首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A two-step approach is described to chemically camouflage the inert surface of model polystyrene nanospheres of 60 nm in diameter against recognition by the body's defenses. The first step was based on the strong protein adsorbing potency of polystyrene, and the second step utilized the chemical reactivity of the adsorbed proteins for conjugation with cyanuric chloride-activated methoxypoly(ethyleneglycol)5000, mPEG5000. Bovine serum albumin (BSA) and rat IgG were used as models of non-immune and immune proteins, respectively. The maximum adsorbance values for both proteins were near expectation for a close-packed monolayer. Adsorption isotherms studies and analysis of the hydrodynamic thickness of the adsorbed protein layer confirmed the close-packed side-on mode of adsorption for BSA and the end-on mode of adsorption for IgG, respectively. Nucleophiles on the adsorbed proteins were then reacted with cyanuric chloride activated mPEG5000. The average poly(ethyleneglycol) (PEG) content for a 60-nm nanospheres was found to be 13.7+/-0.4 micromol PEG/micromol BSA and 3.6+/-0.3 micromol PEG/micromol IgG. The interaction of both PEG-bearing nanospheres with the hydrophobic column material octyl-agarose indicated surface heterogeneity among the nanospheres. Only nanospheres with the most hydrophilic phenotype (approximately 70% of the total population) exhibited stealth properties after intravenous injection to rats. In contrast to the described approach, incubation of uncoated nanospheres with preformed BSA-mPEG5000 conjugates failed to produce long circulating entities. For design of splenotropic particles cyanuric chloride-activated mPEG5000 was conjugated to BSA-coated polystyrene beads of 225 nm in diameter. Despite their stealth property to hepatic Kupffer cell recognition, these nanospheres were cleared by the splenic red pulp macrophages.  相似文献   

2.
The objective of this study was to develop a sustained-release drug delivery system for 5-fluorouracil (5-FU) to improve its short half-life. 5-Fluorouracil-1-acetic acid (FUAC) was prepared and then conjugated to hydroxyethyl starch (HES) through ester bonds. The conjugates were relatively stable in acidic buffer solution at pH 5.8 and slowly released FUAC but became more sensitive to hydrolysis with an increase in the pH and temperature. The conjugates were degraded to FUAC both in human and rat plasma with half-time life of 20.4 h and 24.6 h, respectively. Both 5-FU and FUAC were released in a rat liver homogenate following a 12 h incubation of the conjugates. The pharmacokinetic behavior was evaluated in rats after intravenous injection of 5-FU, FUAC and the conjugates. The drug release data in vitro and in vivo indicated that HES is a promising carrier for the sustained-release of antitumor drugs.  相似文献   

3.
Recombinant coagulation factor VIII (r-VIII SQ) was chemically modified with monomethoxy poly(ethylene glycol) (mPEG). Three mPEG derivatives were used for coupling to the r-VIII SQ lysines, a mixed anhydride of monomethoxy poly(ethylene glycol) succinic acid (mPEG-SAH), monomethoxy poly(ethylene glycol) succinimidyl succinate (mPEG-SS), and monomethoxy poly(ethylene glycol) tresylate (mPEG-TRES). A consequence of the modification with all derivatives was a substantial reduction in coagulant activity, even at very low degrees of modification. A method was developed with the purpose of avoiding conjugation at certain important biological sites on the factor VIII and thereby producing conjugates with better retained activity. This was achieved by immobilizing the protein onto a solid matrix during the modification reaction. Characterization of conjugates by SDS-PAGE, western blots, interaction with von Willebrand factor (vWf), and thrombin activation/inactivation analyses was undertaken. The SDS-PAGE and western blots revealed coupling heterogeneity regarding degree of modification. The amount of factor VIII able to bind to vWf decreased with the conjugation. Thrombin activated the modified factor VIII to essentially the same extent as the reference preparation of r-VIII SQ. Inactivation of the modified factor VIII was, however, slower than inactivation of the unmodified protein. Finally, an in vitro study was performed to evaluate the influence of the mPEG modification on the protein stability in extract of porcine tissue. Despite that conjugates with low degrees of modification were included in the study, the coagulant activity was preserved to a significantly higher extent in all incubation mixtures containing conjugates compared to that with unmodified protein.  相似文献   

4.
In order to improve its stability, immobilized Concanavalin A (Con A) on Toyopearl adsorbents was conjugated with monomethoxy poly(ethylene glycol) succinimidyl propionate (mPEG-SPA) with different molecular weight. A colorimetric method using ninhydrin is proposed to determine the degree of PEGylation; this method has proved to be easy applicable and reproducible. The PEGylation reaction was studied in detail to elucidate how parameters such as molar ratio of mPEG-SPA to Con A and molecular weight of mPEG-SPA affect the degree of PEGylation. The adsorption isotherms of glucose oxidase (GOD) onto native and PEGylated Con A adsorbents showed that the modification did not alter substantially the specificity of the carbohydrate binding ability of Con A. However, the binding capacity for GOD was slightly reduced probably due to the steric hindrance caused by mPEG chains. Adsorption kinetic studies revealed a lower adsorption rate after PEGylation which was attributed to the steric effect. The dynamic adsorption capacity for modified Con A depended very much on the degree of PEGylation and the molecular weight of mPEG derivatives. The adsorption capacity could be highly preserved for Toyopearl Con A modified by mPEG2k (90% of the original adsorption capacity) even with a degree of PEGylation up to 20% (the ratio of primary amino groups of PEGylated immobilized Con A to that of native immobilized Con A). Studies show that the binding capacity of PEGylated Con A was highly preserved under mild process conditions. PEGylated Con A also exhibited obviously higher stability against more stressful conditions such as the exposure to organic solvents and high temperatures. Conjugation of Con A with mPEG2k provided better adsorption performance thus has greater potential for application in affinity separation processes compared with mPEG5k. The fact that PEGylation stabilizes the properties of Con A may greatly expand the range of applications of unstable proteins to bioprocessing (e.g. biocatalysis and downstream separation) as well as other protein applications (e.g. medication, industrial use, etc.).  相似文献   

5.
Jin Q  Mitschang F  Agarwal S 《Biomacromolecules》2011,12(10):3684-3691
The synthesis of a photo-triggered biocompatible drug delivery system on the basis of coumarin-functionalized block copolymers is reported. The coumarin-functionalized block copolymers poly(ethylene oxide)-b-poly(n-butyl methacrylate-co-4-methyl-[7-(methacryloyl)oxyethyloxy]coumarin)) (PEO-b-P(BMA- co-CMA)) were synthesized via atom transfer radical polymerization (ATRP). The micelle-drug conjugates were made by covalent bonding of anticancer drug 5-fluorouracil (5-FU) to the coumarin under UV irradiation at wavelength >310 nm. These micelle-drug conjugates possessed spherical morphology with diameters of 70 nm from TEM images. In vitro drug release experiments showed the controlled release of anticancer drug 5-FU from the micelle-drug conjugates under UV irradiation (254 nm). These micelle-drug conjugates also showed excellent biocompatibility by the in vitro cytotoxicity experiments. The results suggest that these micelle-drug conjugates could be a promising candidate for the delivery of anticancer agents with low side effects on normal cells and excellent therapeutic efficacy to cancer cells.  相似文献   

6.
Ligand-mediated targeting of drugs especially in anticancer drug delivery is an effective approach. Dendrimers, due to unique surface topologies, can be a choice in this context. In the present study, PAMAM (polyamidoamine) dendrimers up to fourth generation were synthesized and characterized through infrared (IR), nuclear magnetic resonance (NMR), electrospray ionization (ESI) mass spectrometric, and transmission electron microscopic (TEM) techniques. Primary amines present on the dendritic surface were conjugated through folic acid and folic acid-PEG (poly(ethylene glycol))-NHS (N-hydroxysuccinimide) conjugates. Tumor in mice was induced through the use of KB cell culture. Prepared dendritic conjugates were evaluated for the anticancer drug delivery potential using 5-FU (5-fluorouracil) in tumor-bearing mice. Approximately 31% of 5-FU was loaded in folate-PEG-dendritic conjugates. Results indicated that folate-PEG-dendrimer conjugate was significantly safe and effective in tumor targeting compared to a non-PEGylated formulation. Tailoring of dendrimers via PEG-folic acid reduced hemolytic toxicity, which led to a sustained drug release pattern as well as highest accumulation in the tumor area.  相似文献   

7.
The aim of the present study was to design a targeted delivery system of 5-fluorouracil (5-FU) for hepatocellular carcinoma (HCC). Lactobionic acid (LB) was conjugated to stearyl amine (SA) by a chemical reaction. The nanostructured lipid carriers (NLCs), containing LB conjugate, lecithin, glyceryl monostearate, oil [oleic acid (OA) or Labrafac 5 or 10%], and 5-FU, were dissolved in alcohol/acetone, the oil phase was added to the aqueous phase containing Tween 80 or Solutol(?) HS15 (0.25 or 0.5%), and NLCs were prepared by an emulsification-solvent diffusion method. Physical properties and drug release were studied in NLCs. The thiazolyl blue tetrazolium bromide assay was used to study the cytotoxicity of NLCs on HepG(2) cells, and the cellular uptake of NLCs was determined by flow cytometry. Fourier transform infrared spectroscopy and (1)H-NMR spectra confirmed the successful conjugation of LB and SA. The optimized NLCs consisted of 0.5% Solutol HS15 and 10% OA oil. The particle size of these nanoparticles was 139.2 nm, with a zeta potential of -18 mV, loading efficiency of 34.2%, release efficiency after 2 hours of the release test was 72.6%, and crystallinity was 0.63%. The galactosylated NLCs of 5-FU were cytotoxic on the HepG(2) cell line in a half concentration of 5-FU and seems promising in reducing 5-FU dose in HCC.  相似文献   

8.
Poly(ethylene glycol) (PEG) conjugates of Dicer-substrate small interfering RNA (DsiRNA) have been prepared to investigate a new siRNA release strategy. 3'-sense or 5'-antisense thiol-modified, blunt-ended DsiRNAs, inhibiting enhanced green fluorescent protein (eGFP) expression, were covalently conjugated to PEG with varying molecular weights (2, 10, and 20 kg/mol) through a stable thioether bond using a Michael addition reaction. The DsiRNA conjugates with 2 kg/mol PEG (both 3'-sense or 5'-antisense strand conjugated) and the 10 kg/mol PEG conjugated to the 3'-sense strand of DsiRNA were efficiently cleaved by recombinant human Dicer to 21-mer siRNA, as determined by gel electrophoresis. Importantly, 2 and 10 kg/mol PEG conjugated to the 3'-sense strand of DsiRNA showed potent gene silencing activity in human neuroblastoma (SH-EP) cells, stably expressing eGFP, at both the mRNA and protein levels. Moreover, the 10 kg/mol PEG conjugates of the 3'-sense strand of DsiRNA were less immunogenic when compared with the unmodified DsiRNA, determined via an immune stimulation assay on human peripheral blood mononuclear cells.  相似文献   

9.
The aim of the present study was to design a targeted delivery system of 5-fluorouracil (5-FU) for hepatocellular carcinoma (HCC). Lactobionic acid (LB) was conjugated to stearyl amine (SA) by a chemical reaction. The nanostructured lipid carriers (NLCs), containing LB conjugate, lecithin, glyceryl monostearate, oil [oleic acid (OA) or Labrafac 5 or 10%], and 5-FU, were dissolved in alcohol/acetone, the oil phase was added to the aqueous phase containing Tween 80 or Solutol® HS15 (0.25 or 0.5%), and NLCs were prepared by an emulsification-solvent diffusion method. Physical properties and drug release were studied in NLCs. The thiazolyl blue tetrazolium bromide assay was used to study the cytotoxicity of NLCs on HepG2 cells, and the cellular uptake of NLCs was determined by flow cytometry. Fourier transform infrared spectroscopy and 1H-NMR spectra confirmed the successful conjugation of LB and SA. The optimized NLCs consisted of 0.5% Solutol HS15 and 10% OA oil. The particle size of these nanoparticles was 139.2 nm, with a zeta potential of –18 mV, loading efficiency of 34.2%, release efficiency after 2 hours of the release test was 72.6%, and crystallinity was 0.63%. The galactosylated NLCs of 5-FU were cytotoxic on the HepG2 cell line in a half concentration of 5-FU and seems promising in reducing 5-FU dose in HCC.  相似文献   

10.
Conjugation of truncated recombinant staphylokinase (trSak) with polyethylene glycol (PEG) is an effective way to overcome its short plasma half-life and enhance its therapeutic potential. However, conventional amine directed PEGylation chemistry inevitably led to modification at its functionally important N terminus, which resulted in a significantly reduced bioactivity of trSak. In this study, a novel solid phase PEGylation process was developed to shield the N-terminal region of the protein from PEGylation. The process was achieved by oriented adsorption of an N-terminally His-tagged trSak (His-trSak) onto an immobilized metal-ion affinity chromatography (IMAC). His-trSak was efficiently separated and retained on IMAC media before reaction with succinimidyl carbonate mPEG (SC-mPEG, 5, 10 or 20 kDa). The IMAC derived mono-PEGylated His-trSak showed structural and stability properties similar to the liquid phase derived conjugate. However, isoelectric focusing electrophoresis analysis revealed that mono-PEGylated His-trSaks via solid phase PEGylation were more homogeneous than those from liquid phase PEGylation. Moreover, tryptic peptide mapping analysis suggested that a complete N-terminal blockage of IMAC bound His-trSak from PEGylation with 10 kDa- and 20 kDa-SC-mPEG. In contrast, only partial protection of the N-terminal region was obtained for 5 kDa-SC-mPEG. Bioactivities of 10 kDa- and 20 kDa-PEG-His-trSak conjugates without N-terminal PEGylation were significantly higher than those of randomly PEGylated products. This further demonstrated the advantage of our new on-column PEGylation strategy.  相似文献   

11.
The experimental conditions for the preparation of conjugates of ovalbumin (OA) and monomethoxypolyethylene glycol (mPEG) of a preselected average degree of conjugation, n, using cyanuric chloride as the coupling agent, have been investigated with emphasis on purification and characterization of the products. These conjugates served as prototypes of tolerogenic mPEG derivatives of antigenic proteins which were capable of suppressing in mammals the immunological response to the corresponding unmodified antigens. In other studies in this laboratory, the tolerogenicity of OA(mPEG)n conjugates was found to be a function of n. The reproducibility of the reaction leading to the production of OA(mPEG)n conjugates was shown to depend primarily on the reactivity of the mPEG-cyanuric chloride intermediate, which--for best results--had to be synthesized under completely anhydrous conditions. Isolation of the OA(mPEG)n conjugates was optimized by the use of ion-exchange chromatography whereby rapid removal of large amounts of uncoupled intermediate from the conjugate was achieved; the conditions of fractionation were affected by the degree of conjugation. This method of purification was superior to dialysis, ultrafiltration, and gel filtration. Furthermore, by the application of analytical hydrophobic interaction HPLC it was possible to differentiate among conjugates of different degrees of conjugation and to establish the absence of any detectable free OA in any of the preparations. The quantity of mPEG in the conjugates was determined directly by NMR.  相似文献   

12.
A series of methoxy poly(ethylene glycol)-succinyl-5'-O-zidovudine conjugates (mPEG-succinyl-AZT) with different molecular weight (M(w): 750 Da, 2, 5 or 10 kDa) of mPEG were synthesized and characterized by Fourier transform infrared (FTIR) spectroscopy, (1)H nuclear magnetic resonance ((1)H NMR) spectroscopy, and matrix-assisted laser desorption/ionization time of flight mass (MALDI TOF MS) spectrometry analysis. All conjugates showed good stability in vitro release experiments, and good anti-HIV activity and low cytotoxicity in MT-4 cells, in which, mPEG(750)-succinyl-AZT exhibited good inhibition to wild-type viruses (strains IIIB and ROD) with EC(50) values of 0.11 and 0.090 μmol/L, respectively, and it showed no cytotoxicity up to 110 μmol/L. Oral pharmacokinetic study in rats showed the half-life time (T(1/2)) of all conjugates are prolonged compared to free AZT. Especially, mPEG(750)-succinyl-AZT displayed a ~2.3-fold prolonged half-life and approximately 224% increased bioavailability of AZT.  相似文献   

13.
This paper investigates the adsorption of bovine serum albumin (BSA) and bovine hemoglobin (BHb) model proteins onto novel thymine-functionalized polystyrene (PS-VBT) microspheres, in comparison with polystyrene (PS) microspheres. Maximum adsorption was obtained for both proteins near their corresponding isoelectric points (pI at pH = 4.7 for BSA and 7.1 for BHb). FTIR and adsorption isotherm analysis demonstrated that, although both proteins were physisorbed onto PS through nonspecific hydrophobic interactions, adsorption onto the functionalized copolymers occurred by both physisorption and chemisorption via hydrogen bonding. FTIR analysis also indicated conformational changes in the secondary structure of BSA and BHb adsorbed onto PS, whereas little or no conformation change was seen in the case of adsorption onto PS-VBT. Atomic force microscopy (AFM), consistent with the isotherm results, also demonstrated monolayer adsorption for both proteins. AFM images of BSA adsorbed onto copolymers with 20 mol % surface VBT loading showed exclusively end-on orientation. Adsorption onto copolymers with lower functionality showed mixed end-on and side-on orientation modes of BSA, and only the side-on orientation was observed on PS. The AFM results agreed well with theoretically calculated and experimentally obtained adsorption capacities. AFM together with calculated and observed adsorption capacity data for BHb indicated that this protein might be highly compressed on the copolymer surface. Adsorption from a binary mixture of BSA and BHb onto PS-VBT showed good separation at pH=7.0; approximately 90% of the adsorbed protein was BHb. The novel copolymers have potential applications in biotechnology.  相似文献   

14.
Chitosan-N-trimethylaminoethylmethacrylate chloride (CS-TM) copolymers with different quaternization degrees (DQ, 30 and 50%) were synthesized and further modified with methoxypoly(ethylene glycol) (mPEG) of different molecular weights (MW, 2 and 5 kDa). The hydrophilicity of the resulting copolymers was significantly increased as evidenced by decreased contact angles. PEGylation with higher mPEG MW could significantly reduce the hemolytic potential, protein adsorption, cytotoxicity and intestinal mucosal damage of CS-TM (DQ of 50%, CS-TM50). PEGylation resulted in a considerable increase in the release of reducing sugars following 84-day lysozyme-catalyzed degradation, and an increase in mPEG MW led to a faster degradation of CS-TM50. The antioxidant activity of CS-TM50 was superior to that of PEGylated CS-TM50, exhibiting dose-dependent reducing power and lipid peroxidation inhibition effect. In conclusion, quaternization and subsequent PEGylation of CS with rational modification degree of its free amino group will be a potential strategy for the development of biocompatible and biodegradable CS derivatives.  相似文献   

15.
A novel thermosensitive macromolecular prodrug of 5-fluorouracil (5-FU) was synthesized using cyclotriphosphazene, and its thermosensitivity, degradability, and in vitro antitumor activity were studied. A series of alpha-substituted glycine derivatives of 5-FU containing carboxylic groups were prepared, and cyclotriphosphazenes with amino groups were synthesized via the stepwise substitution of hexachlorocyclotriphosphazene (NPCl(2))(3) with methoxy-poly(ethylene glycol) (MPEG) or alkoxy ethylene oxide and lysine ethyl ester (LysOEt). The coupling reaction of the two derivatives, and their subsequent deprotection, yielded a thermosenstive 5-FU-cyclotriphosphazene conjugate, which exhibited a unique octopus-shaped molecular structure, in which the three hydrophilic PEG groups (or alkoxy ethylene oxides) were oriented in one direction, opposing the other three hydrophobic groups containing 5-FU, with respect to the trimer ring plane. This conjugate exhibited a reversible and thermosensitive phase transition in an aqueous medium, from soluble to insoluble states. The lower critical solution temperature (LCST) of the conjugate was controlled by substitution with different hydrophilic/hydrophobic side groups, and a few of the conjugates displayed LCSTs which were just below body temperature. This, of course, implies possible applications for local drug delivery by direct intratumoral injection. The conjugate exhibited gradual degradation at 37 degrees C in both neutral and acidic buffer solutions, and high temperature significantly facilitated its hydrolytic degradation. All of the conjugates displayed dose-dependent cytotoxicity against the leukemia L1210 cell line and exhibited more pronounced cytotoxic effects than did 5-FU.  相似文献   

16.
The adsorption of human immunoglobulin G (hIgG) and bovine serum albumin (BSA) on cellulose supports were investigated. The dynamics and extent of related adsorption processes were monitored by surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D). Amine groups were installed on the cellulose substrate by adsorption of chitosan from aqueous solution, which allowed for hIgG to physisorb from acid media and produced a functionalized substrate with high surface density (10 mg/m(2)). hIgG adsorption from neutral and alkaline conditions was found to yield lower adsorbed amounts. The installation of the carboxyl groups on cellulose substrate via carboxymethylated cellulose (CMC) adsorption from aqueous solution enhanced the physisorption of hIgG at acidic (adsorbed amount of 5.6 mg/m(2)) and neutral conditions. hIgG adsorption from alkaline conditions reduced the surface density. BSA was used to examine protein attachment on cellulose after modification with chitosan or carboxymethyl cellulose. At the isoelectric point of BSA (pI 5), both of the surface modifications enhanced the adsorption of this protein when compared to that on unmodified cellulose (a 2-fold increase from 1.7 to 3.5 mg/m(2)). At pH 4, the electrostatic interactions favored the adsorption of BSA on the CMC-modified cellulose, revealing the affinity of the system and the possibility of tailoring biomolecule binding by choice of the surface modifier and pH of the medium.  相似文献   

17.
Several novel thiol-reactive clenbuterol analogues were coupled in high yield with bovine serum albumin (BSA). After labelling of unreacted cysteines with maleimide spin label (MiSL), the yield of the coupling reaction was determined by electron paramagnetic resonance (EPR) spectroscopy and spectral analysis. Two spin-probe populations with different mobility states were quantitatively determined. Molecular dynamics was used to model the structure of clenbuterol analogues and spin label conjugated to BSA and recognition of conjugates by anti-clenbuterol antibodies was demonstrated. The recognition of BSA-A, BSA-C and BSA-S conjugates with monoclonal and polyclonal anti-clenbuterol (mCLB-Ab and rCLB-Ab) antibodies was an indication, that chlorine substituents on the aromatic ring of clenbuterol derivatives are not necessary for the binding of antibodies to the conjugates. These results confirmed the importance of the tert-butylamino group as a part of the epitope and contribute to the understanding of the recognition process with anti-clenbuterol antibodies.  相似文献   

18.
Murthy NS  Knox JR 《Biopolymers》2004,74(6):457-466
Two mPEG-modified globular proteins [mPEG: methoxy poly(ethylene glycol)], and their native unmodified forms, were examined by small-angle x-ray scattering to evaluate the extent of their surface hydration. The effects of free and protein-bound mPEG on the hydration shell were modeled with discrete electron density profiles. We show that an mPEG-depleted layer can account for the decrease in the measured radius of gyration R(g) from 34.1 to 31.1 A in native L-asparaginase, and from 32.4 to 31.0 A in native bovine serum albumin (BSA) in mPEG-containing solvents. For mPEG-modified proteins in mPEG-free solvents, we attribute the observed increase in the R(g) over that of the native proteins (approximately 3% in L-asparaginase, and 10% in BSA) to the presence of mPEG on the protein surface. The R(g) of the mPEG-modified proteins in mPEG solutions generally decrease with mPEG concentration. Relative to the corresponding unmodified protein, this decrease in R(g) is much larger in BSA (from 35.6 to 31.2 A) but much smaller (from 34.9 to 34.3 A) in L-asparaginase. From these studies, the thickness of the hydration layer around L-asparaginase and BSA is estimated to be approximately 15 A. Exclusion of polyols from the protein domain could be related to the presence of the hydration shell around the protein.  相似文献   

19.
This study describes the synthesis, characterization, and reactivity of new methoxypoly(ethylene glycol) (mPEG) derivatives containing a thioimidoester reactive group. These activated polymers are able to react with the lysyl epsilon-amino groups of suitable proteins, generating an amidinated linkage and thereby preserving the protein's positive charge. mPEG derivatives of molecular weight 2000 and 5000 Da were used, and two spacer arms were prepared, introducing chains of different lengths between the hydroxyl group of the polymer and the thioimidate group. These mPEG derivatives were used to modify gelonin, a cytotoxic single-chain glycoprotein widely used in preparation of antitumoral conjugates, whose biological activity is strongly influenced by charge modification. The reactivity of mPEG thioimidates toward lysil epsilon-amino groups of gelonin was evaluated, and the results showed an increased degree of derivatization in proportion to the molar excesses of the polymer used and to the length of the alkyl spacer. Further studies showed that the thioimidate reactive is able to maintain gelonin's significant biological activity and immunogenicity. On the contrary, modification of the protein with N-hydroxysuccinimide derivative of mPEG strongly reduces the protein's cytotoxic activity. Evaluation of the pharmacokinetic behavior of native and PEG-grafted gelonin showed a marked increase in plasma half-life after protein PEGylation; in particular, the circulating life of the conjugates increased with increased molecular weight of the polymer used. The biodistribution test showed lower organ uptake after PEGylation, in particular by the liver and spleen.  相似文献   

20.
Synthesis of bioadhesive lectin-HPMA copolymer-cyclosporin conjugates   总被引:1,自引:0,他引:1  
An amino group containing cyclosporin A (CsA) derivative has been synthesized and conjugated to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer via an aromatic azo bond, which can be specifically cleaved by azoreductase activity in colon to release the drug for the treatment of colon diseases. Lectins, peanut (Arachis hypogea) agglutinin (PNA) and wheat germ agglutinin (WGA), have been conjugated to HPMA copolymer-CsA derivative conjugates (PCsA), respectively, to give bioadhesive conjugates. The PNA and WGA are the targeting proteins that can bind to diseased colon tissue and healthy tissue, respectively. There were on average four P(CsA) copolymer chains attached on one WGA molecule with a drug content of 16.0 wt % and five P(CsA) copolymer chains attached on one PNA molecule with a drug content of 11.5 wt %. The incubation of a P(CsA) copolymer with the rat cecal contents resulted in the cleavage of the azo bond and release of the cyclosporin derivative. The biological evaluation of the conjugates is under way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号