首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Nucleoid Associated Proteins (NAPs) organize the bacterial chromosome within the nucleoid. The interaction of the NAP H-NS with DNA also represses specific host and xenogeneic genes. Previously, we showed that the bacteriophage T4 early protein MotB binds to DNA, co-purifies with H-NS/DNA, and improves phage fitness. Here we demonstrate using atomic force microscopy that MotB compacts the DNA with multiple MotB proteins at the center of the complex. These complexes differ from those observed with H-NS and other NAPs, but resemble those formed by the NAP-like proteins CbpA/Dps and yeast condensin. Fluorescent microscopy indicates that expression of motB in vivo, at levels like that during T4 infection, yields a significantly compacted nucleoid containing MotB and H-NS. motB overexpression dysregulates hundreds of host genes; ∼70% are within the hns regulon. In infected cells overexpressing motB, 33 T4 late genes are expressed early, and the T4 early gene repEB, involved in replication initiation, is up ∼5-fold. We postulate that MotB represents a phage-encoded NAP that aids infection in a previously unrecognized way. We speculate that MotB-induced compaction may generate more room for T4 replication/assembly and/or leads to beneficial global changes in host gene expression, including derepression of much of the hns regulon.  相似文献   

5.
6.
The genome sequence of the Enterobacteriaceae phytopathogen Dickeya dadantii (formerly Erwinia chrysanthemi) revealed homologs of genes required for a complete flagellar secretion system and one flagellin gene. We found that D. dadantii was able to swim and swarm but that ability to swarm was dependent upon both growth media and temperature. Mutation of the D. dadantii fliA gene was pleiotropic, with the alternate sigma factor required for flagella production and development of disease symptoms but not bacterial growth in Nicotiana benthamiana leaves. The flagellar sigma factor was also required for multiple bacterial phenotypes, including biofilm formation in culture, bacterial adherence to plant tissue, and full expression of pectate lyase activity (but not cellulase or protease activity). Surprisingly, mutation of fliA resulted in the increased expression of avrL (a gene of unknown function in D. dadantii) and two pectate lyase gene homologs, pelX and ABF-0019391. Because FliA is a key contributor to virulence in D. dadantii, it is a new target for disease control.  相似文献   

7.
8.
9.
The H-NS (H1) protein is a major component of bacterial chromatin. Mutations in the hns (osmZ) gene encoding H-NS are highly pleiotropic, affecting the expression of many unrelated genes in an allele-specific manner. H-NS expression was found not to vary with growth phase or growth medium osmolarity. Additionally, 10 independent hns mutations were isolated and characterized. Five of these mutations were the result of an IS10 insertion, each generating a truncated polypeptide. The other five mutations were the same specific deletion of one amino acid, delta Ala46. The various hns mutations exhibited different phenotypes and influenced DNA topology to variable extents. Implications for the mechanism by which H-NS influences gene expression are discussed.  相似文献   

10.
Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization.  相似文献   

11.
Histone-like nucleoid structuring protein (H-NS) is a modular protein that is associated with the bacterial nucleoid. We used chromatin immunoprecipitation to determine the binding sites of H-NS and RNA polymerase on the Salmonella enterica serovar Typhimurium chromosome. We found that H-NS does not bind to actively transcribed genes and does not co-localize with RNA polymerase. This shows that H-NS principally silences gene expression by restricting the access of RNA polymerase to the DNA. H-NS had previously been shown to preferentially bind to curved DNA in vitro. In fact, at the genomic level we discovered that the level of H-NS binding correlates better with the AT-content of DNA. This is likely to have evolutionary consequences because we show that H-NS binds to many Salmonella genes acquired by lateral gene transfer, and functions as a gene silencer. The removal of H-NS from the cell causes un-controlled expression of several Salmonella pathogenicity islands, and we demonstrate that this has deleterious consequences for bacterial fitness. Our discovery of this novel role for H-NS may have implications for the acquisition of foreign genes by enteric bacteria.  相似文献   

12.
Dickeya dadantii is a broad host range phytopathogenic bacterium provoking soft rot disease on many plants including Arabidopsis. We showed that, after D. dadantii infection, the expression of the Arabidopsis BOS1 gene was specifically induced by the production of the bacterial PelB/C pectinases able to degrade pectin. This prompted us to analyze the interaction between the bos1 mutant and D. dadantii. The phenotype of the infected bos1 mutant is complex. Indeed, maceration symptoms occurred more rapidly in the bos1 mutant than in the wild type parent but at a later stage of infection, a necrosis developed around the inoculation site that provoked a halt in the progression of the maceration. This necrosis became systemic and spread throughout the whole plant, a phenotype reminiscent of that observed in some lesion mimic mutants. In accordance with the progression of maceration symptoms, bacterial population began to grow more rapidly in the bos1 mutant than in the wild type plant but, when necrosis appeared in the bos1 mutant, a reduction in bacterial population was observed. From the plant side, this complex interaction between D. dadantii and its host includes an early plant defence response that comprises reactive oxygen species (ROS) production accompanied by the reinforcement of the plant cell wall by protein cross-linking. At later timepoints, another plant defence is raised by the death of the plant cells surrounding the inoculation site. This plant cell death appears to constitute an efficient defence mechanism induced by D. dadantii during Arabidopsis infection.  相似文献   

13.
14.
15.
HrpX/Y is a putative two-component system (TCS) encoded within the type III secretion system (T3SS) gene cluster of Dickeya dadantii. A linear regulatory cascade initiated by HrpX/Y that leads to activation of the downstream T3SS genes via HrpS and HrpL was described previously. Therefore, in D. dadantii, HrpX/Y plays an important role in regulation of genes involved in bacteria-plant interactions and bacterial aggregation via the T3SS. HrpX/Y is the only TCS shared among the plant-pathogenic enterobacteria that is not also present in animal-associated enterobacteria. To date, the genes known to be regulated by HrpY are restricted to the hrp and hrc genes and no signal has been identified that triggers HrpY-dependent gene expression. We demonstrated that HrpY interacts with the hrpS promoter in vitro. We then used a transposon-based system to isolate previously unidentified HrpY-dependent genes, including genes previously shown to affect virulence, including kdgM and acsC. HrpY is a dual regulator, positively regulating at least 10 genes in addition to those in the hrp gene cluster and negatively regulating at least 5 genes. The regulatory effect on one gene depended on the culture medium used. Of the 16 HrpY-regulated genes identified in this screen, 14 are not present in Pectobacterium atrosepticum, the nearest relative of D. dadantii with a sequenced genome. None of the newly identified HrpY-regulated genes were required for bacterial aggregation; thus, neither acyl-homoserine lactone-mediated quorum sensing nor the Rcs signal transduction system which regulates colanic acid, a molecule that plays an important role in biofilm formation in other enterobacteria, are required for D. dadantii aggregation.  相似文献   

16.
17.
Jasmonate is a key signalling compound in plant defence that is synthesized in wounded tissues. In this work, we have found that this molecule is also a strong chemoattractant for the phythopathogenic bacteria Dickeya dadantii (ex- Erwinia chysanthemi ). Jasmonic acid induced the expression of a subset of bacterial genes possibly involved in virulence/survival in the plant apoplast and bacterial cells pre-treated with jasmonate showed increased virulence in chicory and Saintpaulia leaves. We also showed that tissue wounding induced bacterial spread through the leaf surface. Moreover, the jasmonate-deficient aos1 Arabidopsis thaliana mutant was more resistant to bacterial invasion by D. dadantii than wild-type plants. These results are consistent with the hypothesis that sensing jasmonic acid by this bacterium helps the pathogen to ingress inside plant tissues.  相似文献   

18.
19.
The expression of genes coding for determinants of DNA topology in the facultative intracellular pathogen Salmonella typhimurium was studied during adaptation by the bacteria to the intracellular environment of J774A.1 macrophage-like cells. A reporter plasmid was used to monitor changes in DNA supercoiling during intracellular growth. Induction of the dps and spv genes, previously shown to be induced in the macrophage, was detected, as was expression of genes coding for DNA gyrase, integration host factor and the nucleoid-associated protein H-NS. The topA gene, coding for the DNA relaxing enzyme topoisomerase I, was not induced. Reporter plasmid data showed that bacterial DNA became relaxed following uptake of S. typhimurium cells by the macrophage. These data indicate that DNA topology in S. typhimurium undergoes significant changes during adaptation to the intracellular environment. A model describing how this process may operate is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号