首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rouse  Greg W. 《Hydrobiologia》2005,549(1):167-178
This paper provides data on fine particulate organic matter (FPOM) and macroinvertebrates associated to natural and artificial leaf packs in a small woodland stream (Schlaube, Brandenburg). Macroinvertebrate colonisation and the dynamics of FPOM were studied in oven-dried alder leaf packs, air-dried alder leaf packs and packs with artificial leafshaped substrate exposed in the stream during a 68-day period. The importance of FPOM as a potential food source for macroinvertebrates especially in artificial leaf packs was evaluated. Changes in the quantity as well as in the chemical composition of the accumulating FPOM (>63 and <63 μm) was determined using soluble carbohydrates, proteins and chlorophyll a as parameters of the nutritional quality. Mass loss and the chemical changes of alder leaves during the decompositional process were also described. The loss of soluble carbohydrates due to leaching was more rapid in oven-dried alder leaf packs than in air-dried ones. After 3 days of leaf pack exposure weight loss of oven-dried and air-dried leaf packs was nearly comparable, as the similar decay coefficients, k = 0.0228 (oven-dried leaf packs) and k = 0.0214 (air-dried leaf packs), respectively, show. The amount of FPOM per unit leaf area constantly increased in artificial packs, although it remained below that of alder leaf packs at all sampling dates. The nutritional quality of FPOM <63 μm was constantly greater than that of FPOM >63 μm and decreased in both size-fractions with length of exposure. Referring to leaf area the abundance of macroinvertebrates continually increased in all packs till the end of exposure, whereas the numbers in artificial packs remained below that in alder leaf packs. The taxonomic composition of all treatments was very similar with Gammarus pulex being the most abundant taxon in all packs until day 42, while afterwards the caddis fly genus Hydropsyche gained in importance. The amphipod Gammarus pulex in general did not show a preference for air-dried alder leaf packs compared to oven-dried alder leaf and artificial packs. Corresponding dynamics of macroinvertebrate colonisation and FPOM content in artificial packs support the hypothesis that FPOM functions not only as an important food source for macroinvertebrates including gammarideans but also as a control mechanism of macroinvertebrate abundance in stream habitats. Even if the accumulation of FPOM and drifting macroinvertebrates might be influenced by the same abiotic factor (e.g. by reduction in stream velocity inside the packs) it is quite unlikely that only physical properties caused the invertebrates to stay.  相似文献   

3.
The sperm entry site (SES) of zebrafish (Brachydanio rerio) eggs was studied before and during fertilization by fluorescence, scanning, and transmission electron microscopy. Rhodamine phalloidin (RhPh), used to detect polymerized filamentous actin, was localized to microvilli of the SES and to cytoplasm subjacent to the plasma membrane in the unfertilized egg. The distribution of RhPh staining at the SES correlated with the ultrastructural localization of a submembranous electrondense layer of cortical cytoplasm approximately 500 nm thick and containing 5- to 6-nm filaments. Actin, therefore, was organized at the SES as a tightly knit meshwork of filaments prior to fertilization. Contact between the fertilizing sperm and the filamentous actin network was observed by 15-20 sec postinsemination or just before the onset of fertilization cone formation. Growing fertilization cones of either artificially activated or inseminated eggs exhibited intense RhPh staining and substantial increase in thickness of the actin meshwork. Collectively, TEM and RhPh fluorescence images of inseminated eggs demonstrated that the submembranous actin became rearranged in fertilization cones to form a thickened meshwork around the sperm nucleus during incorporation. The results reported here suggest that activation of the egg triggers a dramatic polymerization of actin beneath the plasma membrane of the fertilization cone. Furthermore, the actin involved in sperm incorporation is sensitive to the action of cytochalasins.  相似文献   

4.
The present study examined the role of the cytoskeleton in sperm entry and migration through the egg cytoplasm during fertilization in the zebra mussel, Dreissena polymorpha (Bivalvia: Veneroida: Dreissenidae). Fertilization in this freshwater bivalve occurs outside the mantle cavity, permitting detailed observations of fertilization. After its initial binding to the egg surface, the sperm is incorporated in two stages: (1) a gradual incorporation of the sperm nucleus into the egg cortex, followed by (2) a more rapid incorporation of the sperm axoneme, and translocation of the sperm head through the egg cytoplasm. Initial incorporation into the egg cortex was shown to be microfilament dependent. Microfilaments were found in the sperm's preformed acrosomal filament, the microvilli on the egg surface, and in an actin-filled insemination cone surrounding the incorporating sperm. Treatment of eggs with cytochalasin B inhibited sperm entry in a dose- and time-dependent manner. Microtubule polymerization was not necessary for initial sperm entry. Following incorporation of the sperm head, the flagellar axoneme entered the egg cytoplasm and remained active for several minutes. Associated with the incorporated axoneme was a flow of cytoplasmic particles originating near the proximal end of the flagella. Inhibition of microtubule polymerization prevented entry of the sperm axoneme, and the subsequent cytoplasmic current was not observed. After sperm incorporation into the egg cortex, no appreciable microfilaments were associated with the sperm nucleus. A diminutive sperm aster was associated with the sperm nucleus during its decondensation, but no obvious extension toward the female pronucleus was observed. The sperm aster was significantly smaller than the spindle associated with the female pronucleus, suggesting a reduced role for the sperm aster in amphimixis.  相似文献   

5.
Following insemination of spermatozoa pre-ovulation, the mammalian oviduct ensures, by the formation of a functional sperm reservoir (SR), that suitable (low) numbers of viable and potentially fertile spermatozoa are available for fertilization at the ampullary isthmic junction (AIJ). As ovulation approaches, a proportion of the SR-stored spermatozoa is continuously distributed towards the AIJ and individually activated leading to step-wise capacitation and the attainment of hyperactivated motility. This paper reviews in vivo changes in the intra-luminal milieu of the oviduct of pigs and cows, in particular the SR and the AIJ which relate to the modulation of sperm capacitation around spontaneous ovulation. In vivo, most viable spermatozoa in the pre-ovulatory SR are uncapacitated. Capacitation rates significantly increase after ovulation, apparently not massively but concurrent with the individual, continuous sperm dislocation from the SR. Bicarbonate, whose levels differ between the SR and the AIJ, appears as the common primary effector of the membrane destabilizing changes that encompasses the first stages of capacitation. Sperm activation can be delayed or even reversed by co-incubation with membrane proteins of the tubal lining, isthmic fluid or specific tubal glycosaminoglycans, such as hyaluronan. Although the pattern of response to in vitro induction of sperm activation - capacitation in particular - is similar for all spermatozoa, the capacity and speed of the response is very individual. Such diversity in responsiveness among spermatozoa insures full sperm viability before ovulation and the presence of spermatozoa at different stages of capacitation at the AIJ, thus maximizing the chances of normal fertilization.  相似文献   

6.
Single-celled myxamoebae undergo differentiation into either stalk cells or spore cells during a 24-hr period in Dictyostelium discoideum. This study employed ultramicrochemical techniques and enzymatic cycling to assess the presence of cell-specific events in spore and stalk cells. Freeze-dried sections of one organism were assayed in 0.1 μl of reaction mixture. This method was used to determine the extent of localization of trehalose in spore cells and stalk cells during development.Trehalose was low in the early stages of differentiation to about 20 hr when the level started to increase. In developing spore cells, the trehalose level increased sixfold during the last 5 hr of development. Likewise, the entire stalk contained trehalose when the stalk was first formed. At mature sorocarp, trehalose levels were the same in spores and the apex of the stalk. There was a decreasing gradient of trehalose down the stalk. The bottom one-fourth of the stalk was devoid of this disaccharide. Therefore, trehalose was degraded from an area of the stalk where it was localized earlier in development.The results of this investigation negate the assumption that trehalose is never present in the stalk. Although trehalose was found in spore cells, prestalk cells also contained high trehalose levels. The stalk cell-specific trehalose was not retained during differentiation, however, but was apparently degraded in the mature stalk cell.  相似文献   

7.

Background

When preparing for fertilization, oocytes undergo meiotic maturation during which structural changes occur in the endoplasmic reticulum (ER) that lead to a more efficient calcium response. During meiotic maturation and subsequent fertilization, the actin cytoskeleton also undergoes dramatic restructuring. We have recently observed that rearrangements of the actin cytoskeleton induced by actin-depolymerizing agents, or by actin-binding proteins, strongly modulate intracellular calcium (Ca2+) signals during the maturation process. However, the significance of the dynamic changes in F-actin within the fertilized egg has been largely unclear.

Methodology/Principal Findings

We have measured changes in intracellular Ca2+ signals and F-actin structures during fertilization. We also report the unexpected observation that the conventional antagonist of the InsP3 receptor, heparin, hyperpolymerizes the cortical actin cytoskeleton in postmeiotic eggs. Using heparin and other pharmacological agents that either hypo- or hyperpolymerize the cortical actin, we demonstrate that nearly all aspects of the fertilization process are profoundly affected by the dynamic restructuring of the egg cortical actin cytoskeleton.

Conclusions/Significance

Our findings identify important roles for subplasmalemmal actin fibers in the process of sperm-egg interaction and in the subsequent events related to fertilization: the generation of Ca2+ signals, sperm penetration, cortical granule exocytosis, and the block to polyspermy.  相似文献   

8.
Hyperactivated sperm progress in the mouse oviduct.   总被引:3,自引:0,他引:3  
Sperm from naturally mated mice were observed and videotaped moving within mouse oviducts. The typical pattern of sperm progress involved intermittently breaking free and swimming a short distance, then reattaching to the epithelium. The proportion of sperm that swam freely (were not attached to the epithelium) was calculated and analyzed for effects of oviductal region, ovulation status, and sperm location relative to the lumen. A significantly higher proportion of sperm were free in the ampulla than in the isthmus (26.3% +/- 0.8% vs. 11.8% +/- 1.0%; p less than 0.0001) and in post-ovulatory than pre-ovulatory (16.2% +/- 2.0% vs. 10.6% +/- 1.6%; p less than 0.05) oviducts. Flagellar curvature ratio values showed that free sperm (0.716 +/- 0.024) had more sharply curved tails than stuck sperm (0.782 +/- 0.013). While this difference is significant (p = 0.01), the effect of attachment status interacted significantly (p less than 0.05) with the oviductal region such that there was a greater difference in the isthmus than in the ampulla. Only sperm using the more curved tail beats of hyperactivation were seen to break free from the epithelium and to progress along the oviduct. These results indicate that hyperactivation plays a role in moving sperm out of the isthmic reservoir and to the site of fertilization.  相似文献   

9.
Unfertilized eggs of the rose bitterling (Rhodeus ocellatus ocellatus) were squeezed out of females that had an elongated ovipositor and were dechorionated mechanically with fine forceps in physiological saline. The dechorionated eggs were transferred into fresh water then inseminated at once by spermatozoa of the same species. A large number of spermatozoa was found on the surface of eggs that had not yet had cortical reaction following insemination. The surface of the naked eggs responded by formation of many small cytoplasmic protrusions (viz., fertilization cones) at sperm attachment sites. The formed fertilization cones were rosettelike structures formed by the aggregation of some bleblike swellings devoid of microvilli and microplicae. About 10 min after insemination, the fertilization cones retracted, but marks of their presence characterized by less microvilli and microplicae remained in the eggs 15 min after insemination. Many spermatozoa penetrated into the cytoplasm of each naked egg. The sperm nuclear envelope disappeared by means of vesiculation resulting from fusion of the inner and outer membranes. The sperm nucleus decondensed and developed into a larger male pronucleus. Smooth-surfaced vesicles surrounded the decondensing sperm nucleus and formed the new male pronuclear envelope. Sperm mitochondria and flagella were found in the egg 15 min after insemination. The response of the egg surface to sperm entry and pronucleus formation are discussed.  相似文献   

10.
Specific antibodies against the major chorionic glycoproteins (ZI1 -2 and ZI3) of unfertilized eggs were used to analyze the differences in the chorion and its surrounding constituents before and after fertilization. The glycoproteins in the inner layers of the chorion and its surrounding material were specifically stained by both of the antibodies. Thirty and 60 min after activation, the thickness of the chorion's inner layers was already reduced and the micropylar canal was closed. At the same time, the broadly diluted mucous area (DMA) of glycoproteins on the outermost layer of the chorion in unfertilized eggs was modified to a thin, compact layer. When unfertilized eggs were treated with trypsin, the inner third portion of the micropylar canal closed and the glycoproteins in the DMA were digested. The incidence of sperm entry into the micropyle of these eggs was extremely reduced. These results suggest that in medaka eggs, the chorionic glycoproteins in the DMA on the chorion surface, which have an affinity for spermatozo, play an important role in sperm guidance into the micropyle.  相似文献   

11.
Depolarization of the sea urchin egg's membrane is required for two processes during fertilization: the entry of the fertilizing sperm and the block to polyspermy which prevents the entry of supernumerary sperm. In an immature sea urchin oocyte, the depolarization is very small in response to the attachment of a sperm. The purpose of this study was to determine whether the depolarization evoked by sperm attaching to an oocyte can facilitate sperm entry or induce the block to polyspermy. Individual oocytes of the sea urchin with diameters which ranged from 86 to 102% that of the average diameter for mature eggs from the same female were examined. The oocytes have a membrane potential of -73 +/- 6 mV (SD, n = 80) and a very low input resistance compared to that of mature eggs. Single sperm, following attachment to an oocyte, elicit a brief, small depolarization with a maximum amplitude of 8 +/- 1.4 mV (SE, n = 15), frequently followed by the formation of tiny filament-like fertilization cones, but the sperm fail to enter. If oocytes are voltage-clamped at membrane potentials more negative than -20 mV, following attachment of the sperm small transient inward currents occur, similar filament-like cones form, and the sperm do not enter. When many sperm attach to an oocyte which is not voltage clamped, the depolarizations sum to create a large depolarization with an amplitude of 60 to 80 mV, which shifts the oocyte's membrane potential to a value between -10 and +5 mV; more positive values are not attained. At such membrane potentials, whether the potential is maintained by the summed depolarizations of many attached sperm or by voltage clamp, large fertilization cones form, the sperm enter, and the oocytes can become highly polyspermic. In oocytes voltage clamped at +20 mV, however, both sperm entry and fertilization cone formation are suppressed. Therefore, both types of voltage-dependence for sperm entry are present in oocytes, although the depolarization caused by a single sperm is not large enough to permit its entry, nor is the depolarization caused by many sperm sufficient to prevent the entry of supernumerary sperm.  相似文献   

12.
Regulation of sperm storage and movement in the mammalian oviduct   总被引:1,自引:0,他引:1  
The oviduct plays a vital role in ensuring successful fertilization and normal early embryonic development. The male inseminates many thousands or even millions of sperm, but this alone does not ensure that fertilization will be successful. The female tract, particularly the oviduct, provides filters that select for normal vigorously motile sperm. In conjunction with molecules in the seminal plasma and on sperm, the female tract regulates how and when sperm pass though the tract to reach the site of fertilization. Various regulatory processes control sperm passage into and through the oviduct. In some species, the uterotubal junction opens and closes to regulate when sperm may enter; furthermore, passage through the junction requires certain proteins on the sperm surface. Most of the sperm that manage to enter the oviduct soon become trapped and held in a reservoir. In marsupials and insectivores, this involves trapping sperm in mucosal crypts; while in most other mammalian species, this involves binding sperm to the oviductal epithelium. As the time of ovulation approaches, the sperm in the reservoir undergo capacitation, including motility hyperactivation. Capacitating sperm shed proteins that bind them to the mucosal epithelium, while hyperactivation assists the sperm in pulling off of the epithelium and escaping out of mucosal pockets. The process of sperm release is gradual, reducing chances of polyspermic fertilization. Released sperm may be guided towards the oocyte by secretions of the oviduct, cumulus cells, or oocyte. Hyperactivation likely assists sperm in penetrating the cumulus matrix and is absolutely required for penetrating the oocyte zona pellucida and achieving fertilization.  相似文献   

13.
This essay proposes that highly localized communication between free and bound spermatozoa in the caudal portion of the oviduct acts to regulate the numbers detaching from the epithelium and progressing to the site of fertilization close to the time of ovulation. Low initial sperm:egg ratios are essential for monospermic fertilization. Liberation of surface macromolecules and metabolic prompting from activated spermatozoa, together with altered patterns of sperm movement and dynamic differences in intracellular Ca2+ ion status between neighboring sperm cells, would influence the progressive release of spermatozoa from the reservoir in the oviduct isthmus. Different intensities of preovulatory epithelial binding, reflecting a range of states in the sperm surface membranes and associated proteins, would provide a further explanation for a chronologically staggered periovulatory detachment of spermatozoa. Intimate sperm–sperm interactions within the confines of the oviduct isthmus offer a sensitive means of fine-tuning the vanguard of competent male gametes reaching the isthmo-ampullary junction.  相似文献   

14.
Fertilization is a programmed process that has many molecules and sequential events amenable to study. The biochemistry of fertilization has identified cellular and acellular components fundamental to the interactions between sperm and egg. Recent studies highlight the molecular details of the species-specificity of fertilization that involve protein–protein and protein–carbohydrate interactions. Although the diversity of structure and mechanism may imply rapid evolution of fertilization proteins, understanding the structure–function relationships has become important. Here, we introduce the molecules controlling the sperm AR, sperm attachment to, and penetration through, the egg investments.  相似文献   

15.
The number of accessory sperm found in the zona pellucida of porcine embryos was correlated to their individual quality and to the embryo quality range found within a single sow. Our goal was to determine whether accessory sperm counts provide semen evaluation with additional, useful information. Accessory sperm count was highest when only normal embryos were found in a given sow and diminished if oocytes or degenerated embryos were present (P<0.01). Within a given sow, normal embryos had higher (P<0.05) accessory sperm counts than degenerated embryos, although not when oocytes were also present. Fertilization capacity of sperm is optimal when only normal embryos are found in a given sow; this capacity is indicated by high accessory sperm counts. A decrease in fertilization capacity is reflected in diminishing accessory sperm counts. The boar had a significant effect (P<0.01) on accessory sperm count, but not on the percentage of normal embryos; this suggests that accessory sperm may be more sensitive indicators of the fertilization capacity of sperm than the percentage of normal embryos. We conclude that accessory sperm count can be used for the detection of compensable defects in sperm and is a valid parameter for assessing sperm fertilization capacity.  相似文献   

16.
Summary Interspecies intracytoplasmic sperm injection has been carried out to understand species-specific differences in oocyte environments and sperm components during fertilization. While sperm aster organization during cat fertilization requires a paternally derived centriole, mouse and hamster fertilization occur within the maternal centrosomal components. To address the questions of where sperm aster assembly occurs and whether complete fertilization is achieved in cat oocytes by interspecies sperm, we studied the fertilization processes of cat oocytes following the injection of cat, mouse, or hamster sperm. Male and female pronuclear formations were not different in the cat oocytes at 6 h following cat, mouse or hamster sperm injection. Microtubule asters were seen in all oocytes following intracytoplasmic injection of cat, mouse or hamster sperm. Immunocytochemical staining with a histone H3-m2K9 antibody revealed that mouse sperm chromatin is incorporated normally with cat egg chromatin, and that the cat eggs fertilized with mouse sperm enter metaphase and become normal 2-cell stage embryos. These results suggest that sperm aster formation is maternally dependent, and that fertilization processes and cleavage occur in a non-species specific manner in cat oocytes.  相似文献   

17.
We have found ways to control in vitro fertilization in a ctenophore (Beroe ovata) for the first time. This is based on the existence of a partial block to self-fertilization at the time of gamete release which can be overcome by removal of the egg envelope. It has allowed us to exploit the excellent optical properties of Beroe eggs to make detailed observations on all events from sperm penetration or penetrations in these physiologically polyspermic eggs to first cleavage, and to extend our initial observations (Carré and Sardet, 1984). Sperm entry is characterized by local modifications of the egg cortex in a 70-microns zone around the penetration site or sites. Upon sperm entry, the egg surface contracts and relaxes locally, then a fertilization cone forms and disappears. These events are accompanied by localized exocytosis, growth of a ring of microvilli, thickening of the egg cortex, and gathering of mitochondria around the sperm pronuclei. The female pronucleus then migrates beneath the egg surface toward one or successive sperm pronuclei. The fusion of pronuclei, sperm and egg chromatin intermixing, and mitosis were also observed with exceptional clarity. Furthermore, we have noticed that the direction of the last trajectory of the female pronucleus tends to define the orientation of the mitotic spindle, and as a consequence the position of first unipolar cleavage furrow. This in turn determines the future sagittal plane of the embryo and of the adult B. ovata.  相似文献   

18.
Effect of ovulation on sperm transport in the hamster oviduct   总被引:1,自引:0,他引:1  
When hamsters mate shortly after the onset of oestrus (4.5-6 h before the onset of ovulation), spermatozoa are stored in the caudal isthmus of the oviduct until near the time of ovulation. At this time, a few spermatozoa ascend to the ampulla to fertilize the eggs. Superovulation resulted in a significant increase in the number of spermatozoa in the caudal isthmus at 6 h post coitus (p.c.) and in the ampulla and bursal cavity at 12 h p.c. Precocious ovulation resulted in a highly significant reduction in the total number of spermatozoa in the oviduct at 3 and 6 h p.c. This effect was completely overcome by intrauterine artificial insemination, suggesting lack of cervical patency as the block to sperm transport in precociously ovulated animals. Ligation of the ampulla-infundibulum junction in naturally ovulating hamsters resulted in significantly fewer spermatozoa in the caudal isthmus and ampulla at 12 h p.c. Preclusion of ovulation also resulted in fewer spermatozoa in the caudal isthmus and ampulla at 12 h p.c., suggesting that the products of ovulation stimulate sperm transport in the oviduct.  相似文献   

19.
Spermatozoa exhibit taxonomically widespread patterns of divergent morphological evolution. However, the adaptive significance of variation in sperm morphology remains unclear. In this study we examine the role of natural variation in sperm length on fertilization success in the dung beetle Onthophagus taurus. We conducted sperm competition trials between males that differed in the length of their sperm and determined the paternity of resulting offspring using amplified fragment length polymorphism (AFLP) markers. We also quantified variation in the size and shape of the female's sperm storage organ to determine whether female morphology influenced the competitiveness of different sperm morphologies. We found that fertilization success was biased toward males with relatively shorter sperm, but that selection on sperm length was dependent on female tract morphology; selection was directional for reduced sperm length across most of the spermathecal size range, but stabilizing in females with the smallest spermathecae. Our data provide empirical support for the theory that sperm competition should favor the evolution of numerous tiny sperm. Moreover, because sperm length is both heritable and genetically correlated with condition, our results are consistent with a process by which females can accrue genetic benefits for their offspring from the incitement of sperm competition and/or cryptic female choice, as proposed by the "sexy sperm" and "good sperm" models for the evolution of polyandry.  相似文献   

20.
The fallopian tube, or oviduct, is no longer considered merely a conduit that joins the uterine horns and the ovaries, being recognised as a venue for the capacitation of spermatozoa and fertilisation. However, recent evidence has implicated the oviduct in the stringent selection of spermatozoa prior to fertilisation, sperm storage prior to fertilisation, the regulation of sperm motility and possibly the guidance of spermatozoa towards the egg. Moreover, the arrival of spermatozoa within the oviduct is now known to regulate gene expression in oviductal epithelial cells with the consequent up- and downregulation of various proteins. In this review, we examine the emerging significance of sperm-oviduct interactions, as they relate to both physiological functions and the likelihood that the oviduct has a role in post-copulatory sperm selection by females (cryptic female choice) under conditions of sperm competition. The mechanisms by which sperm selection might operate still remain a mystery, especially when the underlying rationale for such mechanism appears to require the recognition by the female tract of sperm qualities related to the intrinsic integrity and information content of the sperm DNA. The oviduct not only selects against spermatozoa containing fragmented DNA but also imposes selection related to the fitness or quality of individual males. This implies the existence of, as yet unrecognised, mechanisms for the detection and interpretation of sperm-surface markers that link phenotypic and genotypic qualities of each individual cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号