首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Larval anuran communities vary along a gradient of pond permanency. The families Hylidae, Ranidae, and Bufonidae have each diversified into multiple pond types. Species using ponds that dry seasonally (vernal ponds) must compete well to metamorphose before pond drying, while permanent ponds, which contain more predators, produce weaker selection for competitive ability. Quantifying phenotypic traits related to resource acquisition in 14 anuran species provides insight into the mechanistic underpinnings of adaptive radiation in anuran lineages. Under controlled laboratory conditions and at both early and late developmental stages, relative growth rate, relative consumption rate, assimilation efficiency and production efficiency varied significantly among species. As predicted, vernal pond species had high growth rates relative to species using more than one pond type. However, within a pond type, families frequently differed in phenotype. In species using permanent ponds with fish predators, hylids had high growth rates while ranids had low growth rates, and in species using vernal ponds, bufonids had higher assimilation efficiencies than hylids. Differences also occurred between stages; hylids and ranids in permanent, but fishless, ponds were similar at an early stage, but late stage hylids in the same pond type had lower growth and consumption rates, and higher assimilation efficiencies than ranids. Functional relationships between phenotypic traits also differed among species and developmental stage. Negative correlations between evolutionary change (independent contrast values) in both mass and growth rate (both stages), and mass and consumption rate (late stage), suggest the presence of trade-offs. These results indicate that different lineages have diversified in different ways into the same pond types.  相似文献   

2.
Allometric growth of the postembryonic stages of Ectobius lapponicus (Linn.) and E. panzeri Stephens is described and analysed. Alternative methods of computing the allometric growth equation are discussed and applied, with the necessary significance tests, to a large number of skeletal structures in all developmental stages of each sex. The validity of Dyar's Law and its modifications are assessed quantitatively.  

Summary:


The growth in linear dimensions of 74 exosketetal structures has been studied quantitatively in all instars of both sexes of Ectobius lapponicus and E. panzeri.
Almost all the investigated structures show some statistically significant degree of allometric growth, but relatively few of them grow by simple allometry. Some possible reasons for this are indicated.
Well-defined growth gradients exist in the appendages and along the main axis of the body. Allometric growth contours, showing sexual and specific differences, express the temporal and spatial variations in the allometric growth ratio.
The limitations of Dyar's Law and Przibram's Rule are discussed and it is shown that conformity with Dyar's Law is not improved by allowing for differences in the duration of the instars.
It is emphasized that allometric growth studies should involve the choice of a suitable reference dimension and the selection of an appropriate statistical model to which the growth data are fitted. The estimation of the allometry parameters a and b , as well as the appropriate significance tests, depend on the model chosen, though the two models compared in this study do not yield appreciably different estimates.  相似文献   

3.
The constancy of postmoult/premoult ratios of measures of linear size during ontogeny in insect and other arthropods is widely known as Dyar's rule. We tested this rule in nine species of the waterstrider genera Gerris and Aquarius (Heteroptera: Gerridae), using two size variables: head width and a multivariate measure derived from the pattern of multivariate allometry common to the species considered. Allometric patterns were similar in two independent datasets of laboratory-reared and field-caught specimens. Although our data strictly followed Dyar's rule injust a few instances, all growth ratios varied within a limited range only. Growth ratios for head width differed more between moults than those for multivariate size. The relationship between growth ratios for the two size measures conformed to the predictions based on allometry. We discuss hypotheses of the possible adaptive significance of growth ratios, such as their relation to mobility and systematic differences between hemimetabolous and holometabolous insects, and emphasize the importance of allometry. Since Dyar's rule is consistent with available evidence of physiological mechanisms underlying growth and moulting control of insects and crustaceans, it can be used as a general frame of reference to test alternative growth models.  相似文献   

4.
Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution contributes to diversification. Furthermore, the developmental mode by which behavioral traits are acquired may affect rates of behavioral evolution, although this hypothesis is seldom tested in a phylogenetic framework. Here, we examine evidence for rate shifts in vocal evolution and speciation across two major radiations of codistributed passerines: one oscine clade with learned songs (Thraupidae) and one suboscine clade with innate songs (Furnariidae). We find that evolutionary bursts in rates of speciation and song evolution are coincident in both thraupids and furnariids. Further, overall rates of vocal evolution are higher among taxa with learned rather than innate songs. Taken together, these findings suggest an association between macroevolutionary bursts in speciation and vocal evolution, and that the tempo of behavioral evolution can be influenced by variation in developmental modes among lineages.  相似文献   

5.
SUMMARY The phylogenetic information content of different developmental stages is a long‐standing issue in the study of development and evolution. We performed phylogenetic analyses of 51 body segmentation genes in 12 species of Drosophila in order to investigate the impact of the mode of evolution of development on phylogeny inference. Previous studies of these genes in Drosophila using pairwise phenetic comparisons at the species group level revealed the presence of an “hourglass model” (HG), wherein mid‐embryonic stages are the most evolutionarily constrained. We utilized two character‐based approaches: taxonomic congruence using the relative consensus fork index (RCFI), in which phylogenies are inferred from each gene separately and compared with a total evidence tree (TET), and partitioned simultaneous analysis using several indices such as branch support (BS) and localized incongruence length difference (LILD) test. We also proposed a new index, the recapitulatory index (R), which divides the number of synapomorphies on the total number of informative characters in a data set. Polynomial adjustment of both BS and R indices showed strong support for the hourglass model regardless of the taxonomic level (species subgroup vs. subgenera), showing less phylogenetic information content for mid‐developmental stages (mainly the zygotic segment polarity stage). Significant LILD scores were randomly distributed among developmental stages revealing the absence of differential selective constraints, but were significantly related to chromosomal location showing physical (linkage) impact on phylogenetic incongruence. RCFI was the most sensitive measure to taxonomic level, having a convex parabola at the species subgroup level in support of the hourglass model and a concave parabola at the subgeneric level in support of the adaptive penetrance model. This time‐dependent discrepancy of best fit developmental model parallels previous conflicting results from the vertebrates. Because of the quasi‐phenetic nature of this index, we argue that the discrepancy is due to the evolutionary rate heterogeneity of developmental genes rather than to fundamental differences among organisms. We suggest that simultaneous character‐based analyses give better macroevolutionary support to the hourglass model of the developmental constraints on genome evolution than pairwise phenetic comparisons.  相似文献   

6.
Using an explicit phylogenetic framework, ontogenetic patterns of leaf form are compared among the three genera of marsileaceous ferns ( Marsilea , Regnellidium , and Pilularia ) with the outgroup Asplenium to address the hypothesis that heterochrony played a role in their evolution. We performed a Fourier analysis on a developmental sequence of leaves from individuals of these genera. Principal components analysis of the harmonic coefficients was used to characterize the ontogenetic trajectories of leaf form in a smaller dimensional space. Results of this study suggest that the "evolutionary juvenilization" observed in these leaf sequences is best described using a mixed model of heterochrony (accelerated growth rate and early termination at a simplified leaf form). The later stages of the ancestral, more complex, ontogenetic pattern were lost in Marsileaceae, giving rise to the simplified adult leaves of Marsilea , Regnellidium , and Pilularia . Life-history traits such as ephemeral and uncertain habitats, high reproductive rates, and accelerated maturation, which are typical for marsileaceous ferns, suggest that they may be " r strategists." The evidence for heterochrony presented here illustrates that it has resulted in profound ecological and morphological consequences for the entire life history of Marsileaceae.  相似文献   

7.
Life history patterns are usually identified by comparisons of extant species. Because of inferences regarding phylogenetic constraints, comparative data are often not statistically independent. In order to remove phylogenetic patterns embedded in life history data completely, we adopted a phylogenetic autoregressive method to reanalyse a data set of the ovipositional and developmental rates of 45 Phytoseiidae species. We first calculated the phylogenetic correlation in relation to different taxonomic levels using Moran's I statistics. Significant and positive phylogenetic correlations were found at the subgenus and subfamily levels. This indicates that some variation in both of these life-history traits could be accounted for by phylogeny. Phylogenetic associations, therefore, were removed by a phylogenetic autoregressive method. Using corrected data from this method, the specific components of the ovipositional rate are positively correlated with the specific components of th e developmental rate. The method that we have used obtains the same conclusion as others but differs from the phylogenetic effect in the way that it influences the relationship between comparative data. Because of no data reduction in the phylogenetic autoregressive method, the specific components are more useful than the mean values derived from the higher taxonomic nodes for testing ecological and evolutionary hypotheses about life history patterns. © Rapid Science Ltd. 1998  相似文献   

8.
Countergradient variation in norms of reaction can dampen the direct effects of environmental influences on phenotypic traits, allowing phenotypic similarity among populations despite exposure to different environmental conditions. Such norms of reaction may occur at any phase of the life‐history (e.g. growth rates during both embryonic and postembryonic stages may influence geographical variation in adult body size). We collected gravid female lizards (Sceloporus undulatus) from northern (Indiana), central (Mississippi), and southern (Florida) populations, spanning almost the full latitudinal range of the species. Adult females from the southern population were smaller. Intrinsic growth rates of hatchlings were higher for the central population than for the other two populations. This pattern does not parallel the countergradient variation previously found in embryonic developmental rates among these populations. Earlier hatching enhanced survival rates of juveniles to a similar degree among populations, although juvenile survival rates in the field generally increase with latitude in this species. Our data reveal geographical variation in the ways in which intrinsic developmental/growth rates and survival shift during ontogeny, and suggest that latitudinal patterns in adult body size (such as Bergmann's rule) can result from both faster growth, and longer periods of growth. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 202–209.  相似文献   

9.
Anurans breed in a variety of aquatic habitats with contrasting levels of desiccation risk, which may result in selection for faster development during larval stages. Previous studies suggest that species in ephemeral ponds reduce their developmental times to minimize desiccation risks, although it is not clear how variation in desiccation risk affects developmental strategies in different species. Employing a comparative phylogenetic approach including data from published and unpublished studies encompassing 62 observations across 30 species, we tested if species breeding in ephemeral ponds (High risk) develop faster than those from permanent ponds (Low risk) and/or show increased developmental plasticity in response to drying conditions. Our analyses support shorter developmental times in High risk, primarily by decreasing body mass at metamorphosis. Plasticity in developmental times was small and did not differ between groups. However, accelerated development in High risk species generally resulted in reduced sizes at metamorphosis, while some Low risk species were able compensate this effect by increasing mean growth rates. Taken together, our results suggest that plastic responses in species breeding in ephemeral ponds are constrained by a general trade-off between development and growth rates.  相似文献   

10.
Understanding the biogeographic and phylogenetic basis to interspecific differences in species’ functional traits is a central goal of evolutionary biology and community ecology. We quantify the extent of phylogenetic influence on functional traits and life‐history strategies of Australian freshwater fish to highlight intercontinental differences as a result of Australia's unique biogeographic and evolutionary history. We assembled data on life history, morphological and ecological traits from published sources for 194 Australian freshwater species. Interspecific variation among species could be described by a specialist–generalist gradient of variation in life‐history strategies associated with spawning frequency, fecundity and spawning migration. In general, Australian fish showed an affinity for life‐history strategies that maximise fitness in hydrologically unpredictable environments. We also observed differences in trait lability between and within life history, morphological and ecological traits where in general morphological and ecological traits were more labile. Our results showed that life‐history strategies are relatively evolutionarily labile and species have potentially evolved or colonised in freshwaters frequently and independently allowing them to maximise population performance in a range of environments. In addition, reproductive guild membership showed strong phylogenetic constraint indicating that evolutionary history is an important component influencing the range and distribution of reproductive strategies in extant species assemblages. For Australian freshwater fish, biogeographic and phylogenetic history contribute to broad taxonomic differences in species functional traits, while finer scale ecological processes contribute to interspecific differences in smaller taxonomic units. These results suggest that the lability or phylogenetic relatedness of different functional traits affects their suitability for testing hypothesis surrounding community level responses to environmental change.  相似文献   

11.
The quantitative characterization of the ecology of individual phytoplankton taxa is essential for model resolution of many aspects of aquatic ecosystems. Existing literature cannot directly parameterize all phytoplankton taxa of interest, as many traits and taxa have not been sampled. However, valuable clues on the value of traits are found in the evolutionary history of species and in common correlations between traits. These two resources were exploited with an existing, statistically consistent method built upon evolutionary concepts. From a new data set with >700 observations on freshwater phytoplankton traits and a qualitative phytoplankton phylogeny, estimates were derived for the size, growth rate, phosphate affinity, and susceptibility to predation of 277 phytoplankton types, from evolutionary ancestors to present‐day species. These estimates account simultaneously for phylogenetic relationships between types, as imposed by the phylogeny, and approximate power‐law relationships (e.g., allometric scaling laws) between traits, as reconstructed from the data set. Results suggest that most phytoplankton traits are to some extent conserved in evolution: cross‐validation demonstrated that the use of phylogenetic information significantly improves trait value estimates. By providing trait value estimates as well as uncertainties, these results could benefit most quantitative studies involving phytoplankton.  相似文献   

12.
Ecogeographical rules attempt to explain large‐scale spatial patterns in biological traits. One of the most enduring examples is Bergmann''s rule, which states that species should be larger in colder climates due to the thermoregulatory advantages of larger body size. Support for Bergmann''s rule, however, is not consistent across taxonomic groups, raising questions about what factors may moderate its effect. Behavior may play a crucial, yet so far underexplored, role in mediating the extent to which species are subject to environmental selection pressures in colder climates. Here, we tested the hypothesis that nest design and migration influence conformity to Bergmann''s rule in a phylogenetic comparative analysis of the birds of the Western Palearctic, a group encompassing dramatic variation in both climate and body mass. We predicted that migratory species and those with more protected nest designs would conform less to the rule than sedentary species and those with more exposed nests. We find that sedentary, but not short‐ or long‐distance migrating, species are larger in colder climates. Among sedentary species, conformity to Bergmann''s rule depends, further, on nest design: Species with open nests, in which parents and offspring are most exposed to adverse climatic conditions during breeding, conform most strongly to the rule. Our findings suggest that enclosed nests and migration enable small birds to breed in colder environments than their body size would otherwise allow. Therefore, we conclude that behavior can substantially modify species’ responses to environmental selection pressures.  相似文献   

13.
Evolutionary biologists have long debated the relative influence of species selection on evolutionary patterns. As a test, we apply a statistical phylogenetic approach to evaluate the influence of traits related to species distribution and life-history characteristics on patterns of diversification in salamanders. We use independent contrasts to test trait-mediated diversification while accommodating phylogenetic uncertainty in relationships among all salamander families. Using a neontological data set, we find several species-level traits to be variable, heritable, and associated with differential success (i.e., higher diversification rates) at higher taxonomic categories. Specifically, the macroecological trait of small geographic-range size is strongly correlated with a higher rate of net diversification. We further consider the role that plasticity in life-history traits appears to fulfill in macroevolutionary processes of lineage divergence and durability. We find that pedotypy--wherein some, but not all, organisms of a species mature in the gilled form without metamorphosing-is also associated with higher net diversification rate than is the absence of developmental plasticity. Often dismissed as an insignificant process in evolution, we provide direct evidence for the role of species selection in lineage diversification of salamanders.  相似文献   

14.
Morphological divergence among species may be constrained by the pattern of genetic variances and covariances among traits within species. Assessing the existence of such a relationship in nature requires information on the stability of intraspecific correlation and covariance structure and the correspondence of this structure to the pattern of evolutionary divergence within a lineage. Here, we investigate these issues for nine morphological traits and 15 species of stalk-eyed flies in the genus Diasemopsis. Within-species matrices for these traits were generated from phenotypic data for all the Diasemopsis species and from genetic data for a single Diasemopsis species, D. dubia. The among-species pattern of divergence was assessed by calculating the evolutionary correlations for all pairwise combinations of the morphological traits along the phylogeny of these species. Comparisons of intraspecific matrices reveal significant similarity among all species in the phenotypic correlations matrices but not the covariance matrices. In addition, the differences in correlation structure that do exist among species are not related to their phylogenetic placement or change in the means of the traits. Comparisons of the phenotypic and phylogenetic matrices suggest a strong relationship between the pattern of evolutionary change among species and both the intraspecific correlation structure and the stability of this structure among species. The phenotypic and the phylogenetic matrices are significantly similar, and pairs of traits whose intraspecific correlations are more stable across taxa exhibit stronger coevolution on the phylogeny. These results suggest either the existence of strong constraints on the pattern of evolutionary change or a consistent pattern of correlated selection shaping both the phenotypic and phylogenetic matrices. The genetic correlation structure for D. dubia, however, does not correspond with patterns found in the phenotypic and phylogenetic data. Possible reasons for this disagreement are discussed.  相似文献   

15.
We have compared the length of noncoding organelle DNA spacers in a broad sample of plant species characterized by different life history traits to test hypotheses regarding the nature of the mechanisms driving changes in their size. We first demonstrate that the spacers do not evolve at random in size but have experienced directional evolutionary trends during plant diversification. We then study the relationships between spacer lengths and other molecular features and various species attributes by taking into account population genetic processes acting within cell lineages. Comparative techniques are used to test these relationships while controlling for species phylogenetic relatedness. The results indicate that spacer length depends on mode of organelle transmission, on population genetic structure, on nucleotide content, on rates of molecular evolution, and on life history traits, in conformity with predictions based on a model of intracellular competition among replicating organelle genomes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The study of which life history traits primarily affect molecular evolutionary rates is often confounded by the covariance of these traits. Scombroid fishes (billfishes, tunas, barracudas, and their relatives) are unusual in that their mass-specific metabolic rate is positively associated with body size. This study exploits this atypical pattern of trait variation, which allows for direct tests of whether mass-specific metabolic rate or body size is the more important factor of molecular evolutionary rates. We inferred a phylogeny for scombroids from a supermatrix of molecular and morphological characters and used new phylogenetic comparative approaches to assess the associations of body size and mass-specific metabolic rate with substitution rate. As predicted by the body size hypothesis, there is a negative correlation between body size and substitution rate. However, unexpectedly, we also find a negative association between mass-specific metabolic and substitution rates. These relationships are supported by analyses of the total molecular data, separate mitochondrial and nuclear genes, and individual loci, and they are robust to phylogenetic uncertainty. The molecular evolutionary rates of scombroids are primarily tied to body size. This study demonstrates that groups with novel patterns of trait variation can be particularly informative for identifying which life history traits are the primary factors of molecular evolutionary rates.  相似文献   

17.
Differences in morphology among species are proximately caused by changes in the ontogeny of individuals. It is therefore of importance to analyse possible differences in growth parameters among closely related species in order to understand what parameters are most and least likely, respectively, to change in evolution. In this paper I analyse growth in two closely related sympatric species, namely Great tit, Parus major, and Blue tit, P. caeruleus. The former is considerably larger than the latter in all external traits. The growth rates of the two species were found to be very similar for all traits, thus excluding differences in growth rate as a potential cause of evolutionary size changes. Offset of growth occurred at relatively similar times in the two species, excluding this factor as a major cause of the final size differences. However, size differences at hatching were pronounced and remained so throughout ontogeny, pointing to initial size (egg size or hatching size) as the target of factors promoting change. Bivariate allometric relations of traits vs. body size (mass) were similar between the two species at all ontogenetic stages. There was a high correlation among traits especially at intermediate age stages (5 and 8 days), but these correlations became weaker at older age and approached the low pattern of integration found in adults. All this suggests the operation of a general growth factor affecting all parts of the phenotype simultaneously, which has its major influence at the time of maximal growth. If closely related species in general have highly similar growth patterns, strong evolutionary allometry as found in many avian taxa is to be expected.  相似文献   

18.
Integrating phylogenetic information can potentially improve our ability to explain species' traits, patterns of community assembly, the network structure of communities, and ecosystem function. In this study, we use mathematical models to explore the ecological and evolutionary factors that modulate the explanatory power of phylogenetic information for communities of species that interact within a single trophic level. We find that phylogenetic relationships among species can influence trait evolution and rates of interaction among species, but only under particular models of species interaction. For example, when interactions within communities are mediated by a mechanism of phenotype matching, phylogenetic trees make specific predictions about trait evolution and rates of interaction. In contrast, if interactions within a community depend on a mechanism of phenotype differences, phylogenetic information has little, if any, predictive power for trait evolution and interaction rate. Together, these results make clear and testable predictions for when and how evolutionary history is expected to influence contemporary rates of species interaction.  相似文献   

19.
The prediction that variation in species morphology is related to environmental features has long been of interest to ecologists and evolutionary biologists. Many studies have demonstrated strong associations between morphological traits and local habitat characteristics, but few have considered the extent to which morphological traits may be associated with environmental features across broad geographic areas. Here, we use morphological, environmental and phylogenetic data compiled from Phrynosoma species to examine morphological and climatic variation across the geographic ranges of these species in an evolutionary context. We find significant phylogenetic signal in species’ environmental niches, but not in morphological traits. Furthermore, we demonstrate a significant correlation between species’ environmental niches and morphological traits when phylogenetic history is accounted for in the analysis. Our results suggest the importance of climatic variables in influencing morphological variation among species, and have implications for understanding how species distributions are constrained by environmental variation.  相似文献   

20.
Many species are undergoing distributional shifts in response to climate change. However, wide variability in range shifting rates has been observed across taxa, and even among closely‐related species. Attempts to link climate‐mediated range shifts to traits has often produced weak or conflicting results. Here we investigate interactive effects of developmental processes and environmental stress on the expression of traits relevant to range shifts. We use an individual‐based modelling approach to assess how different developmental strategies affect range shift rates under a range of environmental conditions. We find that under stressful conditions, such as at the margins of the species’ fundamental niche, investment in prolonged development leads to the greatest rates of range shifting, especially when longer time in development leads to improved fecundity and dispersal‐related traits. However, under benign conditions, and when traits are less developmentally plastic, shorter development times are preferred for rapid range shifts, because higher generational frequency increases the number of individual dispersal events occurring over time. Our results suggest that the ability of a species to range shift depends not only on their dispersal and colonisation characteristics but also how these characteristics interact with developmental strategies. Benefits of any trait always depended on the environmental and developmental sensitivity of life history trait combinations, and the environmental conditions under which the range shift takes place. Without considering environmental and developmental sources of variation in the expression of traits relevant to range shifts, there is little hope of developing a general understanding of intrinsic drivers of range shift potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号