共查询到20条相似文献,搜索用时 15 毫秒
1.
Gardner JM Smoyer CJ Stensrud ES Alexander R Gogol M Wiegraebe W Jaspersen SL 《The Journal of cell biology》2011,193(3):489-507
Understanding the relationship between chromatin and proteins at the nuclear periphery, such as the conserved SUN family of inner nuclear membrane (INM) proteins, is necessary to elucidate how three-dimensional nuclear architecture is established and maintained. We found that the budding yeast SUN protein Mps3 directly binds to the histone variant H2A.Z but not other histones. Biochemical and genetic data indicate that the interaction between Mps3 and H2A.Z requires the Mps3 N-terminal acidic domain and unique sequences in the H2A.Z N terminus and histone-fold domain. Analysis of binding-defective mutants showed that the Mps3-H2A.Z interaction is not essential for any previously described role for either protein in nuclear organization, and multiple lines of evidence suggest that Mps3-H2A.Z binding occurs independently of H2A.Z incorporation into chromatin. We demonstrate that H2A.Z is required to target a soluble Mps3 fragment to the nucleus and to localize full-length Mps3 in the INM, indicating that H2A.Z has a novel chromatin-independent function in INM targeting of SUN proteins. 相似文献
2.
The overexpression of a Saccharomyces cerevisiae centromeric histone H3 variant mutant protein leads to a defect in kinetochore biorientation 下载免费PDF全文
Chromosomes segregate using their kinetochores, the specialized protein structures that are assembled on centromeric DNA and mediate attachment to the mitotic spindle. Because centromeric sequences are not conserved, centromere identity is propagated by an epigenetic mechanism. All eukaryotes contain an essential histone H3 variant (CenH3) that localizes exclusively to centromeres. Because CenH3 is required for kinetochore assembly and is likely to be the epigenetic mark that specifies centromere identity, it is critical to elucidate the mechanisms that assemble and maintain CenH3 exclusively at centromeres. To learn more about the functions and regulation of CenH3, we isolated mutants in the budding yeast CenH3 that are lethal when overexpressed. These CenH3 mutants fall into three unique classes: (I) those that localize to euchromatin but do not alter kinetochore function, (II) those that localize to the centromere and disrupt kinetochore function, and (III) those that no longer target to the centromere but still disrupt chromosome segregation. We found that a class III mutant is specifically defective in the ability of sister kinetochores to biorient and attach to microtubules from opposite spindle poles, indicating that CenH3 mutants defective in kinetochore biorientation can be obtained. 相似文献
3.
Lars Boeckmann Yoshimitsu Takahashi Wei-Chun Au Prashant K. Mishra John S. Choy Anthony R. Dawson May Y. Szeto Timothy J. Waybright Christopher Heger Christopher McAndrew Paul K. Goldsmith Timothy D. Veenstra Richard E. Baker Munira A. Basrai 《Molecular biology of the cell》2013,24(12):2034-2044
The centromeric histone H3 variant (CenH3) is essential for chromosome segregation in eukaryotes. We identify posttranslational modifications of Saccharomyces cerevisiae CenH3, Cse4. Functional characterization of cse4 phosphorylation mutants shows growth and chromosome segregation defects when combined with kinetochore mutants okp1 and ame1. Using a phosphoserine-specific antibody, we show that the association of phosphorylated Cse4 with centromeres increases in response to defective microtubule attachment or reduced cohesion. We determine that evolutionarily conserved Ipl1/Aurora B contributes to phosphorylation of Cse4, as levels of phosphorylated Cse4 are reduced at centromeres in ipl1 strains in vivo, and in vitro assays show phosphorylation of Cse4 by Ipl1. Consistent with these results, we observe that a phosphomimetic cse4-4SD mutant suppresses the temperature-sensitive growth of ipl1-2 and Ipl1 substrate mutants dam1 spc34 and ndc80, which are defective for chromosome biorientation. Furthermore, cell biology approaches using a green fluorescent protein–labeled chromosome show that cse4-4SD suppresses chromosome segregation defects in dam1 spc34 strains. On the basis of these results, we propose that phosphorylation of Cse4 destabilizes defective kinetochores to promote biorientation and ensure faithful chromosome segregation. Taken together, our results provide a detailed analysis, in vivo and in vitro, of Cse4 phosphorylation and its role in promoting faithful chromosome segregation. 相似文献
4.
We have developed a fast and reliable purification protocol to obtain yeast nuclei in intact and pure form and in a reasonable yield. The purified nuclei appear homogeneous at the light and electron microscopic level, are highly enriched in the nuclear marker histone H2B and devoid of mitochondrial, vacuolar and cytosolic marker proteins. On sodium dodecyl sulfate (SDS)-polyacrylamide gels, the nuclear fraction contains unique proteins which distinguishes them from the major yeast subcellular fractions. Yeast nuclei were separated by detergent/salt extraction into soluble, insoluble and membrane fractions. Antibodies raised against subnuclear fractions lead to the identification of an integral nuclear membrane protein and a high-abundance 38-kDa protein which is located in the yeast nucleolus. 相似文献
5.
Genome-wide synthetic lethal screens identify an interaction between the nuclear envelope protein, Apq12p, and the kinetochore in Saccharomyces cerevisiae 下载免费PDF全文
Montpetit B Thorne K Barrett I Andrews K Jadusingh R Hieter P Measday V 《Genetics》2005,171(2):489-501
The maintenance of genome stability is a fundamental requirement for normal cell cycle progression. The budding yeast Saccharomyces cerevisiae is an excellent model to study chromosome maintenance due to its well-defined centromere and kinetochore, the region of the chromosome and associated protein complex, respectively, that link chromosomes to microtubules. To identify genes that are linked to chromosome stability, we performed genome-wide synthetic lethal screens using a series of novel temperature-sensitive mutations in genes encoding a central and outer kinetochore protein. By performing the screens using different mutant alleles of each gene, we aimed to identify genetic interactions that revealed diverse pathways affecting chromosome stability. Our study, which is the first example of genome-wide synthetic lethal screening with multiple alleles of a single gene, demonstrates that functionally distinct mutants uncover different cellular processes required for chromosome maintenance. Two of our screens identified APQ12, which encodes a nuclear envelope protein that is required for proper nucleocytoplasmic transport of mRNA. We find that apq12 mutants are delayed in anaphase, rereplicate their DNA, and rebud prior to completion of cytokinesis, suggesting a defect in controlling mitotic progression. Our analysis reveals a novel relationship between nucleocytoplasmic transport and chromosome stability. 相似文献
6.
Identification of the fifth subunit of Saccharomyces cerevisiae replication factor C. 总被引:2,自引:0,他引:2 下载免费PDF全文
Yeast replication factor C (RF-C) is a multipolypeptide complex required for chromosomal DNA replication. Previously this complex was known to consist of at least four subunits. We here report the identification of a fifth RF-C subunit from Saccharomyces cerevisiae, encoded by the RFC5 (YBR0810) gene. This subunit exhibits highest homology to the 38 kDa subunit (38%) of human RF-C (activator 1). Like the other four RFC genes, the RFC5 gene is essential for yeast viability, indicating an essential function for each subunit. RFC5 mRNA is expressed at steady-state levels throughout the mitotic cell cycle. Upon overexpression in Escherichia coli Rfc5p has an apparent molecular mass of 41 kDa. Overproduction of RF-C activity in yeast is dependent on overexpression of the RFC5 gene together with overexpression of the RFC1-4 genes, indicating that the RFC5 gene product forms an integral subunit of this replication factor. 相似文献
7.
Characterization of the five replication factor C genes of Saccharomyces cerevisiae. 总被引:11,自引:1,他引:11 下载免费PDF全文
Replication factor C (RFC) is a five-subunit DNA polymerase accessory protein that functions as a structure-specific, DNA-dependent ATPase. The ATPase function of RFC is activated by proliferating cell nuclear antigen. RFC was originally purified from human cells on the basis of its requirement for simian virus 40 DNA replication in vitro. A functionally homologous protein complex from Saccharomyces cerevisiae, called ScRFC, has been identified. Here we report the cloning, by either peptide sequencing or by sequence similarity to the human cDNAs, of the S. cerevisiae genes RFC1, RFC2, RFC3, RFC4, and RFC5. The amino acid sequences are highly similar to the sequences of the homologous human RFC 140-, 37-, 36-, 40-, and 38-kDa subunits, respectively, and also show amino acid sequence similarity to functionally homologous proteins from Escherichia coli and the phage T4 replication apparatus. All five subunits show conserved regions characteristic of ATP/GTP-binding proteins and also have a significant degree of similarity among each other. We have identified eight segments of conserved amino acid sequences that define a family of related proteins. Despite their high degree of sequence similarity, all five RFC genes are essential for cell proliferation in S. cerevisiae. RFC1 is identical to CDC44, a gene identified as a cell division cycle gene encoding a protein involved in DNA metabolism. CDC44/RFC1 is known to interact genetically with the gene encoding proliferating cell nuclear antigen, confirming previous biochemical evidence of their functional interaction in DNA replication. 相似文献
8.
Replication factor C (RFC) catalyzes assembly of circular proliferating cell nuclear antigen clamps around primed DNA, enabling processive synthesis by DNA polymerase during DNA replication and repair. In order to perform this function efficiently, RFC must rapidly recognize primed DNA as the substrate for clamp assembly, particularly during lagging strand synthesis. Earlier reports as well as quantitative DNA binding experiments from this study indicate, however, that RFC interacts with primer-template as well as single- and double-stranded DNA (ssDNA and dsDNA, respectively) with similar high affinity (apparent K(d) approximately 10 nm). How then can RFC distinguish primed DNA sites from excess ssDNA and dsDNA at the replication fork? Further analysis reveals that despite its high affinity for various DNA structures, RFC selects primer-template DNA even in the presence of a 50-fold excess of ssDNA and dsDNA. The interaction between ssDNA or dsDNA and RFC is far less stable than between primed DNA and RFC (k(off) > 0.2 s(-1) versus 0.025 s(-1), respectively). We propose that the ability to rapidly bind and release single- and double-stranded DNA coupled with selective, stable binding to primer-template DNA allows RFC to scan DNA efficiently for primed sites where it can pause to initiate clamp assembly. 相似文献
9.
Identification of replication factor C from Saccharomyces cerevisiae: a component of the leading-strand DNA replication complex. 总被引:15,自引:5,他引:15 下载免费PDF全文
A number of proteins have been isolated from human cells on the basis of their ability to support DNA replication in vitro of the simian virus 40 (SV40) origin of DNA replication. One such protein, replication factor C (RFC), functions with the proliferating cell nuclear antigen (PCNA), replication protein A (RPA), and DNA polymerase delta to synthesize the leading strand at a replication fork. To determine whether these proteins perform similar roles during replication of DNA from origins in cellular chromosomes, we have begun to characterize functionally homologous proteins from the yeast Saccharomyces cerevisiae. RFC from S. cerevisiae was purified by its ability to stimulate yeast DNA polymerase delta on a primed single-stranded DNA template in the presence of yeast PCNA and RPA. Like its human-cell counterpart, RFC from S. cerevisiae (scRFC) has an associated DNA-activated ATPase activity as well as a primer-template, structure-specific DNA binding activity. By analogy with the phage T4 and SV40 DNA replication in vitro systems, the yeast RFC, PCNA, RPA, and DNA polymerase delta activities function together as a leading-strand DNA replication complex. Now that RFC from S. cerevisiae has been purified, all seven cellular factors previously shown to be required for SV40 DNA replication in vitro have been identified in S. cerevisiae. 相似文献
10.
11.
Friederichs JM Ghosh S Smoyer CJ McCroskey S Miller BD Weaver KJ Delventhal KM Unruh J Slaughter BD Jaspersen SL 《PLoS genetics》2011,7(11):e1002365
The budding yeast spindle pole body (SPB) is anchored in the nuclear envelope so that it can simultaneously nucleate both nuclear and cytoplasmic microtubules. During SPB duplication, the newly formed SPB is inserted into the nuclear membrane. The mechanism of SPB insertion is poorly understood but likely involves the action of integral membrane proteins to mediate changes in the nuclear envelope itself, such as fusion of the inner and outer nuclear membranes. Analysis of the functional domains of the budding yeast SUN protein and SPB component Mps3 revealed that most regions are not essential for growth or SPB duplication under wild-type conditions. However, a novel dominant allele in the P-loop region, MPS3-G186K, displays defects in multiple steps in SPB duplication, including SPB insertion, indicating a previously unknown role for Mps3 in this step of SPB assembly. Characterization of the MPS3-G186K mutant by electron microscopy revealed severe over-proliferation of the inner nuclear membrane, which could be rescued by altering the characteristics of the nuclear envelope using both chemical and genetic methods. Lipid profiling revealed that cells lacking MPS3 contain abnormal amounts of certain types of polar and neutral lipids, and deletion or mutation of MPS3 can suppress growth defects associated with inhibition of sterol biosynthesis, suggesting that Mps3 directly affects lipid homeostasis. Therefore, we propose that Mps3 facilitates insertion of SPBs in the nuclear membrane by modulating nuclear envelope composition. 相似文献
12.
P M Burgers 《The Journal of biological chemistry》1991,266(33):22698-22706
Lag times in DNA synthesis by DNA polymerase delta holoenzyme were due to ATP-mediated formation of an initiation complex on the primed DNA by the polymerase with the proliferating cell nuclear antigen (PCNA) and replication factor C (RF-C). Lag time analysis showed that high affinity binding of RF-C to the primer terminus required PCNA and that this complex was recognized by the polymerase. The formation of stable complexes was investigated through their isolation by Bio-Gel A-5m filtration. A stable complex of RF-C and PCNA on primed single-stranded mp18 DNA was isolated when these factors were preincubated with the DNA and with ATP, or, less efficiently with ATP gamma S. These and additional experiments suggest that ATP binding promotes the formation of a labile complex of RF-C with PCNA at the primer terminus, whereas its hydrolysis is required to form a stable complex. Subsequently, DNA polymerase delta binds to either complex in a replication competent fashion without further energy requirement. DNA polymerase epsilon did not associate stably with RF-C and PCNA onto the DNA, but its transient participation with these cofactors into a holoenzyme-like initiation complex was inferred from its kinetic properties and replication product analysis. The kinetics of the elongation phase at 30 degrees, 110 nucleotides/s by DNA polymerase delta holoenzyme and 50 nucleotides/s by DNA polymerase epsilon holoenzyme, are in agreement with in vivo rates of replication fork movement in yeast. A model for the eukaryotic replication fork involving both DNA polymerase delta and epsilon is proposed. 相似文献
13.
Saccharomyces cerevisiae MPS2 encodes a membrane protein localized at the spindle pole body and the nuclear envelope. 下载免费PDF全文
M C Mu?oz-Centeno S McBratney A Monterrosa B Byers C Mann M Winey 《Molecular biology of the cell》1999,10(7):2393-2406
The MPS2 (monopolar spindle two) gene is one of several genes required for the proper execution of spindle pole body (SPB) duplication in the budding yeast Saccharomyces cerevisiae (). We report here that the MPS2 gene encodes an essential 44-kDa protein with two putative coiled-coil regions and a hydrophobic sequence. Although MPS2 is required for normal mitotic growth, some null strains can survive; these survivors exhibit slow growth and abnormal ploidy. The MPS2 protein was tagged with nine copies of the myc epitope, and biochemical fractionation experiments show that it is an integral membrane protein. Visualization of a green fluorescent protein (GFP) Mps2p fusion protein in living cells and indirect immunofluorescence microscopy of 9xmyc-Mps2p revealed a perinuclear localization with one or two brighter foci of staining corresponding to the SPB. Additionally, immunoelectron microscopy shows that GFP-Mps2p localizes to the SPB. Our analysis suggests that Mps2p is required as a component of the SPB for insertion of the nascent SPB into the nuclear envelope. 相似文献
14.
The RFC2 gene encoding a subunit of replication factor C of Saccharomyces cerevisiae. 总被引:7,自引:2,他引:5 下载免费PDF全文
V Noskov S Maki Y Kawasaki S H Leem B Ono H Araki Y Pavlov A Sugino 《Nucleic acids research》1994,22(9):1527-1535
Replication Factor C (RF-C) of Saccharomyces cerevisiae is a complex that consists of several different polypeptides ranging from 120- to 37 kDa (Yoder and Burgers, 1991; Fien and Stillman, 1992), similar to human RF-C. We have isolated a gene, RFC2, that appears to be a component of the yeast RF-C. The RFC2 gene is located on chromosome X of S. cerevisiae and is essential for cell growth. Disruption of the RFC2 gene led to a dumbbell-shaped terminal morphology, common to mutants having a defect in chromosomal DNA replication. The steady-state levels of RFC2 mRNA fluctuated less during the cell cycle than other genes involved in DNA replication. Nucleotide sequence of the gene revealed an open reading frame corresponding to a polypeptide with a calculated Mr of 39,716 and a high degree of amino acid sequence homology to the 37-kDa subunit of human RF-C. Polyclonal antibodies against bacterially expressed Rfc2 protein specifically reduced RF-C activity in the RF-C-dependent reaction catalyzed by yeast DNA polymerase III. Furthermore, the Rfc2 protein was copurified with RF-C activity throughout RF-C purification. These results strongly suggest that the RFC2 gene product is a component of yeast RF-C. The bacterially expressed Rfc2 protein preferentially bound to primed single-strand DNA and weakly to ATP. 相似文献
15.
16.
Claret S Roumanie O Prouzet-Mauleon V Lefebvre F Thoraval D Crouzet M Doignon F 《FEMS yeast research》2011,11(2):179-191
The Rho GTPase-activating protein Rgd1p positively regulates the GTPase activity of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively, in the budding yeast Saccharomyces cerevisiae. Two-hybrid screening identified Tos2p as a candidate Rgd1p-binding protein. Further analyses confirmed that Tos2p binds to the RhoGAP Rgd1p through its C-terminal region. Both Tos2p and Rgd1p are localized to polarized growth sites during the cell cycle and associated with detergent-resistant membranes. We observed that TOS2 overexpression suppressed rgd1Δ sensitivity to a low pH. In the tos2Δ strain, the amount of GTP-bound Rho3p was increased, suggesting an influence of Tos2p on Rgd1p activity in vivo. We also showed a functional interaction between the TOS2 and the RHO3 genes: TOS2 overexpression partially suppressed the growth defect of rho3-V51 cells at a restrictive temperature. We propose that Tos2p, a protein involved in polarized growth and most probably associated with the plasma membrane, modulates the action of Rgd1p and Rho3p in S. cerevisiae. 相似文献
17.
18.
Plasmid DNA replication in nuclear extracts of Saccharomyces cerevisiae in vitro has been shown to be S-phase specific, similar to that observed in vivo. We report here a reconstituted in vitro system with partially purified replication proteins, purified replication protein A (RPA), and recombinant proliferating cell nuclear antigen (PCNA). Nuclear extracts from S-phase, G(1)-phase, and unsynchronized yeast cells were fractionated by phosphocellulose chromatography. Protein fraction (polymerase fraction) enriched with replication proteins, including DNA polymerases (alpha, delta, etc.), was isolated, which was not capable of in vitro replication of supercoiled plasmid DNA. However, when purified yeast RPA and recombinant PCNA together were added to the polymerase fraction obtained from S-phase synchronized cells, in vitro plasmid DNA replication was restored. In vitro plasmid DNA replication with polymerase fractions from unsynchronized and G(1)-phase cells could not be reconstituted upon addition of purified RPA and PCNA. RPA and PCNA isolated from various phases of the cell cycle complemented the S-phase polymerase pool to the same extent. Reconstituted systems with the S-phase polymerase pool, complemented with either the RPA- and PCNA-containing fraction or purified RPA and recombinant PCNA together, were able to produce replication intermediates (ranging in size from 50 to 1500 bp) similar to that observed with the S-phase nuclear extract. Results presented here demonstrate that both RPA and PCNA are cell cycle-independent in their ability to stimulate in vitro plasmid DNA replication, whereas replication factors in the polymerase fractions are strictly S-phase dependent. 相似文献
19.
Ten actin-related proteins are known in Saccharomyces cerevisiae, classified into Arps1-10 according to their relatedness to actin. Arp4, a nuclear protein, essential for viability of S. cerevisiae, is a component of at least three chromatin-modifying complexes, one of which is the histone acetyltransferase (HAT) complex NuA4. Since recent data point to a role for Arp4 in the recruitment to specific sites of interaction, we tested if Arp4 directly interacts with the HAT Esa1p that is the catalytic subunit of NuA4. We observed that Arp4 directly binds to Esa1p, whereas Act1p, which is also a component of the NuA4 complex, does not interact with Esa1p. The interaction of Arp4 and Esa1p was not abolished by a deletion of one or both of the specific insertions present in the ARP4 gene. We propose that the interaction of Arp4 with Esa1p is crucial for proper functioning and targeting of the NuA4 complex. 相似文献