首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NIAH 1102 strain of Megasphaera elsdenii utilized lactate in preference to glucose when the two substrates were present. Even when lactate was supplied to cells fermenting glucose, the cells switched substrate utilization from glucose to lactate and did not utilize glucose until lactate decreased to a low concentration (1 to 2 mM). Since substrate utilization was shifted gradually without intermittence, typical diauxic growth was not seen. The cyclic AMP content did not rise markedly with the shift in substrate utilization, suggesting that this nucleotide is not involved in the regulation of the shift. It was unlikely that propionate was produced from glucose, which was explicable by the fact that lactate racemase activity dropped rapidly with the exhaustion of lactate and cells actively fermenting glucose did not possess this enzyme. A coculture experiment indicated that M. elsdenii NIAH 1102 is overcome by Streptococcus bovis JB1 in the competition for glucose, mainly because M. elsdenii NIAH 1102 is obliged to utilize lactate produced by S. bovis JB1; i.e., glucose utilization by M. elsdenii NIAH 1102 is suppressed by the coexistence of S. bovis JB1.  相似文献   

2.
Lactate utilization and influx in resting and working rat red muscle   总被引:1,自引:0,他引:1  
1. The behavior of lactate was studied during electrical stimulation and influx was measured under resting conditions of rat soleus muscle. 2. Lactate utilization was measured with (U-14C) lactate and results from electrical stimulation of the soleus muscle present evidence that this substance is mainly oxidized. 3. Under resting conditions, lactate influx showed a saturable transport system with an apparent Km of 11 mM. This low affinity for lactate suggests that lactate transport has a limiting factor for the muscle. 4. The increased lactate utilization under electrical stimulation (1,114 +/- 344 mumol/g/hr, at 20 mM lactate) corresponds to increased lactate permeability as compared to the influx rate (20.81 +/- 1.65 mumol/g/hr at 20 mM lactate) in resting conditions. 5. Alanine, epinephrine or S.I.T.S. 4-amino-4'isothiocyanostilbene-2-2'-disulphonate) do not affect lactate permeability in the soleus muscle.  相似文献   

3.
Lactate accumulation in the medium and glucose utilization decreased during the induction of in vitro differentiation of mouse erythroleukemia (MEL) and human myeloid leukemia (HL-60) cells. The decrease in lactate accumulation occurred as early as 24 h after inducer treatment was initiated and occurred prior to the decrease in glucose utilization. The decrease in lactate accumulation was greater than that predicted by the decrease in glucose utilization, i.e., the ratio of glucose used glycolytically, as measured by lactate accumulation, to glucose used in other pathways ('glycolytic ratio') markedly decreased during differentiation in these cell lines. Differentiation correlated with the abrogation of the high levels of lactate accumulation first described by Warburg as characteristic of some transformed and neoplastic cells. Studies on both parental and differentiation-resistant variant MEL cell lines indicated that the changes in lactate accumulation were not dependent on the changes in glucose utilization and could be dissociated from them. Moreover, the changes in lactate accumulation only occurred in cells able to undergo differentiation-induced terminal cell division. This regulatable expression of lactate accumulation in MEL and HL-60 cells in vitro may make them useful model systems for the elucidation of the molecular mechanisms controlling lactate formation in malignant cells.  相似文献   

4.
We have previously investigated the relative roles of extracellular glucose and lactate as fuels for glutamatergic neurons during synaptic activity. The conclusion from these studies was that cultured glutamatergic neurons utilize glucose rather than lactate during NMDA (N-methyl-d-aspartate)-induced synaptic activity and that lactate alone is not able to support neurotransmitter glutamate homoeostasis. Subsequently, a model was proposed to explain these results at the cellular level. In brief, the intermittent rises in intracellular Ca2+ during activation cause influx of Ca2+ into the mitochondrial matrix thus activating the tricarboxylic acid cycle dehydrogenases. This will lead to a lower activity of the MASH (malate–aspartate shuttle), which in turn will result in anaerobic glycolysis and lactate production rather than lactate utilization. In the present work, we have investigated the effect of an ionomycin-induced increase in intracellular Ca2+ (i.e. independent of synaptic activity) on neuronal energy metabolism employing 13C-labelled glucose and lactate and subsequent mass spectrometric analysis of labelling in glutamate, alanine and lactate. The results demonstrate that glucose utilization is positively correlated with intracellular Ca2+ whereas lactate utilization is not. This result lends further support for a significant role of glucose in neuronal bioenergetics and that Ca2+ signalling may control the switch between glucose and lactate utilization during synaptic activity. Based on the results, we propose a compartmentalized CiMASH (Ca2+-induced limitation of the MASH) model that includes intracellular compartmentation of glucose and lactate metabolism. We define pre- and post-synaptic compartments metabolizing glucose and glucose plus lactate respectively in which the latter displays a positive correlation between oxidative metabolism of glucose and Ca2+ signalling.  相似文献   

5.
Lactate Utilization by Isolated Cells from Early Neonatal Rat Brain   总被引:6,自引:3,他引:3  
The utilization of lactate, glucose, 3-hydroxybutyrate, and glutamine has been studied in isolated brain cells from early newborn rats. Isolated brain cells actively utilized these substrates, showing saturation at concentrations near physiological levels during the perinatal period. The rate of lactate utilization was 2.5-fold greater than that observed for glucose, 3-hydroxybutyrate, or glutamine, suggesting that lactate is the main metabolic substrate for the brain immediately after birth. The apparent Km for glucose utilization suggested that this process is limited by the activity of hexokinase. However, lactate, 3-hydroxybutyrate, and glutamine utilization seems to be limited by their transport through the plasma membrane. The presence of fatty acid-free bovine serum albumin (BSA) in the incubation medium significantly increased the rate of lipogenesis from lactate or 3-hydroxybutyrate, although this was balanced by the decrease in their rates of oxidation in the same circumstances. BSA did not affect the rate of glucose utilization. The effect of BSA was due not to the removal of free fatty acid, but possibly to the binding of long-chain acyl-CoA, resulting in the disinhibition of acetyl-CoA carboxylase and citrate carrier.  相似文献   

6.
1. Starvation did not affect the rates of glucose utilization or lactate formation by guinea-pig cerebral cortex slices. 2. Palmitate (1mm), butyrate (5mm) or acetoacetate (5mm) did not affect glucose utilization or lactate formation by cerebral cortex slices from guinea pigs starved for 48hr. 3. dl-beta-Hydroxybutyrate (10mm) increased the formation of lactate without affecting glucose utilization by cerebral cortex slices from guinea pigs starved for 48hr. This implies that beta-hydroxybutyrate decreased the rate of glucose oxidation. 4. Metabolism of added ketone bodies can account for 20-40% of observed rates of oxygen consumption. 5. Lactate or pyruvate (5mm) decreased the rates of glucose utilization by guinea-pig cerebral cortex slices.  相似文献   

7.
The metabolism of lactate in isolated cells from early neonatal rat brain has been studied. In these circumstances, lactate was mainly oxidized to CO2, although a significant portion was incorporated into lipids (78% sterols, 4% phosphatidylcholine, 2% phosphatidylethanolamine, and 1% phosphatidylserine). The rate of lactate incorporation into CO2 and lipids was higher than those found for glucose and 3-hydroxybutyrate. Lactate strongly inhibited glucose oxidation through the pyruvate dehydrogenase-catalyzed reaction and the tricarboxylic acid cycle while scarcely affecting glucose utilization by the pentose phosphate pathway. Lipogenesis from glucose was strongly inhibited by lactate without relevant changes in the rate of glycerol phosphate synthesis. These results suggest that lactate inhibits glucose utilization at the level of the pyruvate dehydrogenase-catalyzed reaction, which may be a mechanism to spare glucose for glycerol and NADPH synthesis. The effect of 3-hydroxybutyrate inhibiting lactate utilization only at high concentrations of 3-hydroxybutyrate suggests that before ketogenesis becomes active, lactate may be the major fuel for the neonatal brain. (-)-Hydroxycitrate and aminooxyacetate markedly inhibited lipogenesis from lactate, suggesting that the transfer of lactate carbons through the mitochondrial membrane is accomplished by the translocation of both citrate and N-acetylaspartate.  相似文献   

8.
E. coli cells growing on the medium containing glucose and lactate do not utilize lactate. One reason of preferential utilization of glucose is catabolite inhibition of lactate transport. It is necessary for glucose to penetrate into the cell to inhibit lactate transport. Besides glucose the inhibition of the lactate transport is also caused by fructose and by non-metabolized analogue of glucose--alpha-methylglucoside.  相似文献   

9.
The rate of tritium removal from l[3-3H]lactate by hamster liver cells is faster than the analytical rate of lactate utilization, or the rate of 14C disappearance from l[U-14C]lactate, with the result that the 3H/14C ratio in residual lactate from l-[U-14C,3-3H]lactate decreases. However, addition of low concentrations (0.1 to 1.0 mM) of l-cycloserine, a glutamate pyruvate transaminase inhibitor, nearly equalizes the rates of isotope utilization from l-[3-3H]lactate and l-[U-14C]lactate. The results suggest a very limited rate of recycling of phosphoenolpyruvate back to pyruvate during gluconeogenesis from lactate in fasted hamster liver cells.  相似文献   

10.
The metabolic utilization of 14C-labelled acetate, pyruvate, lactate and glucose by isolated epididymal fat-cells was compared in two groups of rats fed ad libitum, one group young and lean (150-200 g body wt.), the other older and spontaneously obese (500-650 g body wt.). The influence of unlabelled glucose (6 mM) and insulin on substrate utilization by adipocytes was also studied. (1) Pyruvate and lactate were found to be good precursors for fatty-acid synthesis in small fat-cells, but not in larger fat-cells. On the other hand, lactate conversion into CO2 and the glycerol moiety of acylglycerols proceeded activity in both types of cells, and in some cases, it even exceeded the rates of glucose utilization. (2) The addition of glucose or glucose plus insulin, but not insulin alone, enhanced the metabolism of acetate, pyruvate and lactate in both types of fat-cells. (3) Fatty-acid synthesis de novo in large fat-cells was markedly decreased regardless of the substrate utilized. These findings point to lactate as a significant precursor for triacylglycerol synthesis in adipocytes. Furthermore, decreased fatty-acid synthesis de novo appears to be an acquired metabolic deficiency of enlarging adipocytes, independent of precursor substrate availability.  相似文献   

11.
《Life sciences》1993,52(3):PL13-PL18
Lactic acidosis has been described in patients with liver disease. Hyperlactacidaemia results from an imbalance in lactate production versus lactate utilization. It is estimated that the liver utilizes approximately 30 percent of the total lactate produced in the body under basal conditions, primarily by gluconeogenesis. The gluconeogenesis from lactate 10 mM and lactacidaemia were determined in order to investigate the effects of CCl4+ethanol administration in liver injury and, the possible effect of colchicine in our experimental fibrosis model. The tests were determined after 15, 30 or 45 days of treatment. The results indicate that the gluconeogenesis was significantly inhibited in both CCl4+ethanol groups and CCl4+ethanol+colchicine groups. By contrast, the lactacidaemia levels were much higher in the CCl4+ethanol groups than the colchicine groups. Summarising, we have documented that hyperlactacidaemia is due to the inhibition of lactate utilization by the isolated hepatocytes in experimental cirrhosis, and that the improvement in lactacidaemia caused by colchicine is not primarily due to an increase in hepatic lactate utilization.  相似文献   

12.
Batch and continuous fermentation studies were performed to optimize the production of ammonium lactate from whey to optimize the production of ammonium lactate from whey permeate. The product known as fermented ammoniated condensed whey permeate (FACWP) is a very promising animal feed. After an initial screening of four strains which produce predominantly L(+)- lactic acid, the desired isomer [D(-)-lactic acid is toxic], Streptococcus cremoris 2487 was chosen for further study. In batch mode, pH between 6.0 and 6.5 and 35 degrees C provided optimum incubation conditions. To stimulate a plug flow reactor, three CSTRs (continuous stirred tank reactors) were connected in tandem. For a 7.5-h retention time, 1.6-fold and 1.3-fold higher productivities were obtained for three-stage than for the single- and two-stage reactors, respectively. Various retentions times were examined (5, 7.5, and 10 h; 5g/L yeast extract). Although maximum lactate productivity occurred at a 5-h residence time (5.38 g/L H. 75% lactose utilization), lactose utilization was more complete at 7.5 h (4.38 g/L h productivity, 91% lactose utilization and a productivity, 91% lactose utilization). Retention time was increased to 15 h to obtain 95.9% lactose utilization and a productivity of 2.42g/L h for 2g/L yeast extract. Based on this lower yeast extract concentration, it was determined that ammonium lactate production and subsequent concentration by 11-fold would yield a product (FACWP) 17% more than soybean meal (crude protein contents are equivalent, 44%) at current market prices.  相似文献   

13.
Abstract An important metabolic capability of Neisseria gonorrhoeae is the utilization of host-derived lactate. Two isoenzymes of the membrane-associated, pyridine dinucleotide-independent type of lactate dehydrogenase (iLDH) participate in lactate assimilation, but exhibit distinctive properties. Isoenzyme iLDH-I utilized lactate exclusively as substrate, exhibiting a preference for the D-isomer. In contrast, isoenzyme iLDH-II exhibited broad substrate specificity (lactate, phenyllactate, and 4-hydroxyphenyllactate), but was stereospecific for the L-isomers. These results explain the difficulty in isolating mutants unable to utilize lactate.  相似文献   

14.
Diauxic Growth of Propionibacterium shermanii   总被引:4,自引:1,他引:3       下载免费PDF全文
Propionibacterium shermanii has been anaerobically propagated in batch and continuous culture with glucose and/or lactate as energy source. Specific growth rate on lactate was observed to be the same as that on glucose. In terms of cell density, the yield on glucose is higher than the yield on lactate. But the molar ratio of yield on glucose to that on lactate, 8.35, is in good agreement with the theoretical value of 8. In a mixture of glucose and lactate, P. shermanii showed diauxic growth. It used lactate before glucose utilization began. Neither temporary growth cessation nor two distinct growth phases were observed. A mathematical model is proposed to describe the diauxic growth.  相似文献   

15.
Five strains of Propionibacterium freudenreichii subsp. shermanii utilized the l-(+) isomer of lactate at a faster rate than they did the d-(-) isomer when grown with a mixture of lactate isomers under a variety of conditions. ATCC 9614, grown anaerobically in defined medium containing 160 mM dl-lactate, utilized only 4 and 15% of the d-(-)-lactate by the time 50 and 90%, respectively, of the l-(+)-lactate was used. The intracellular pyruvate concentration was high (>100 mM) in the initial stages of lactate utilization, when either dl-lactate or the l-(+) isomer was the starting substrate. The concentration of this intermediate dropped during dl-lactate fermentation such that when only d-(-)-lactate remained, the concentration was <20 mM. When only the d-(-) isomer was initially present, a similar relatively low concentration of intracellular pyruvate was present, even at the start of lactate utilization. The NAD-independent lactate dehydrogenase activities in extracts showed different kinetic properties with regard to pyruvate inhibition, depending upon the lactate isomer present. Pyruvate gave a competitive inhibitor pattern with l-(+)-lactate and a mixed-type inhibitor pattern with d-(-)-lactate. It is suggested that these properties of the lactate dehydrogenases and the intracellular pyruvate concentrations explain the preferential use of the l-(+) isomer.  相似文献   

16.
Skeletal muscle can utilize many different substrates, and traditional methodologies allow only indirect discrimination between oxidative and nonoxidative uptake of substrate, possibly with contamination by metabolism of other internal organs. Our goal was to apply 1H- and 13C-nuclear magnetic resonance spectroscopy to monitor the patterns of [3-13C]lactate and [1,2-13C]acetate (model of simple carbohydrates and fats, respectively) utilization in resting vs. contracting muscle extracts of the isolated perfused rat hindquarter. Total metabolite concentrations were measured by using NADH-linked fluorometric assays. Fractional oxidation of [3-13C]lactate was unchanged by contraction despite vascular endogenous lactate accumulation. Although label accumulated in several citric acid cycle (CAC) intermediates, contraction did not increase the concentration of CAC intermediates in any muscle extracts. We conclude that 1) the isolated rat hindquarter is a viable, well-controlled model for measuring skeletal muscle 13C-labeled substrate utilization; 2) lactate is readily oxidized even during contractile activity; 3) entry and exit from the CAC, via oxidative and nonoxidative pathways, is a component of normal muscle metabolism and function; and 4) there are possible differences between gastrocnemius and soleus muscles in utilization of nonoxidative pathways.  相似文献   

17.
The present study was to determine the effect of strenuous exercise on glucose utilization, lactate accumulation and small intestinal transit (SIT). In strenuous exercises, rats would be put on the runway of a moving treadmill for a one-hour compulsive running. Rats first performed running treadmill for 45 min. After orogastric feeding of radiochromium marker, they resumed running for additional 15 min until sacrifice to measure SIT. Saline and various doses of glucose and lactate were infused through previously placed jugular vein during the whole procedure. Blood was finally obtained to measure plasma glucose and lactate levels. Saline infusion had no effect on running rat SIT during strenuous exercise, but plasma glucose level was significantly lowered (P < 0.01). Infusion of various doses of glucose did not alter SIT during strenuous exercise; however, the initially lowered plasma glucose was restored even to a hyperglycemic state. Meanwhile, strenuous running markedly increased plasma lactate level, irrespectively of saline or glucose infusion (P < 0.01). Lactate infusion did not change rat SIT obtained on the quiet runways. In conclusion, rat SIT remained unchanged in the strenuous exercise although obvious hypoglycemia and higher plasma lactate level did exist. Glucose utilization and lactate accumulation after the strenuous exercise may not directly mediate small intestinal motility.  相似文献   

18.
When unacclimatized lowlanders exercise at high altitude, blood lactate concentration rises higher than at sea level, but lactate accumulation is attenuated after acclimatization. These responses could result from the effects of acute and chronic hypoxia on beta-adrenergic stimulation. In this investigation, the effects of beta-adrenergic blockade on blood lactate and other metabolites were studied in lowland residents during 30 min of steady-state exercise at sea level and on days 3, 8, and 20 of residence at 4300 m. Starting 3 days before ascent and through day 15 at high altitude, six men received propranolol (80 mg three times daily) and six received placebo. Plasma lactate accumulation was reduced in propranolol- but not placebo-treated subjects during exercise on day 3 at high altitude compared to sea-level exercise of the same percentage maximal oxygen uptake (VO2max). Plasma lactate accumulation exercise on day 20 at high altitude was reduced in both placebo- and propranolol-treated subjects compared to exercise of the same percentage VO2max performed at sea level. The blunted lactate accumulation during exercise on day 20 at high altitude was associated with reduced muscle glycogen utilization. Thus, increased plasma lactate accumulation in unacclimatized lowlanders exercising at high altitude appears to be due to increased beta-adrenergic stimulation. However, acclimatization-induced changes in muscle glycogen utilization and plasma lactate accumulation are not adaptations to chronically increased beta-adrenergic activity.  相似文献   

19.
The net uptake/release of glucose, lactate and amino acids from the bloodstream by the interscapular brown adipose tissue of control, cold-exposed and cold-acclimated rats was estimated by measurement of arteriovenous differences in their concentrations. In the control animals amino acids contributed little to the overall energetic needs of the tissue; glucose uptake was more than compensated by lactate efflux. Cold-exposure resulted in an enhancement of amino acid utilization and of glucose uptake, with high lactate efflux. There was a net glycine and proline efflux that partly compensated the positive nitrogen balance of the tissue; amino acids accounted for about one-third of the energy supplied by glucose to the tissue. Cold-acclimation resulted in a very high increase in glucose uptake, with a parallel decrease in lactate efflux and amino acid consumption. Branched-chain amino acids, however, were more actively utilized. This was related with a much higher alanine efflux, in addition to that of glycine and proline. It is suggested that most of the glucose used during cold-exposure is returned to the bloodstream as lactate under conditions of active lipid utilization, amino acids contributing their skeletons largely in anaplerotic pathways. On the other hand, cold-acclimation resulted in an important enhancement of glucose utilization, with lowered amino acid oxidation. Amino acids are thus used as metabolic substrates by the brown adipose tissue of rats under conditions of relatively scarce substrate availability, but mainly as anaplerotic substrates, in parallel to glucose. Cold-acclimation results in a shift of the main substrates used in thermogenesis from lipid to glucose, with a much lower need for amino acids.  相似文献   

20.
C Gao  C Hu  C Ma  F Su  H Yu  T Jiang  P Dou  Y Wang  T Qin  M Lv  P Xu 《Journal of bacteriology》2012,194(17):4751-4752
Pseudomonas aeruginosa XMG, isolated from soil, utilizes lactate. Here we present a 6.45-Mb assembly of its genome sequence. Besides the lactate utilization mechanism of the strain, the genome sequence may also provide other useful information related to P. aeruginosa, such as identifying genes involved in virulence, drug resistance, and aromatic catabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号