首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown that muscle-derived stem cells (MDSCs) transplanted into dystrophic (mdx) mice efficiently regenerate skeletal muscle. However, MDSC populations exhibit heterogeneity in marker profiles and variability in regeneration abilities. We show here that cell sex is a variable that considerably influences MDSCs' regeneration abilities. We found that the female MDSCs (F-MDSCs) regenerated skeletal muscle more efficiently. Despite using additional isolation techniques and cell cloning, we could not obtain a male subfraction with a regeneration capacity similar to that of their female counterparts. Rather than being directly hormonal or caused by host immune response, this difference in MDSCs' regeneration potential may arise from innate sex-related differences in the cells' stress responses. In comparison with F-MDSCs, male MDSCs have increased differentiation after exposure to oxidative stress induced by hydrogen peroxide, which may lead to in vivo donor cell depletion, and a proliferative advantage for F-MDSCs that eventually increases muscle regeneration. These findings should persuade researchers to report cell sex, which is a largely unexplored variable, and consider the implications of relying on cells of one sex.  相似文献   

2.
Infantile hemangiomas are common vascular tumours which exhibit a rapid proliferating phase followed by spontaneously involuting for a long time. The formation and development mechanisms are not clear yet. Recent studies show that hemangioma-derived stem cells have multipotential differentiation abilities, including endothelial and mesenchymal differentiation. In addition, mesenchymal stem cell has the capability of inducing endothelial cell apoptosis, differentiating into adipocytes and triggering the involution of hemangiomas. Thus we hypothesize that mesenchymal stem cell may be the source of spontaneously regression of hemangiomas. Further investigations may be needed to develop potential therapeutic implications of mesenchymal stem cell in treating hemangiomas.  相似文献   

3.
干细胞是一类具有自我更新和多向分化潜能的细胞群体。越来越多的研究表明,干细胞异常分化可导致肿瘤。并且在肿瘤组织中存在部分细胞,它们具有干细胞的多种特性,被称为肿瘤干细胞(cancer stem cell,CSC)。肿瘤干细胞理论的提出,为肿瘤的治疗与研究提供了新的方向。本文综述了正常干细胞异常分化、肿瘤干细胞的存在和特性、肿瘤干细胞靶向治疗的前景及所面临的问题等方面的研究进展。  相似文献   

4.
该文旨在比较人滑膜间充质干细胞(human synovial mesenchymal stem cells,hSMSCs)与人脐带间充质干细胞(human umbilical cord mesenchymal stem cells,hUC-MSCs)的生物学性状.流式细胞仪鉴定hSMSCs和hUC-MSCs.比较两种间...  相似文献   

5.
6.
Nucleoside analogues inhibiting DNA synthesis can induce cell differentiation in teratocarcinoma cells. We have examined how their abilities to induce F9 cell differentiation were specifically counterbalanced by their corresponding normal nucleosides. We have also compared the differentiation inducing ability of the wild type F9 cells with that of its thymidine kinase-less mutant using plasminogen activator, as a differentiation marker, which is expressed at a very early stage of endodermal cell differentiation and can be assayed quantitatively. The results obtained were clearly explainable by the conventionally accepted action mechanisms of the nucleoside analogues, thus strongly suggesting that their abilities to induce cell differentiation were direct consequences of the inhibition of DNA synthesis; thus this confirms the notion that a close association exists between the inhibition of DNA synthesis and the induction of teratocarcinoma stem cell differentiation.  相似文献   

7.
Efficient generation of iPS cells from skeletal muscle stem cells   总被引:1,自引:0,他引:1  
Reprogramming of somatic cells into inducible pluripotent stem cells generally occurs at low efficiency, although what limits reprogramming of particular cell types is poorly understood. Recent data suggest that the differentiation status of the cell targeted for reprogramming may influence its susceptibility to reprogramming as well as the differentiation potential of the induced pluripotent stem (iPS) cells that are derived from it. To assess directly the influence of lineage commitment on iPS cell derivation and differentiation, we evaluated reprogramming in adult stem cell and mature cell populations residing in skeletal muscle. Our data using clonal assays and a second-generation inducible reprogramming system indicate that stem cells found in mouse muscle, including resident satellite cells and mesenchymal progenitors, reprogram with significantly greater efficiency than their more differentiated daughters (myoblasts and fibroblasts). However, in contrast to previous reports, we find no evidence of biased differentiation potential among iPS cells derived from myogenically committed cells. These data support the notion that adult stem cells reprogram more efficiently than terminally differentiated cells, and argue against the suggestion that "epigenetic memory" significantly influences the differentiation potential of iPS cells derived from distinct somatic cell lineages in skeletal muscle.  相似文献   

8.
Damage to cells and tissues is one of the driving forces of aging and age‐related diseases. Various repair systems are in place to counteract this functional decline. In particular, the property of adult stem cells to self‐renew and differentiate is essential for tissue homeostasis and regeneration. However, their functionality declines with age (Rando, 2006). One organ that is notably affected by the reduced differentiation capacity of stem cells with age is the skeleton. Here, we found that circulating microvesicles impact on the osteogenic differentiation capacity of mesenchymal stem cells in a donor‐age‐dependent way. While searching for factors mediating the inhibitory effect of elderly derived microvesicles on osteogenesis, we identified miR‐31 as a crucial component. We demonstrated that miR‐31 is present at elevated levels in the plasma of elderly and of osteoporosis patients. As a potential source of its secretion, we identified senescent endothelial cells, which are known to increase during aging in vivo (Erusalimsky, 2009). Endothelial miR‐31 is secreted within senescent cell‐derived microvesicles and taken up by mesenchymal stem cells where it inhibits osteogenic differentiation by knocking down its target Frizzled‐3. Therefore, we suggest that microvesicular miR‐31 in the plasma of elderly might play a role in the pathogenesis of age‐related impaired bone formation and that miR‐31 might be a valuable plasma‐based biomarker for aging and for a systemic environment that does not favor cell‐based therapies whenever osteogenesis is a limiting factor.  相似文献   

9.
Hair graying in mouse is attributed to the loss of melanocyte stem cell function and the progressive depletion of the follicular melanocyte population. Single‐gene, hair graying mouse models have pointed to a number of critical pathways involved in melanocyte stem cell biology; however, the broad range of phenotypic variation observed in human hair graying suggests that additional genetic variants involved in this process may yet be discovered. Using a sensitized approach, we ask here whether natural genetic variation influences a predominant cellular mechanism of hair graying in mouse, melanocyte stem cell differentiation. We developed an innovative method to quantify melanocyte stem cell differentiation by measuring ectopically pigmented melanocyte stem cells in response to the melanocyte‐specific transgene Tg(Dct‐Sox10). We make the novel observation that the production of ectopically pigmented melanocyte stem cells varies considerably across strains. The success of sensitizing for melanocyte stem cell differentiation by Tg(Dct‐Sox10) sets the stage for future investigations into the genetic basis of strain‐specific contributions to melanocyte stem cell biology.  相似文献   

10.
The proteome of a proliferating human stem cell line was analyzed and then utilized to detect stem cell differentiation-associated changes in the protein profile. The analysis was conducted with a stable human fetal midbrain stem cell line (ReNcell VM) that displays the properties of a neural stem cell. Therefore, acquisition of proteomic data should be representative of cultured human neural stem cells (hNSCs) in general. Here we present a 2-DE protein-map of this cell line with annotations of 402 spots representing 318 unique proteins identified by MS. The subsequent proteome profiling of differentiating cells of this stem cell line at days 0, 4 and 7 of differentiation revealed changes in the expression of 49 identified spots that could be annotated to 45 distinct proteins. This differentiation-associated expression pattern was validated by Western blot analysis for transgelin-2, proliferating cell nuclear antigen, as well as peroxiredoxin 1 and 4. The group of regulated proteins also included NudC, ubiquilin-1, STRAP, stress-70 protein, creatine kinase B, glial fibrillary acidic protein and vimentin. Our results reflect the large rearrangement of the proteome during the differentiation process of the stem cells to terminally differentiated neurons and offer the possibility for further characterization of specific targets driving the stem cell differentiation.  相似文献   

11.
Adipose‐derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs), which have promised a vast therapeutic potential in tissue regeneration. Recent studies have demonstrated that combining stem cells with mechanical stretch may strengthen the efficacy of regenerative therapies. However, the exact influences of mechanical stretch on MSCs still remain inconclusive. In this study, human ADSCs (hADSCs) were applied cyclic stretch stimulation under an in vitro stretching model for designated duration. We found that mechanical stretch significantly promoted the proliferation, adhesion and migration of hADSCs, suppressing cellular apoptosis and increasing the production of pro‐healing cytokines. For differentiation of hADSCs, mechanical stretch inhibited adipogenesis, but enhanced osteogenesis. Long‐term stretch could promote ageing of hADSCs, but did not alter the cell size and typical immunophenotypic characteristics. Furthermore, we revealed that PI3K/AKT and MAPK pathways might participate in the effects of mechanical stretch on the biological characteristics of hADSCs. Taken together, mechanical stretch is an effective strategy for enhancing stem cell behaviour and regulating stem cell fate. The synergy between hADSCs and mechanical stretch would most likely facilitate tissue regeneration and promote the development of stem cell therapy.  相似文献   

12.
Liu XH  Tang CS 《生理科学进展》2008,39(3):196-202
近年发现干细胞具有很强的旁/自分泌功能,本文综述干细胞所分泌的生长因子、细胞因子、调节肽、细胞信号分子等生物活性因子,以及缺血、缺氧、生长因子、性别和其它激素对干细胞分泌功能的调节;并分析干细胞分泌功能在血管生成、心脏、肝脏、肾脏和神经系统保护中的作用,认为干细胞可通过其分泌功能影响靶器官结构、功能状态及其病理状态下的修复,是干细胞治疗改善靶器官功能、抗凋亡、抗炎等作用的机制之一.  相似文献   

13.
Induced pluripotent stem cells (iPSCs) are obtained from adult cells through overexpression of pluripotency factors. iPSCs share many features with embryonic stem cells (ESCs), circumventing ethical issues, and, noteworthy, match donor's genotype. iPSCs represent therefore a valuable tool for regenerative medicine. Cardiac differentiation of ESCs can be enhanced via microRNAs (miRNAs) and small chemical compounds, which probably act as chromatin remodelers. Cardiomyogenic potential of iPSCs is currently intensely investigated for cell therapy or in vitro drug screening and disease modeling. However, influences of small compounds on iPSC‐related cardiomyogenesis have not yet been investigated in details. Here, we compared the effects of two small molecules, bis‐peroxo‐vanadium (bpV) and sulfonyl‐hydrazone‐1 (SHZ) at varying concentrations, during cardiac differentiation of murine iPSCs. SHZ (5 µM) enhanced specific marker expression and cardiomyocyte yield, without loss of cell viability. In contrast, bpV showed negligible effects on cardiac differentiation rate and appeared to induce Casp3‐dependent apoptosis in differentiating iPSCs. Furthermore, SHZ‐treated iPSCs were able to increase beating foci rate and upregulate early and late cardiomyogenic miRNA expression (miR‐1, miR‐133a, and miR‐208a). Thus, our results demonstrate that small chemical compounds, such as SHZ, can constitute a novel and clinically feasible strategy to improve iPSC‐derived cardiac differentiation. J. Cell. Biochem. 112: 2006–2014, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

14.
15.
诱导性多能干细胞(induced pluripotent stem cell,iPS cell)是通过转染外源特定的基因组合来诱导成体细胞重编程为类似于胚胎干细胞的一种多潜能干细胞,iPS细胞与胚胎干细胞不仅在形态上相似,而且在功能方面几乎相同.另外,iPS细胞的诞生克服了胚胎干细胞在临床应用时涉及的移植免疫排斥与伦理道德问题,因此具有重要的临床应用价值.目前iPS在治疗中枢神经系统性疾病方面的研究已取得很大进展,包括iPS细胞向神经细胞诱导分化方法的改进、分化机理的探索以及iPS细胞分化来源神经细胞在神经系统疾病模型中治疗作用的研究等.从iPS细胞的创建及特点、iPS细胞向神经细胞分化的诱导方法及研究新进展方面予以综述.  相似文献   

16.
Stem cells are unique cell populations with the ability to undergo self-renewal and differentiation. These cells have been identified in a wide range of tissues and possess varied differentiation potentials. Tissue-specific stem cells have typically been thought to have limited differentiation capabilities. We show here that fibroblast-like cells isolated from mouse brain possess cross-germ layer differentiation abilities. These cells were found to express typical mesenchymal stem cell markers (CD44, CD29, and CD105) and were able to be passaged more than 50 times. When treated under defined conditions, the brain-derived cells were able to generate many different cell types including adipocytes, osteocytes, astrocytes, neurons, and even hepatocyte-like cells. The hepatocyte-like cells not only expressed liver cell-specific markers, but also exhibited the capacity for glycogen storage and low-density lipoprotein uptake. These results demonstrate the existence of cells in the brain with three-germ-layer differentiation potential.  相似文献   

17.
Brain sexual differentiation results from the interaction of genetic and hormonal influences. This study used a unique agonadal mouse model to determine relative contributions of genetic and gonadal hormone influences in the differentiation of selected brain regions. SF-1 knockout (SF-1 KO) mice are born without gonads and adrenal glands and are not exposed to endogenous sex steroids during fetal/neonatal development. Consequently, male and female SF-1 KO mice are born with female external genitalia and if left on their own, die shortly after birth due to adrenal insufficiency. In this study, SF-1 KO mice were rescued by neonatal adrenal transplantation to examine their brain morphology in adult life. To determine potential brain loci that might mediate functional sex differences, we examined the area and distribution of immunoreactive calbindin and neuronal nitric oxide synthase in the preoptic area (POA) and ventromedial nucleus of the hypothalamus, two areas previously reported to be sexually dimorphic in the mammalian brain. A sex difference in the positioning of cells containing immunoreactive calbindin in a group within the POA was clearly gonad dependent based on the elimination of the sex difference in SF-1 KO mice. Several other differences in the area of ventromedial hypothalamus and in POA were maintained in male and female SF-1 KO mice, suggesting gonad-independent genetic influences on sexually dimorphic brain development.  相似文献   

18.
In the last few decades, stem cell-based therapies have gained attention worldwide for various diseases and disorders. Adult stem cells, particularly mesenchymal stem cells (MSCs), are preferred due to their significant regenerative potential in cellular therapies and are currently involved in hundreds of clinical trials. Although MSCs have high self-renewal as well as differentiation potential, such abilities are compromised with “advanced age” and “disease status” of the donor. Similarly, cell-based therapies require high cell number for clinical applications that often require in vitro expansion of cells. It is pertinent to note that aged individuals are the main segment of population for stem cell-based therapies, however; autologous use of stem cells for such patients (aged and diseased) does not seem to give optimal results due to their compromised potential. In vitro expansion to obtain large numbers of cells also negatively affects the regenerative potential of MSCs. It is therefore essential to improve the regenerative potential of stem cells compromised due to “in vitro expansion”, “donor age” and “donor disease status” for their successful autologous use. The current review has been organized to address the age and disease depleted function of resident adult stem cells, and the strategies to improve their potential. To combat the problem of decline in the regenerative potential of cells, this review focuses on the strategies that manipulate the cell environment such as hypoxia, heat shock, caloric restriction and preconditioning with different factors.  相似文献   

19.
20.
Each cell forever interacts with its extracellular matrix (ECM); a stem cell relies on this interaction to guide differentiation. The stiffness, nanotopography, protein composition, stress and strain inherent to any given ECM influences stem cell lineage commitment. This interaction is dynamic, multidimensional and reciprocally evolving through time, and from this concerted exchange the macroscopic tissues that comprise living organisms are formed. Mesenchymal stem cells can give rise to bone, cartilage, tendon and muscle; thus attempts to manipulate their differentiation must heed the physical properties of incredibly complex native microenvironments to realize regenerative goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号