pedigrees enabled us to examine demography, founder contributions, rates of inbreeding and loss of diversity over recent generations, as well as the level of kinship among horses. We then evaluated the strategy of removing individuals (using nonlethal means) with the highest mean kinship values. Although the removal strategy increased the retained diversity of founders and decreased average kinship between individuals, it disproportionately impacted sizes of the youngest age classes. Our results suggest that a combined strategy of controlled breeding and immunocontraception would be more effective than removing individuals with high mean kinships in preserving the long-term health and viability of the herd.  相似文献   

12.
Maintaining genetic diversity is a crucial goal of intensive management of threatened species, particularly for those populations that act as sources for translocation or re‐introduction programmes. Most captive genetic management is based on pedigrees and a neutral theory of inheritance, an assumption that may be violated by selective forces operating in captivity. Here, we explore the conservation consequences of early viability selection: differential offspring survival that occurs prior to management or research observations, such as embryo deaths in utero. If early viability selection produces genotypic deviations from Mendelian predictions, it may undermine management strategies intended to minimize inbreeding and maintain genetic diversity. We use empirical examples to demonstrate that straightforward approaches, such as comparing litter sizes of inbred vs. noninbred breeding pairs, can be used to test whether early viability selection likely impacts estimates of inbreeding depression. We also show that comparing multilocus genotype data to pedigree predictions can reveal whether early viability selection drives systematic biases in genetic diversity, patterns that would not be detected using pedigree‐based statistics alone. More sophisticated analysis combining genomewide molecular data with pedigree information will enable conservation scientists to test whether early viability selection drives deviations from neutrality across wide stretches of the genome, revealing whether this form of selection biases the pedigree‐based statistics and inference upon which intensive management is based.  相似文献   

13.
Naturally isolated populations have conflicting selection pressures for successful reproduction and inbreeding avoidance. These species with limited seasonal reproductive opportunities may use selfing as a means of reproductive assurance. We quantified the frequency of selfing and the fitness consequences for inbred versus outcrossed progeny of an annual kelp, the sea palm (Postelsia palmaeformis). Using experimentally established populations and microsatellite markers to assess the extent of selfing in progeny from six founding parents, we found the frequency of selfing was higher than expected in every population, and few fitness costs were detected in selfed offspring. Despite a decline in heterozygosity of 30 per cent in the first generation of selfing, self-fertilization did not affect individual size or reproduction, and correlated only with a marginally significant decline in survival. Our results suggest both that purging of deleterious recessive alleles may have already occurred and that selfing may be key to reproductive assurance in this species with limited dispersal. Postelsia has an alteration of a free-living diploid and haploid stage, where the haploid stage may provide increased efficiency for purging the genetic load. This life history is shared by many seaweeds and may thus be an important component of mating system evolution in the sea.  相似文献   

14.
Inbreeding and the loss of genetic diversity may lower fitness and reduce the potential for a population to adapt to changing environments. In small populations, for example in captive populations or populations of endangered species, this can have considerable consequences for their survival. We investigated the effects of inbreeding on infant mortality in the world captive population of bonobos Pan paniscus . Using a combination of studbook data and high-quality pedigree data from genotyped individuals, inbreeding information was available for 142 captive-born individuals. For the determination of paternities that were unresolved in the studbook, nuclear microsatellite DNA was amplified from hair and blood samples using the Great Ape Kit and PowerPlex® 16 System. In total, 54 bonobos (17 offspring and their putative parents) were genotyped at eight tetranucleotide repeat microsatellite loci. Inbreeding coefficients were calculated for each individual for whom paternity was confirmed by either studbook data or DNA analysis. We found significantly higher infant mortality in inbred offspring compared with non-inbred offspring, suggesting that inbreeding reduces infant survival in captive bonobos. In addition, we argue that the total magnitude of inbreeding depression is probably underestimated in this captive population. In conclusion, even though the breeding programme of captive bonobos is aimed at avoiding inbreeding, closely related individuals do occasionally produce offspring that do show inbreeding depression. There is, however, no indication that this currently threatens the long-time survival of the captive population of bonobos.  相似文献   

15.
Robert C. Lacy 《Zoo biology》1995,14(6):565-577
Some of the concepts, terms, and methods used in the genetic management of captive populations have not been defined precisely in the scientific literature and consequently have been misunderstood and misused. The definitions and interrelationships among gene diversity, effective population size, founder genome equivalents, inbreeding, allelic diversity, mean kinship, and kinship value are presented here. It is important to understand what populations and generations are used as the baselines against which losses of genetic variation are measured. Gene diversity and founder genome equivalents are defined relative to a source population from which founders of the captive population were randomly sampled. Inbreeding and allelic diversity are assessed relative to the founders. The potential gene diversity that would result from an equalization of frequencies of founder alleles retained in the population can never be achieved because, among other limitations, the random process of gene transmission will prevent equalization of allele frequencies even if animals are bred optimally. The gene diversity achievable with the population can be determined by iterative production of hypothetical offspring from the pairs with lowest mean kinship. The long-term objective for offspring production from each animal is also thereby generated. Mean kinships should be recalculated with each real or hypothetical birth and death, because offspring objectives based on current mean kinships might correlate poorly with the optimal long-term offspring objectives. © 1995 Wiley-Liss, Inc.  相似文献   

16.
The increasing availability of genomic tools improves our ability to investigate the patterns of genetic diversity and relatedness among individuals. The pedigrees of many apple cultivars are completely unknown, often reducing the efficiency of breeding programs. Using a multilocus simple sequence repeat dataset, we applied a novel multi-generation pedigree-network reconstruction procedure based on the software FRANz in a Malus × domestica collection (101 cultivated and 22 wild apples) with partially known pedigree relationships. The procedure produced 78 parent–offspring relationships organized into three networks and showed high power for detecting real pedigree links (98.5 %) and a low false-positive rate (9.0 %). The largest reconstructed pedigree network spanned four generations and involved 65 cultivars. The availability of detailed pedigree connections confirmed that recent genealogical relationships affect population genetic structure in apple. Finally, our analysis enabled us to confirm or discard several pedigrees known only anecdotically, among which the cultivar Grimes Golden was validated as a parent of the widely grown cultivar Golden Delicious. The pedigree reconstruction protocol here described will be of broad applicability to other collections and crop species.  相似文献   

17.
Apple cultivars and breeding lines that represent much of the diversity currently present in major European breeding programmes and are genetically related by their pedigree were examined for the trueness of their identity and parentage by consistency in marker scores using a genome-covering set of 80 microsatellite (SSR) markers and an ??identity-by-descent?? approach. One hundred and twenty-five individuals were validated for the trueness-to-type of both their parents and 49 were validated for one of their parents, their second being unknown (23 individuals) or not available in this study (26 individuals). In addition, 15 individuals for which we lacked one of or both the direct parents were validated by consistency with tested parents of earlier generations. Furthermore, the identity of 28 founder cultivars was validated, their marker scores being consistent with descending cultivars and breeding lines. Four of the eight triploids identified were clearly shown to have arisen from unreduced egg cells. The assumed pedigree of 15 further individuals was found to be incorrect; fully consistent pedigrees were suggested for three of the cultivars. The pedigrees of a further eight individuals were confirmed through inference from the molecular data.  相似文献   

18.

Background and Aims

A reduction in offspring fitness resulting from mating between neighbours is interpreted as biparental inbreeding depression. However, little is known about the relationship between the parents'' genetic relatedness and biparental inbreeding depression in their progeny in natural populations. This study assesses the effect of kinship between parents on the fitness of their progeny and the extent of spatial genetic structure in a natural population of Rhododendron brachycarpum.

Methods

Kinship coefficients between 11 858 pairs of plants among a natural population of 154 R. brachycarpum plants were estimated a priori using six microsatellite markers. Plants were genotyped, and pairs were selected from among 60 plants to vary the kinship from full-sib to unrelated. After a hand-pollination experiment among the 60 plants, offspring fitness was measured at the stages of seed maturation (i.e. ripening) under natural conditions, and seed germination and seedling survival under greenhouse conditions. In addition, spatial autocorrelation was used to assess the population''s genetic structure.

Key Results

Offspring fitness decreased significantly with increasing kinship between parents. However, the magnitude and timing of this effect differed among the life-cycle stages. Measures of inbreeding depression were 0·891 at seed maturation, 0·122 (but not significant) at seed germination and 0·506 at seedling survival. The local population spatial structure was significant, and the physical distance between parents mediated the level of inbreeding between them.

Conclusions

The level of inbreeding between individuals determines offspring fitness in R. brachycarpum, especially during seed maturation. Genetic relatedness between parents caused inbreeding depression in their progeny. Therefore, biparental inbreeding contributes little to reproduction and instead acts as a selection force that promotes outcrossing, as offspring of more distant (less related) parents survive better.  相似文献   

19.
 Strawberry genotypes selected for superior fruit yield or chosen at random from first-generation self, full-sib, and half-sib populations were crossed to provide second-generation inbred progenies and composite cross-fertilized control populations. Mean yields for inbred offspring from crosses among selected parents exceeded those from the offspring of unselected parents by 87%, 23%, and 37% for self, full-sib, and half-sib populations, respectively; yields for offspring from unrelated crosses among selected parents were 54% larger than those for crosses among unselected parents. Selection for yield also resulted in significant correlated response for fruit number and plant diameter. Mean yields for second-generation half-sib and full-sib offspring from selected parents were greater than those for offspring from the unselected but non-inbred control population. This suggests that selection can be a powerful force in counteracting most of the inbreeding depression expected in cross-fertilized strawberry breeding programs. Selection treatment× inbreeding rate interactions were non-significant for all traits; thus, selection among partially inbred offspring did not have a large effect on the rate of genetic progress. Differential realized selection intensity among individuals with differing levels of homozygosity accumulated due to inbreeding is suggested as the most likely explanation for the absence of association between pedigree inbreeding coefficients and cross performance detected previously in strawberry. Received: 21 July 1996 / Accepted: 7 March 1997  相似文献   

20.
Matings between relatives lead to a decrease in offspring genetic diversity which can reduce fitness, a phenomenon known as inbreeding depression. Because alpine ungulates generally live in small structured populations and often exhibit a polygynous mating system, they are susceptible to inbreeding. Here, we used marker-based measures of pairwise genetic relatedness and inbreeding to investigate the fitness consequences of matings between relatives in a long-term study population of mountain goats ( Oreamnos americanus ) at Caw Ridge, Alberta, Canada. We first assessed whether individuals avoided mating with kin by comparing actual and random mating pairs according to their estimated genetic relatedness, which was derived from 25 unlinked polymorphic microsatellite markers and reflected pedigree relatedness. We then examined whether individual multilocus heterozygosity H , used as a measure of inbreeding, was predicted by parental relatedness and associated with yearling survival and the annual probability of giving birth to a kid in adult females. Breeding pairs identified by genetic parentage analyses of offspring that survived to 1 year of age were less genetically related than expected under random matings. Parental relatedness was negatively correlated with offspring H , and more heterozygous yearlings had higher survival to 2 years of age. The probability of giving birth was not affected by H in adult females. Because kids that survived to yearling age were mainly produced by less genetically related parents, our results suggest that some individuals experienced inbreeding depression in early life. Future research will be required to quantify the levels of gene flow between different herds, and evaluate their effects on population genetic diversity and dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号