首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Porcine reproductive and respiratory syndrome virus (PRRSV) recently emerged in domestic pigs of Western Europe and North America. Although time of emergence was identical on the two continents, genetic composition was markedly different with a clear geographical subtype structure, indicating that subtypes diverged in separate reservoirs prior to emergence. Genetic analyses have shown that the most recent common ancestor (MRCA) of Western European isolates existed around 1980 and that these originate from Eastern European pigs. These findings are challenged by a study of Hanada et al. who place the MRCA of all PRRSV isolates around 1980 and find that no significant subtype divergence occurred before emergence. Here, I discuss problems of information content, methodology, and biological plausibility associated with this study. Using alternative methodology, I reanalyze the existing data and conclude that the MRCA of all PRRSV isolates existed around 1880, 100 years before the date estimated by Hanada et al.  相似文献   

2.
Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus that causes significant losses in the pig industry, is one of the most important animal pathogens of global significance. Since the discovery of the virus, significant progress has been made in understanding its epidemiology and transmission, but no adequate control measures are yet available to eliminate infection with this pathogen. The genome replication of PRRSV is required to reproduce, within a few hours of infection, the millions of progeny virions that establish, disseminate, and maintain infection. Replication of the viral RNA genome is a multistep process involving a replication complex that is formed not only from components of viral and cellular origin but also from the viral genomic RNA template; this replication complex is embedded within particular virus-induced membrane vesicles. PRRSV RNA replication is directed by at least 14 replicase proteins that have both common enzymatic activities, including viral RNA polymerase, and also unusual and poorly understood RNA-processing functions. In this review, we summarize our current understanding of PRRSV replication, which is important for developing a successful strategy for the prevention and control of this pathogen.  相似文献   

3.
The porcine reproductive and respiratory syndrome Virus (PRRSV) is an infectious disease that causes abortions and respiratory disorders in swine. In this study, the interaction between PRRSV and porcine dendritic cells generated from CD14(+) monocytes in the presence of GM-CSF and IL-4 was examined. As a result, it was shown that immature and mature dendritic cells can be productively infected with PRRSV. When the expression of surface MHC molecules on infected dendritic cells was determined, MHC classes I and II were found to be downregulated when compared with uninfected dendritic cells. With the exception of the IL-4 and IFN-gamma cytokines, the induction of the IL-10, IL-12, and TNF-alpha cytokines all increased in dendritic cells infected with PRRSV. A mixed lymphocyte reaction showed that peripheral blood mononuclear cells cocultured with PRRSVinfected dendritic cells were less stimulated than peripheral blood mononuclear cells cocultured with dendritic cells treated with PBS, LPS, or UV-inactivated PRRSV. Therefore, these results suggest that PRRSV would appear to modulate the immune stimulatory function of porcine dendritic cells.  相似文献   

4.
Wootton SK  Rowland RR  Yoo D 《Journal of virology》2002,76(20):10569-10576
Porcine reproductive and respiratory syndrome virus (PRRSV) is a cytoplasmic RNA virus with the unique or unusual feature of having a nucleocapsid (N) protein that is specifically transported to the nucleolus of virus-infected cells. In this communication, we show that the N protein is a phosphoprotein. Phosphoamino acid analysis of authentic and recombinant N proteins demonstrated that serine residues were exclusively phosphorylated. The pattern of phosphorylated N protein cellular distribution in comparison with that of [(35)S]methionine-labeled N protein suggested that phosphorylation does not influence subcellular localization of the protein. Time course studies showed that phosphorylation occurred during, or shortly after, synthesis of the N protein and that the protein remained stably phosphorylated throughout the life cycle of the virus to the extent that phosphorylated N protein was found in the mature virion. Two-dimensional electrophoresis and acid-urea gel electrophoresis showed that one species of the N protein is predominant in virus-infected cells, suggesting that multiple phosphorylated isoforms of N do not exist.  相似文献   

5.
Vaccine immunization is now one of the most effective ways to control porcine reproductive and respiratory syndrome virus (PRRSV) infection. Impurity is one of the main factors affecting vaccine safety and efficacy. Here we present a novel innovative PRRSV purification approach based on surface display technology. First, a bifunctional protein PA-GRFT (protein anchor-griffithsin), the crucial factor in the purification process, was successfully produced in Escherichia coli yielding 80 mg/L of broth culture. Then PRRSV purification was performed by incubation of PA-GRFT with PRRSV and gram-positive enhancer matrix (GEM) particles, followed by centrifugation to collect virions loaded onto GEM particles. Our results showed that most of the bulk impurities had been removed, and PA-GRFT could capture PRRSV onto GEM particles. Our lactic acid bacteria-based purification method, which is promising as ease of operation, low cost and easy to scale-up, may represent a candidate method for the large-scale purification of this virus for vaccine production.  相似文献   

6.
Porcine reproductive and respiratory syndrome virus (PRRSV) causes an acute, viremic infection of 4 to 6 weeks, followed by a persistent infection lasting for several months. We characterized antibody and B-cell responses to viral proteins in acute and persistent infection to better understand the immunological basis of the prolonged infection. The humoral immune response to PRRSV was robust overall and varied among individual viral proteins, with the important exception of a delayed and relatively weak response to envelope glycoprotein 5 (GP5). Memory B cells were in secondary lymphoid organs, not in bone marrow or Peyer's patches, in contrast to the case for many mammalian species. Potent anti-PRRSV memory responses were elicited to recall antigen in vitro, even though a second infection did not increase the B-cell response in vivo, suggesting that productive reinfection does not occur in vivo. Antibody titers to several viral proteins decline over time, even though abundant antigen is known to be present in lymphoid tissues, possibly indicating ineffective antigen presentation. The appearance of antibodies to GP5 is delayed relative to the resolution of viremia, suggesting that anti-GP5 antibodies are not crucial for resolving viremia. Lastly, viral infection had no immunosuppressive effect on the humoral response to a second, unrelated antigen. Taking these data together, the active effector and memory B-cell responses to PRRSV are robust, and over time the humoral immune response to PRRSV is effective. However, the delayed response against GP5 early in infection may contribute to the prolonged acute infection and the establishment of persistence.  相似文献   

7.
Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped RNA virus of the Arteriviridae family, genomically related to the coronaviruses. PRRSV is the causative agent of both severe and persistent respiratory disease and reproductive failure in pigs worldwide. The PRRSV virion contains a core made of the 123 amino acid nucleocapsid (N) protein, a product of the ORF7 gene. We have determined the crystal structure of the capsid-forming domain of N. The structure was solved to 2.6 A resolution by SAD methods using the anomalous signal from sulfur. The N protein exists in the crystal as a tight dimer forming a four-stranded beta sheet floor superposed by two long alpha helices and flanked by two N- and two C-terminal alpha helices. The structure of N represents a new class of viral capsid-forming domains, distinctly different from those of other known enveloped viruses, but reminiscent of the coat protein of bacteriophage MS2.  相似文献   

8.
[目的]建立猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)易感的猪CD151转基因PK-15细胞系,研究CD151分子在PRRSV感染猪源细胞中的作用.[方法]用RT-PCR从猪肺泡巨噬细胞中扩增CD151全长cDNA,测序正确后克隆人真核表达载体pcDNA3;用重组载体pcDNA-CD151转染PK-15细胞,经G418抗性筛选获得转基因细胞系PK15-CD151,用RT-PCR和免疫荧光试验检测CD151表达;用VR-2332株PRRSV分别感染PK-15细胞、PK15-CD151细胞、MARC-145细胞和3D4-CD163细胞,定期观察细胞病变,用RT-PCR和免疫荧光试验检测病毒RNA基因组和病毒抗原,用半数组织细胞感染剂量测定病毒滴度.[结果]从猪巨噬细胞中克隆得序列正确的猪CD151 cDNA;从重组载体转染的PK-15细胞培养中筛选得G418抗性细胞克隆,并能正确表达猪CD151分子;在PRRSV感染后,PK15-CD151细胞虽然不表现明显的细胞病变,但能检测到病毒RNA基因组和病毒抗原,并能产生较高滴度的感染性病毒;该细胞系已在体外传30代以上,第10、20、30代细胞的PRRSV滴度无明显变化.[结论]猪CD151基因转染能使非易感PK-15细胞获得对PRRSV的易感性,提示猪CD151参与PRRSV感染猪源细胞.  相似文献   

9.
10.
<正>Dear Editor,Porcine reproductive and respiratory syndrome virus(PRRSV),a member of the family Arteriviridae,represents one of the most challenging pathogens in the swine industry,with serious economic impact.Unfortunately,despite widespread application,vaccination has not been  相似文献   

11.
Postweaning multisystemic wasting syndrome (PMWS) is a disease of nursery and fattening pigs characterized by growth retardation, paleness of the skin, dyspnea, and increased mortality rates. Porcine circovirus 2 (PCV2) has been demonstrated to be the cause of PMWS. However, other factors are needed for full development of the syndrome, and porcine reproductive and respiratory syndrome virus (PRRSV) infection has been suggested to be one of them. Twenty-four conventional 5-week-old pigs were distributed in four groups: control (n = 5), PRRSV inoculated (n = 5), PCV2 inoculated (n = 7), and PRRSV and PCV2 inoculated (n = 7). The two groups inoculated with PRRSV showed growth retardation. Pigs inoculated with both PRRSV and PCV2 had increased rectal temperature. One of these pigs developed wasting, had severe respiratory distress, and died. The most important microscopic lesion in pigs inoculated with PCV2 was lymphocyte depletion with histiocytic infiltration of the lymphoid organs, more severe and in a wider range of tissues in doubly inoculated pigs. Interstitial pneumonia was observed in the three inoculated groups. PCV2 nucleic acid was found by in situ hybridization in larger amounts and in a wider range of lymphoid tissues in PRRSV- and PCV2-inoculated than in PCV2-inoculated pigs. TaqMan PCR was performed to quantify the PCV2 loads in serum during the experiment. PCV2 loads were higher in doubly inoculated pigs than in pigs inoculated with PCV2 alone. These findings indicate that severe disease can be reproduced in conventional 5-week-old pigs by inoculation of PRRSV and PCV2. Moreover, these results support the hypothesis that PRRSV infection enhances PCV2 replication.  相似文献   

12.
Porcine reproductive and respiratory syndrome virus (PRRSV) shows a very restricted tropism for cells of the monocyte/macrophage lineage. It enters cells via receptor-mediated endocytosis. A monoclonal antibody (MAb) that is able to block PRRSV infection of porcine alveolar macrophages (PAM) and that recognizes a 210-kDa protein (p210) was described previously (MAb41D3) (X. Duan, H. Nauwynck, H. Favoreel, and M. Pensaert, J. Virol. 72:4520-4523, 1998). In the present study, the p210 protein was purified from PAM by immunoaffinity using MAb41D3 and was subjected to internal peptide sequencing after tryptic digestion. Amino acid sequence identities ranging from 56 to 91% with mouse sialoadhesin, a macrophage-restricted receptor, were obtained with four p210 peptides. Using these peptide data, the full p210 cDNA sequence (5,193 bp) was subsequently determined. It shared 69 and 78% amino acid identity, respectively, with mouse and human sialoadhesins. Swine (PK-15) cells resistant to viral entry were transfected with the cloned p210 cDNA and inoculated with European or American PRRSV strains. Internalized virus particles were detected only in PK-15 cells expressing the recombinant sialoadhesin, demonstrating that this glycoprotein mediated uptake of both types of strains. However, nucleocapsid disintegration, like that observed in infected Marc-145 cells as a result of virus uncoating after fusion of the virus with the endocytic vesicle membrane, was not observed, suggesting a block in the fusion process. The ability of porcine sialoadhesin to mediate endocytosis was demonstrated by specific internalization of MAb41D3 into PAM. Altogether, these results show that sialoadhesin is involved in the entry process of PRRSV in PAM.  相似文献   

13.
In the present study, the in vitro interaction of embryos with pseudorabies virus (PRV) and porcine reproductive and respiratory syndrome virus (PRRSV) was investigated by viral antigen detection and by evaluating the expression of virus receptors, namely, poliovirus receptor-related 1 (PVRL1; formerly known as nectin 1) for PRV and sialoadhesin for PRRSV. Embryonic cells of zona pellucida intact embryos incubated with PRV remained negative for viral antigens. Also, no antigen-positive cells could be detected after PRV incubation of protease-treated embryos, since the protease disrupted the expression of PRVL1. However, starting from the five-cell-stage onwards, viral antigen-positive cells were detected after subzonal microinjection of PRV. At this stage, the first foci of PVRL1, also a known cell adhesion molecule, were expressed. At the expanded blastocyst stage, a lining pattern of PVRL1 in the apicolateral border of trophectoderm cells was present, whereas the expression in the inner cell mass was low. Furthermore, PVRL1-specific monoclonal antibody CK41 significantly blocked PRV infection of trophectoderm cells of hatched blastocysts, while the infection of the inner cell mass was only partly inhibited. Viral antigen-positive cells were never detected after PRRSV exposure of preimplantation embryos up to the hatched blastocyst stage. Also, expression of sialoadhesin in these embryonic stages was not detected. We conclude that the use of protease to investigate the virus embryo interaction can lead to misinterpretation of results. Results also show that blastomeres of five-cell embryos up to the hatched blastocysts can become infected with PRV, but there is no risk of a PRRSV infection.  相似文献   

14.
Porcine reproductive and respiratory syndrome virus (PRRSV) has been reported to be shed in the semen of infected boars. To determine whether the reproductive tissues could be a persistent source of virus and the possible origin of PRRSV found in semen of infected boars, 20 PRRSV-seronegative boars were intranasally inoculated with 5 x 10(6) median tissue culture infective doses (TCID50) of PRRSV and necropsied at different times post-inoculation (p.i.) from Day 2 to Day 37 p.i. Blood samples were collected before experimental inoculation, at necropsy and at different times p.i. At necropsy, epididymal semen and reproductive tissues were collected and the presence of the virus determined by virus isolation. The infection of the boars was demonstrated by the isolation of the virus from the sera of all inoculated boars and by seroconversion. PRRSV was detected in serum samples from Day 2 to Day 23 p.i., although the viremic period was largely dependent on the individual response to infection. Viral replication was proven within different reproductive tissues from Day 2 to Day 23 p.i., being most consistently found in the epididymus. In addition, PRRSV was isolated in semen from Day 4 to Day 10 p.i. The correlation of a diminished viremia and the inability to isolate PRRSV from semen or reproductive tissues may be due to one of two possibilities. First, viremia is responsible for most of the virus isolated from reproductive tissues due to the movement of PRRSV-infected cells out of the blood and into the tissues. Second, viremia may initially seed the reproductive tissues with PRRSV, and then the virus is produced into the reproductive tract and shed into semen at low levels.  相似文献   

15.
Porcine reproductive and respiratory syndrome (PRRS) viruses are recognized as possessing a high degree of genetic and antigenic variability. Viral diversity has led to questions regarding the association of virus mutation and persistent infection in the host and has raised concerns vis-à-vis protective immunity, the ability of diagnostic assays to detect novel variants, and the possible emergence of virulent strains. The purpose of this study was to describe ongoing changes in PRRS virus during replication in pigs under experimental conditions. Animals were inoculated with a plaque-cloned virus derived from VR-2332, the North American PRRS virus prototype. Three independent lines of in vivo replication were maintained for 367 days by pig-to-pig passage of virus at 60-day intervals. A total of 315 plaque-cloned viruses were recovered from 21 pigs over the 367-day observation period and compared to the original plaque-cloned virus by virus neutralization assay, monoclonal antibody analysis, and sequencing of open reading frames (ORFs) 1b (replicase), 5 (major envelope protein), and 7 (nucleocapsid) of the genome. Variants were detected by day 7 postinoculation, and multiple variants were present concurrently in every pig sampled over the observation period. Sequence analysis showed ORFs 1b and 7 to be highly conserved. In contrast, sequencing of ORF 5 disclosed 48 nucleotide variants which corresponded to 22 amino acid variants. Although no epitopic changes were detected under the conditions of this experiment, PRRS virus was shown to evolve continuously in infected pigs, with different genes of the viral genome undergoing various degrees of change.  相似文献   

16.
Porcine reproductive and respiratory syndrome virus   总被引:20,自引:0,他引:20  
Cho JG  Dee SA 《Theriogenology》2006,66(3):655-662
Porcine reproductive and respiratory disease (PRRS) is an economically important disease around the globe; it has been estimated to cost the swine industry in USA approximately 560 million US dollars annually. It is well established that PRRS is caused by an enveloped, single-stranded positive-sense RNA virus known as porcine reproductive and respiratory syndrome virus (PRRSV). The inability to successfully control PRRS across farms via traditional methods (e.g. vaccine and animal flow) has led to a growing interest in area-based eradication. Important to such an initiative is information on PRRSV transmission within and between herds and intervention strategies to prevent its spread. This paper will review the current literature on selected areas of PRRS known to be important to the topic of pathogen elimination, including etiology, clinical manifestations, direct and indirect routes of transmission, as well as discuss measures for disease control, prevention and eradication.  相似文献   

17.
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important swine pathogens because it is highly infectious and causes economic losses due to decreased pig productivity. In this study, the 603 bp complete major envelope protein encoding gene (ORF5) of 32 field PRRSV isolates from Vietnam collected during 2008–2012 were sequenced and analyzed. Multiple nucleotide (nt) and deduced amino acid (aa) alignments of ORF5 were performed on the 32 isolates: the representative strains (European and North American genotypes), Chinese strains available in GenBank and vaccine strains licensed for use in Vietnam. The results showed 94.8–100.0% nt identity and 94.0–100% aa similarity among the 32 isolates. These isolates shared similarities with the prototype of the North American PRRSV strain (VR‐2332; nt 87.8–89.3%, aa 87.5–90.0%), and Lelystat virus, the prototype of the European PRRSV strain (LV; nt 61.1–61.9%, aa 55.1‐57.0%). There was greater similarity with QN07 (nt 96.5‐98.5%, aa 96.0‐99.0%) from the 2007 PRRS outbreak in QuangNam Province, CH‐1a (nt 93.2–95.1%, 91.5–93.5%) isolated in China in 1995 and JXA1 (nt 96.5–98.6%, aa 95.0–98.0%), the highly pathogenic strain from China isolated in 2006. The Vietnamese isolates were more similar to JXA1‐R (nt 96.5–98.6%, aa 95.0–98.0%), the strain used in Chinese vaccines, than to Ingelvac MLV/BSL‐PS (nt 87.2–89.0%, aa 86.0–89.0%). Phylogenetic analysis showed that the 32 isolates were of the North American genotype and classified into sub‐lineage 8.7. This sub‐lineage contains highly pathogenic Chinese PRRSV strains. This study documents genetic variation in circulating PRRSV strains and could assist more effective use of PRRS vaccines in Vietnam.  相似文献   

18.
In recent years, no reports regarding genetic information on porcine reproductive and respiratory syndrome virus (PRRSV) with a focus on Japan have been published. To clarify the effect of time on PRRSV genomic evolution, we sequenced the open reading frame 5 (600 or 603 bases) obtained from Japanese PRRSV isolates for three periods (1992-1993, 2000-2001, and 2007-2008) and compared their phylogenetic relationships. Assessment of mean pairwise homology of nucleotide sequences of PRRSV isolates indicated a trend towards increasing heterogeneity over time. In addition, we newly detected a virus classified in cluster IV, indicative of the increasing genetic variation of PRRSV in Japan.  相似文献   

19.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a persistent threat of economically significant influence to the swine industry worldwide. Recombinant DNA technology coupled with tissue culture technology is a viable alternative for the inexpensive production of heterologous proteins in planta. Embryogenic cells of banana cv. ‘Pei chiao’ (AAA) have been transformed with the ORF5 gene of PRRSV envelope glycoprotein (GP5) using Agrobacterium‐mediated transformation and have been confirmed. Recombinant GP5 protein levels in the transgenic banana leaves were detected and ranged from 0.021%–0.037% of total soluble protein. Pigs were immunized with recombinant GP5 protein by orally feeding transgenic banana leaves for three consecutive doses at a 2‐week interval and challenged with PRRSV at 7 weeks postinitial immunization. A vaccination‐dependent gradational increase in the elicitation of serum and saliva anti‐PRRSV IgG and IgA was observed. Furthermore, significantly lower viraemia and tissue viral load were recorded when compared with the pigs fed with untransformed banana leaves. The results suggest that transgenic banana leaves expressing recombinant GP5 protein can be an effective strategy for oral delivery of recombinant subunit vaccines in pigs and can open new avenues for the production of vaccines against PRRSV.  相似文献   

20.
Following the 2006 outbreaks of the highly pathogenic porcine reproductive and respiratory syndrome, the causative agent was identified as the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV). To investigate whether the HP-PRRSV variant continues circulating and accelerating evolution, we sequenced and analyzed the complete genome of the identified HP-PRRSV field strain SD16. The sequence data indicate that the HP-PRRSV variant continues to prevail and accelerate evolution, especially in the nonstructural protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号