首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations.  相似文献   

2.
The advantages of segregation and the evolution of sex   总被引:4,自引:0,他引:4  
Otto SP 《Genetics》2003,164(3):1099-1118
In diploids, sexual reproduction promotes both the segregation of alleles at the same locus and the recombination of alleles at different loci. This article is the first to investigate the possibility that sex might have evolved and been maintained to promote segregation, using a model that incorporates both a general selection regime and modifier alleles that alter an individual's allocation to sexual vs. asexual reproduction. The fate of different modifier alleles was found to depend strongly on the strength of selection at fitness loci and on the presence of inbreeding among individuals undergoing sexual reproduction. When selection is weak and mating occurs randomly among sexually produced gametes, reductions in the occurrence of sex are favored, but the genome-wide strength of selection is extremely small. In contrast, when selection is weak and some inbreeding occurs among gametes, increased allocation to sexual reproduction is expected as long as deleterious mutations are partially recessive and/or beneficial mutations are partially dominant. Under strong selection, the conditions under which increased allocation to sex evolves are reversed. Because deleterious mutations are typically considered to be partially recessive and weakly selected and because most populations exhibit some degree of inbreeding, this model predicts that higher frequencies of sex would evolve and be maintained as a consequence of the effects of segregation. Even with low levels of inbreeding, selection is stronger on a modifier that promotes segregation than on a modifier that promotes recombination, suggesting that the benefits of segregation are more likely than the benefits of recombination to have driven the evolution of sexual reproduction in diploids.  相似文献   

3.
Denis Roze 《Genetics》2015,201(2):745-757
A classical prediction from single-locus models is that inbreeding increases the efficiency of selection against partially recessive deleterious alleles (purging), thereby decreasing the mutation load and level of inbreeding depression. However, previous multilocus simulation studies found that increasing the rate of self-fertilization of individuals may not lead to purging and argued that selective interference among loci causes this effect. In this article, I derive simple analytical approximations for the mutation load and inbreeding depression, taking into account the effects of interference between pairs of loci. I consider two classical scenarios of nonrandomly mating populations: a single population undergoing partial selfing and a subdivided population with limited dispersal. In the first case, correlations in homozygosity between loci tend to reduce mean fitness and increase inbreeding depression. These effects are stronger when deleterious alleles are more recessive, but only weakly depend on the strength of selection against deleterious alleles and on recombination rates. In subdivided populations, interference increases inbreeding depression within demes, but decreases heterosis between demes. Comparisons with multilocus, individual-based simulations show that these analytical approximations are accurate as long as the effects of interference stay moderate, but fail for high deleterious mutation rates and low dominance coefficients of deleterious alleles.  相似文献   

4.
The prevalence of sexual reproduction in most animal species despite its considerable costs such as useless males, energy spent on mating, the cost of meiosis and genome dilution remains a puzzle in evolutionary theory. One prominent single factor attempt to solve this persistent puzzle is the claim that sexual reproduction is instrumental in eliminating deleterious alleles from the species genome by the mechanism of recombination. There are three major versions of the deleterious allele hypothesis: First, the mutational deterministic hypothesis (MDH), which rests on the assumption of negative epistasis, predicts that recombination will help to purge the species genome of deleterious alleles by breaking apart linkages between these alleles. The assumption is that the joint negative effects of linked deleterious alleles is sometimes greater than the effects of the alleles considered separately. Second, there is the hypothesis that sexual reproduction speeds up purifying (negative) selection, which purges the genome of deleterious alleles. Alleles that are less deleterious than the wild type are naturally selected. These alleles, attained via recombination, are sometimes ‘leaky’ mutations giving rise to reduced functionality of attendant proteins. This hypothesis does not necessarily rest on the assumption of negative epistasis, which some argue is relatively rare in nature (Kouyos, Silander and Bonhoeffer (2012)) and which arguably could be seen as a virtue of the purifying selection hypothesis vs. the MDH. Third, Muller's ratchet hypothesis predicts that recombination will help to prevent the buildup of deleterious mutations by the mechanism of recombination. In this study, we focus primarily on testing the purifying selection hypothesis. We performed an individual-based model computer simulation using the program EcoSim to test this hypothesis. The experimental runs for sexual reproduction, asexual reproduction and facultative reproduction involved introducing a deleterious allele into the genome, which exacts an intermediate-level energy penalty on individuals. It was found that whereas on average, deleteriousness consistently declined over 18,000 time-steps due to recombination in sexual reproduction, deleteriousness did not decline for asexual and facultative runs. These results corroborate the hypothesis that recombination due to sexual reproduction helps to eliminate deleterious alleles from the genome through the selection of reduced function mutations.  相似文献   

5.
Self-fertilization is generally seen to be disadvantageous in the long term. It increases genetic drift, which subsequently reduces polymorphism and the efficiency of selection, which also challenges adaptation. However, high selfing rates can increase the fixation probability of recessive beneficial mutations, but existing theory has generally not accounted for the effect of linked sites. Here, we analyze a model for the fixation probability of deleterious mutants that hitchhike with selective sweeps in diploid, partially selfing populations. Approximate analytical solutions show that, conditional on the sweep not being lost by drift, higher inbreeding rates increase the fixation probability of the deleterious allele, due to the resulting reduction in polymorphism and effective recombination. When extending the analysis to consider a distribution of deleterious alleles, as well as the average fitness increase after a sweep, we find that beneficial alleles generally need to be more recessive than the previously assumed dominance threshold (h < 1/2) for selfing to be beneficial from one-locus theory. Our results highlight that recombination aiding the efficiency of selection on multiple loci amplifies the fitness benefits of outcrossing over selfing, compared to results obtained from one-locus theory. This effect additionally increases the parameter range under which obligate outcrossing is beneficial over partial selfing.  相似文献   

6.
7.
Mutational robustness is the degree to which a phenotype, such as fitness, is resistant to mutational perturbations. Since most of these perturbations will tend to reduce fitness, robustness provides an immediate benefit for the mutated individual. However, robust systems decay due to the accumulation of deleterious mutations that would otherwise have been cleared by selection. This decay has received very little theoretical attention. At equilibrium, a population or asexual lineage is expected to have a mutation load that is invariant with respect to the selection coefficient of deleterious alleles, so the benefit of robustness (at the level of the population or asexual lineage) is temporary. However, previous work has shown that robustness can be favoured when robustness loci segregate independently of the mutating loci they act upon. We examine a simple two-locus model that allows for intermediate rates of recombination and inbreeding to show that increasing the effective recombination rate allows for the evolution of greater mutational robustness.  相似文献   

8.
The evolution of multiple antibiotic resistance is an increasing global problem. Resistance mutations are known to impair fitness, and the evolution of resistance to multiple drugs depends both on their costs individually and on how they interact—epistasis. Information on the level of epistasis between antibiotic resistance mutations is of key importance to understanding epistasis amongst deleterious alleles, a key theoretical question, and to improving public health measures. Here we show that in an antibiotic-free environment the cost of multiple resistance is smaller than expected, a signature of pervasive positive epistasis among alleles that confer resistance to antibiotics. Competition assays reveal that the cost of resistance to a given antibiotic is dependent on the presence of resistance alleles for other antibiotics. Surprisingly we find that a significant fraction of resistant mutations can be beneficial in certain resistant genetic backgrounds, that some double resistances entail no measurable cost, and that some allelic combinations are hotspots for rapid compensation. These results provide additional insight as to why multi-resistant bacteria are so prevalent and reveal an extra layer of complexity on epistatic patterns previously unrecognized, since it is hidden in genome-wide studies of genetic interactions using gene knockouts.  相似文献   

9.
Haag CR  Roze D 《Genetics》2007,176(3):1663-1678
In diploid organisms, sexual reproduction rearranges allelic combinations between loci (recombination) as well as within loci (segregation). Several studies have analyzed the effect of segregation on the genetic load due to recurrent deleterious mutations, but considered infinite populations, thus neglecting the effects of genetic drift. Here, we use single-locus models to explore the combined effects of segregation, selection, and drift. We find that, for partly recessive deleterious alleles, segregation affects both the deterministic component of the change in allele frequencies and the stochastic component due to drift. As a result, we find that the mutation load may be far greater in asexuals than in sexuals in finite and/or subdivided populations. In finite populations, this effect arises primarily because, in the absence of segregation, heterozygotes may reach high frequencies due to drift, while homozygotes are still efficiently selected against; this is not possible with segregation, as matings between heterozygotes constantly produce new homozygotes. If deleterious alleles are partly, but not fully recessive, this causes an excess load in asexuals at intermediate population sizes. In subdivided populations without extinction, drift mostly occurs locally, which reduces the efficiency of selection in both sexuals and asexuals, but does not lead to global fixation. Yet, local drift is stronger in asexuals than in sexuals, leading to a higher mutation load in asexuals. In metapopulations with turnover, global drift becomes again important, leading to similar results as in finite, unstructured populations. Overall, the mutation load that arises through the absence of segregation in asexuals may greatly exceed previous predictions that ignored genetic drift.  相似文献   

10.
Haldane's sieve and adaptation from the standing genetic variation   总被引:8,自引:0,他引:8  
Orr HA  Betancourt AJ 《Genetics》2001,157(2):875-884
We consider populations that adapt to a sudden environmental change by fixing alleles found at mutation-selection balance. In particular, we calculate probabilities of fixation for previously deleterious alleles, ignoring the input of new mutations. We find that "Haldane's sieve"--the bias against the establishment of recessive beneficial mutations--does not hold under these conditions. Instead probabilities of fixation are generally independent of dominance. We show that this result is robust to patterns of sex expression for both X-linked and autosomal loci. We further show that adaptive evolution is invariably slower at X-linked than autosomal loci when evolution begins from mutation-selection balance. This result differs from that obtained when adaptation uses new mutations, a finding that may have some bearing on recent attempts to distinguish between hitchhiking and background selection by contrasting the molecular population genetics of X-linked vs. autosomal loci. Last, we suggest a test to determine whether adaptation used new mutations or previously deleterious alleles from the standing genetic variation.  相似文献   

11.
Evolution can favor antagonistic epistasis   总被引:2,自引:2,他引:0  
Desai MM  Weissman D  Feldman MW 《Genetics》2007,177(2):1001-1010
The accumulation of deleterious mutations plays a major role in evolution, and key to this are the interactions between their fitness effects, known as epistasis. Whether mutations tend to interact synergistically (with multiple mutations being more deleterious than would be expected from their individual fitness effects) or antagonistically is important for a variety of evolutionary questions, particularly the evolution of sex. Unfortunately, the experimental evidence on the prevalence and strength of epistasis is mixed and inconclusive. Here we study theoretically whether synergistic or antagonistic epistasis is likely to be favored by evolution and by how much. We find that in the presence of recombination, evolution favors less synergistic or more antagonistic epistasis whenever mutations that change the epistasis in this direction are possible. This is because evolution favors increased buffering against the effects of deleterious mutations. This suggests that we should not expect synergistic epistasis to be widespread in nature and hence that the mutational deterministic hypothesis for the advantage of sex may not apply widely.  相似文献   

12.
To understand selection on recombination, we need to consider how linkage disequilibria develop and how recombination alters these disequilibria. Any factor that affects the development of disequilibria, including nonrandom mating, can potentially change selection on recombination. Assortative mating is known to affect linkage disequilibria but its effects on the evolution of recombination have not been previously studied. Given that assortative mating for fitness can arise indirectly via a number of biologically realistic scenarios, it is plausible that weak assortative mating occurs across a diverse set of taxa. Using a modifier model, we examine how assortative mating for fitness affects the evolution of recombination under two evolutionary scenarios: selective sweeps and mutation-selection balance. We find there is no net effect of assortative mating during a selective sweep. In contrast, assortative mating could have a large effect on recombination when deleterious alleles are maintained at mutation-selection balance but only if assortative mating is sufficiently strong. Upon considering reasonable values for the number of loci affecting fitness components, the strength of selection, and the mutation rate, we conclude that the correlation in fitness between mates is unlikely to be sufficiently high for assortative mating to affect the evolution of recombination in most species.  相似文献   

13.
Chromosomes that determine sex are predicted to evolve differently than autosomes: a lack of recombination on one of the two sex chromosomes is predicted to allow an accumulation of deleterious alleles that eventually leads to reduced functionality and potential physical degradation of the nonrecombining chromosome. Because these changes should occur at an elevated evolutionary rate, it is difficult to find appropriate species in which to test these evolutionary predictions. The unique genetic sex‐determining mechanism of the crustacean Eulimnadia texana prevents major chromosome degeneration because of expression of both ‘proto‐sex’ (i.e. early stage of development) chromosomes in homozygous form (ZZ and WW). Herein, we exploit this unique genetic system to examine the predicted accumulation of deleterious alleles by comparing both homogametic sexual types to their heterogametic counterpart. We report differences in crossing over in a sex‐linked region in the ZW hermaphrodites (~ 3%) relative to the ZZ males (~ 21%), indicative of cross‐over suppression in the ZW hermaphrodites. Additionally, we report that both ZZ and WW genotypes have reduced fitness relative to ZW hermaphrodites, which is consistent with the prediction of harboured recessive mutations embedded on both the Z and the W chromosomes. These results suggest that the proto‐sex chromosomes in E. texana accumulate recessive deleterious alleles. We hypothesize that recessive deleterious alleles of large effect cannot accumulate because of expression in both ZZ and WW individuals, keeping both chromosomes from losing significant function.  相似文献   

14.
Life span differs between the sexes in many species. Three hypotheses to explain this interesting pattern have been proposed, involving different drivers: sexual selection, asymmetrical inheritance of cytoplasmic genomes, and hemizygosity of the X(Z) chromosome (the unguarded X hypothesis). Of these, the unguarded X has received the least experimental attention. This hypothesis suggests that the heterogametic sex suffers a shortened life span because recessive deleterious alleles on its single X(Z) chromosome are expressed unconditionally. In Drosophila melanogaster, the X chromosome is unusually large (~20% of the genome), providing a powerful model for evaluating theories involving the X. Here, we test the unguarded X hypothesis by forcing D. melanogaster females from a laboratory population to express recessive X‐linked alleles to the same degree as males, using females exclusively made homozygous for the X chromosome. We find no evidence for reduced life span or egg‐to‐adult viability due to X homozygozity. In contrast, males and females homozygous for an autosome both suffer similar, significant reductions in those traits. The logic of the unguarded X hypothesis is indisputable, but our results suggest that the degree to which recessive deleterious X‐linked alleles depress performance in the heterogametic sex appears too small to explain general sex differences in life span.  相似文献   

15.
GC-biased gene conversion (gBGC) is a recombination-associated process that favors the fixation of G/C alleles over A/T alleles. In mammals, gBGC is hypothesized to contribute to variation in GC content, rapidly evolving sequences, and the fixation of deleterious mutations, but its prevalence and general functional consequences remain poorly understood. gBGC is difficult to incorporate into models of molecular evolution and so far has primarily been studied using summary statistics from genomic comparisons. Here, we introduce a new probabilistic model that captures the joint effects of natural selection and gBGC on nucleotide substitution patterns, while allowing for correlations along the genome in these effects. We implemented our model in a computer program, called phastBias, that can accurately detect gBGC tracts about 1 kilobase or longer in simulated sequence alignments. When applied to real primate genome sequences, phastBias predicts gBGC tracts that cover roughly 0.3% of the human and chimpanzee genomes and account for 1.2% of human-chimpanzee nucleotide differences. These tracts fall in clusters, particularly in subtelomeric regions; they are enriched for recombination hotspots and fast-evolving sequences; and they display an ongoing fixation preference for G and C alleles. They are also significantly enriched for disease-associated polymorphisms, suggesting that they contribute to the fixation of deleterious alleles. The gBGC tracts provide a unique window into historical recombination processes along the human and chimpanzee lineages. They supply additional evidence of long-term conservation of megabase-scale recombination rates accompanied by rapid turnover of hotspots. Together, these findings shed new light on the evolutionary, functional, and disease implications of gBGC. The phastBias program and our predicted tracts are freely available.  相似文献   

16.
The replicative nature and generally deleterious effects of transposable elements (TEs) raise an outstanding question about how TE copy number is stably contained in host populations. Classic theoretical analyses predict that, when the decline in fitness due to each additional TE insertion is greater than linear, or when there is synergistic epistasis, selection against TEs can result in a stable equilibrium of TE copy number. While several mechanisms are predicted to yield synergistic deleterious effects of TEs, we lack empirical investigations of the presence of such epistatic interactions. Purifying selection with synergistic epistasis generates repulsion linkage between deleterious alleles. We investigated this population genetic signal in the likely ancestral Drosophila melanogaster population and found evidence supporting the presence of synergistic epistasis among TE insertions, especially TEs expected to exert large fitness impacts. Even though synergistic epistasis of TEs has been predicted to arise through ectopic recombination and TE-mediated epigenetic silencing mechanisms, we only found mixed support for the associated predictions. We observed signals of synergistic epistasis for a large number of TE families, which is consistent with the expectation that such epistatic interaction mainly happens among copies of the same family. Curiously, significant repulsion linkage was also found among TE insertions from different families, suggesting the possibility that synergism of TEs’ deleterious fitness effects could arise above the family level and through mechanisms similar to those of simple mutations. Our findings set the stage for investigating the prevalence and importance of epistatic interactions in the evolutionary dynamics of TEs.  相似文献   

17.
Wolbachia are wide-spread, endogenous α-Proteobacteria of arthropods and filarial nematodes. 15-75% of all insect species are infected with these endosymbionts that alter their host's reproduction to facilitate their spread. In recent years, many insect species infected with multiple Wolbachia strains have been identified. As the endosymbionts are not cultivable outside living cells, strain typing relies on molecular methods. A Multi Locus Sequence Typing (MLST) system was established for standardizing Wolbachia strain identification. However, MLST requires hosts to harbour individual and not multiple strains of supergroups without recombination. This study revisits the applicability of the current MLST protocols and introduces Allele Intersection Analysis (AIA) as a novel approach. AIA utilizes natural variations in infection patterns and allows correct strain assignment of MLST alleles in multiply infected host species without the need of artificial strain segregation. AIA identifies pairs of multiply infected individuals that share Wolbachia and differ in only one strain. In such pairs, the shared MLST sequences can be used to assign alleles to distinct strains. Furthermore, AIA is a powerful tool to detect recombination events. The underlying principle of AIA may easily be adopted for MLST approaches in other uncultivable bacterial genera that occur as multiple strain infections and the concept may find application in metagenomic high-throughput parallel sequencing projects.  相似文献   

18.
We isolated 12 microsatellite loci for the epiphytic lichen-forming ascomycete Lobaria pulmonaria and studied their patterns of variation within and among populations from Canada and Switzerland. Even though several microsatellites exhibited high levels of variability at different spatial scales, we did not find any evidence for intrathalline variation. Most of the genetic variation was attributed to differences among individuals within populations. High genetic variation was also detected among L. pulmonaria samples taken from individual trees, suggesting that either multiple colonization events had occurred or that local recombination is frequent. The geographically structured distribution of alleles from several microsatellites indicated that L. pulmonaria from Canada and Switzerland represent two distinct evolutionary lineages. The potential to identify multiple alleles, and their transferability to closely related species, make microsatellites an ideal tool to study dispersal, population differentiation, and microevolution in lichens.  相似文献   

19.
Recombination affects the fate of alleles in populations by imposing constraints on the reshuffling of genetic information. Understanding the genetic basis of these constraints is critical for manipulating the recombination process to improve the resolution of genetic mapping, and reducing the negative effects of linkage drag and deleterious genetic load in breeding. Using sequence‐based genotyping of a wheat nested association mapping (NAM) population of 2,100 recombinant inbred lines created by crossing 29 diverse lines, we mapped QTL affecting the distribution and frequency of 102 000 crossovers (CO). Genome‐wide recombination rate variation was mostly defined by rare alleles with small effects together explaining up to 48.6% of variation. Most QTL were additive and showed predominantly trans‐acting effects. The QTL affecting the proximal COs also acted additively without increasing the frequency of distal COs. We showed that the regions with decreased recombination carry more single nucleotide polymorphisms (SNPs) with possible deleterious effects than the regions with a high recombination rate. Therefore, our study offers insights into the genetic basis of recombination rate variation in wheat and its effect on the distribution of deleterious SNPs across the genome. The identified trans‐acting additive QTL can be utilized to manipulate CO frequency and distribution in the large polyploid wheat genome opening the possibility to improve the efficiency of gene pyramiding and reducing the deleterious genetic load in the low‐recombining pericentromeric regions of chromosomes.  相似文献   

20.
Understanding the sources of variation in inbreeding depression within populations is important for understanding the evolution of selfing rates. At the population level, inbreeding depression is due to decreased heterozygosity caused by inbreeding, which decreases overdominance and increases the frequency of expression of recessive deleterious alleles. However, within individual families inbreeding has two distinct consequences: it reduces heterozygosity and it restricts the alleles present in offspring to those present in the parent. Outcrossing both increases heterozygosity and brings new alleles into a family (compared to the alleles present if the plant is self-pollinated). Both consequences of inbreeding affect offspring fitness, but the most common experimental design used to measure among-family variation in inbreeding depression cannot distinguish them. The result is that variance in inbreeding depression among families is confounded by genetic variation in the traits being measured. Also, correlations (among families) between measures of inbreeding depression or between inbreeding depression and mean trait values are confounded by genetic variation in the traits being measured. I conclude that more complex crossing designs that allow estimation of breeding values for individual families are required to accurately detect and measure among-family variation in inbreeding depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号