首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The global COVID-19 coronavirus pandemic has infected over 109 million people, leading to over 2 million deaths up to date and still lacking of effective drugs for patient treatment. Here, we screened about 1.8 million small molecules against the main protease (Mpro) and papain like protease (PLpro), two major proteases in severe acute respiratory syndrome-coronavirus 2 genome, and identified 1851Mpro inhibitors and 205 PLpro inhibitors with low nmol/l activity of the best hits. Among these inhibitors, eight small molecules showed dual inhibition effects on both Mpro and PLpro, exhibiting potential as better candidates for COVID-19 treatment. The best inhibitors of each protease were tested in antiviral assay, with over 40% of Mpro inhibitors and over 20% of PLpro inhibitors showing high potency in viral inhibition with low cytotoxicity. The X-ray crystal structure of SARS-CoV-2 Mpro in complex with its potent inhibitor 4a was determined at 1.8 Å resolution. Together with docking assays, our results provide a comprehensive resource for future research on anti-SARS-CoV-2 drug development.  相似文献   

2.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19). Since its emergence, the COVID-19 pandemic has not only distressed medical services but also caused economic upheavals, marking urgent the need for effective therapeutics. The experience of combating SARS-CoV and MERS-CoV has shown that inhibiting the 3-chymotrypsin-like protease (3CLpro) blocks the replication of the virus. Given the well-studied properties of FDA-approved drugs, identification of SARS-CoV-2 3CLpro inhibitors in an FDA-approved drug library would be of great therapeutic value. Here, we screened a library consisting of 774 FDA-approved drugs for potent SARS-CoV-2 3CLpro inhibitors, using an intramolecularly quenched fluorescence (IQF) peptide substrate. Ethacrynic acid, naproxen, allopurinol, butenafine hydrochloride, raloxifene hydrochloride, tranylcypromine hydrochloride, and saquinavir mesylate have been found to block the proteolytic activity of SARS-CoV-2 3CLpro. The inhibitory activity of these repurposing drugs against SARS-CoV-2 3CLpro highlights their therapeutic potential for treating COVID-19 and other Betacoronavirus infections.  相似文献   

3.
The inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) and papain-like protease (PLpro) prevents viral multiplications; these viral enzymes have been recognized as one of the most favorable targets for drug discovery against SARS-CoV-2. In the present study, we screened 225 phytocompounds present in 28 different Indian spices to identify compounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro. Molecular docking, molecular dynamics simulation, molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) binding free energy calculations, and absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were done. Based on binding affinity, dynamics behavior, and binding free energies, the present study identifies pentaoxahexacyclo-dotriacontanonaen-trihydroxybenzoate derivative (PDT), rutin, and dihyroxy-oxan-phenyl-chromen-4-one derivative (DOC), luteolin-7-glucoside-4′-neohesperidoside as promising inhibitors of SARS-CoV-2 Mpro and PLpro, respectively.  相似文献   

4.
5.
新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)席卷全球,具有较高的传染性和死亡率,但目前尚缺乏安全有效的COVID-19疫苗与治疗药物.新型冠状病毒主蛋白酶(main protease,Mpro)的进化高度保守,在调控新冠病毒RNA复制中具有重要的生物学功能,已成为新型广谱抗冠状...  相似文献   

6.
新型冠状病毒主蛋白酶(main protease, Mpro)通过水解多聚蛋白质体(polyprotein)调控病毒基因组RNA复制,且人体不存在其同源蛋白酶,这使Mpro成为抗新型冠状病毒药物开发的理想靶标之一。本研究基于荧光偏振技术(fluorescence polarization,FP)和生物素-亲和素反应(biotin-avidin system, BAS)原理,成功地建立了三明治样荧光偏振筛选模型用于Mpro小分子抑制剂的快速筛选。通过对天然产物化合物库进行高通量筛选,发现了漆树酸(anacardic acid,AA)是Mpro的竞争型抑制剂,1,2,3,4,6-O-五没食子酰葡萄糖(1,2,3,4,6-O-pentagalloylglucose,PGG)是Mpro的混合型抑制剂,且已报道的部分抑制剂是非特异性Mpro小分子抑制剂。文中建立的三明治样荧光偏振筛选模型具有良好的简便性、灵敏性和稳定性,初步证实了漆树酸和PGG是一类新型苗头化合物,建立科学严谨的活性评价体系对于抗新型冠状病毒药物的筛选与发现是至关重要的。  相似文献   

7.
基于荧光共振能量转移(fluorescence resonance energy transfer, FRET)原理,以新冠病毒主蛋白酶(main protease, Mpro)为靶标,建立并应用Mpro小分子抑制剂FRET高通量筛选模型,以期快速筛选新型Mpro小分子抑制剂。利用大肠杆菌原核表达与分离纯化高活性的Mpro,再以FRET法进行比活力测定。基于FRET原理,以7-甲氧基香豆素-4-乙酸(7-methoxycoumarin-4-acetic acid, MCA)与2,4-二硝基苯酚(2,4-dinitropheno, Dnp)标记的多肽作为Mpro水解底物,通过优化反应缓冲液、Mpro反应浓度、反应温度与时间及DMSO耐受浓度,建立并应用Mpro小分子抑制剂FRET高通量筛选模型进行苗头化合物的筛选。利用大肠杆菌实现了高活性Mpro的原核表达与分离纯化,且比活力不低于40 000 U/mg。通过一系列优化实验,使用0.4μmol/L Mpro与5μmol/L底物建立了Z′因子值为0.79的Mpro小分子抑制剂FRET高通量筛选模型,且反应体系中含有的二硫苏糖醇(1,4-dithiothreitol,DTT)是影响FRET筛选模型可靠性的重要因素。通过对天然产物化合物库进行高通量筛选,发现白花丹素与银杏酸在体外对Mpro酶活性具有良好的抑制作用。本研究建立了基于FRET原理的Mpro小分子抑制剂高通量筛选模型,初步证实了白花丹素与银杏酸是一类新型苗头化合物,为抗新型冠状病毒药物先导化合物的筛选与发现奠定了基础。  相似文献   

8.
为确定治疗新型冠状病毒(SARS-CoV-2)感染的候选药物,开展了针对SARS-CoV-2的药物虚拟筛选研究。以SARS-CoV-2的刺突蛋白(S蛋白)和3CL蛋白酶(主蛋白酶)作为药物靶点,以美国食品药品监督管理局(FDA)批准上市的2 726个小分子药物作为候选,通过分子对接方法,筛选出了3种(阿巴瑞克(Abarelix)、西曲瑞克(Cetrorelix)、鞣酸(Tannic acid))与S蛋白具有较强结合能力的小分子药物,1种(戈舍瑞林(Goserelin))与3CL蛋白酶具有较好结合能力的小分子药物,它们理论上都具有抑制新型冠状病毒复制的效果。将靶向3CL蛋白酶的候选药物与辉瑞公司开发的药物Paxlovid进行比较,发现其作用位点均集中于3CL蛋白酶的第130-200位的残基周围,具有相似的结合位点与相互作用。此外也对候选药物的物理与化学性质及与基因相互作用进行了分析。本研究可为开发新型冠状病毒感染的治疗药物提供参考。  相似文献   

9.
Respiratory transmission is the primary route of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Angiotensin I converting enzyme 2 (ACE2) is the known receptor of SARS-CoV-2 surface spike glycoprotein for entry into human cells. A recent study reported absent to low expression of ACE2 in a variety of human lung epithelial cell samples. Three bioprojects (PRJEB4337, PRJNA270632 and PRJNA280600) invariably found abundant expression of ACE1 (a homolog of ACE2 and also known as ACE) in human lungs compared to very low expression of ACE2. In fact, ACE1 has a wider and more abundant tissue distribution compared to ACE2. Although it is not obvious from the primary sequence alignment of ACE1 and ACE2, comparison of X-ray crystallographic structures show striking similarities in the regions of the peptidase domains (PD) of these proteins, which is known (for ACE2) to interact with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Critical amino acids in ACE2 that mediate interaction with the viral spike protein are present and organized in the same order in the PD of ACE1. In silico analysis predicts comparable interaction of SARS-CoV-2 spike protein with ACE1 and ACE2. In addition, this study predicts from a list of 1263 already approved drugs that may interact with ACE2 and/or ACE1 and potentially interfere with the entry of SARS-CoV-2 inside the host cells.  相似文献   

10.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.  相似文献   

11.
12.
An outbreak of Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has been recognized as a global health concern. Since, no specific antiviral drug is proven effective for treatment against COVID-19, identification of new therapeutics is an urgent need. In this study, flavonoid compounds were analyzed for its inhibitory potential against important protein targets of SARS-CoV-2 using computational approaches. Virtual docking was performed for screening of flavonoid compounds retrieved from PubChem against the main protease of SARS-CoV-2 using COVID-19 docking server. The cut off of dock score was set to >?9 kcal/mol and screened compounds were individually docked against main protease, RNA-dependent RNA polymerase, and spike proteins using AutoDock 4.1 software. Finally, lead flavonoid compounds were subjected to ADMET analysis. A total of 458 flavonoid compounds were virtually screened against main protease target and 36 compounds were selected based on the interaction energy value >?9 kcal/mol. Furthermore, these compounds were individually docked against protein targets and top 10 lead compounds were identified. Among the lead compounds, agathisflavone showed highest binding energy value of ?8.4 kcal/mol against main protease, Albireodelphin showed highest dock score of ?9.8 kcal/mol and ?11.2 kcal/mol against RdRp, and spike proteins, respectively. Based on the high dock score and ADMET properties, top 5 lead molecules such as Albireodelphin, Apigenin 7-(6″-malonylglucoside), Cyanidin-3-(p-coumaroyl)-rutinoside-5-glucoside, Delphinidin 3-O-beta-D-glucoside 5-O-(6-coumaroyl-beta-D-glucoside) and (-)-Maackiain-3-O-glucosyl-6″-O-malonate were identified as potent inhibitors against main protease, RdRp, and spike protein targets of SARS-CoV-2. These all compounds are having non-carcinogenic and non-mutagenic properties. This study finding suggests that the screened compounds include Albireodelphin, Apigenin 7-(6″-malonylglucoside), Cyanidin-3-(p-coumaroyl)-rutinoside-5-glucoside, Delphinidin 3-O-beta-D-glucoside 5-O-(6-coumaroyl-beta-D-glucoside) and (-)-Maackiain-3-O-glucosyl-6″-O-malonate could be the potent inhibitors of SARS-CoV-2 targets.  相似文献   

13.
  1. Download : Download high-res image (257KB)
  2. Download : Download full-size image
  相似文献   

14.
  1. Download : Download high-res image (202KB)
  2. Download : Download full-size image
  相似文献   

15.
Fatty acids are implicated in the development of dyslipidemias, leading to type 2 diabetes and cardiovascular disease. We used a standardized small compound library to screen humanized yeast to identify compounds that inhibit fatty acid transport protein (FATP)-mediated fatty acid uptake into cells. This screening procedure used live yeast cells expressing human FATP2 to identify small compounds that reduced the import of a fluorescent fatty acid analog, 4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (C(1)-BODIPY-C(12)). The library used consisted of 2,080 compounds with known biological activities. Of these, approximately 1.8% reduced cell-associated C(1)-BODIPY-C(12) fluorescence and were selected as potential inhibitors of human FATP2-mediated fatty acid uptake. Based on secondary screens, 28 compounds were selected as potential fatty acid uptake inhibitors. Some compounds fell into four groups with similar structural features. The largest group was structurally related to a family of tricyclic, phenothiazine-derived drugs used to treat schizophrenia and related psychiatric disorders, which are also known to cause metabolic side effects, including hypertriglyceridemia. Potential hit compounds were studied for specificity of interaction with human FATP and efficacy in human Caco-2 cells. This study validates this screening system as useful to assess the impact of drugs in preclinical screening for fatty acid uptake.  相似文献   

16.
《Cell host & microbe》2022,30(10):1354-1362.e6
  1. Download : Download high-res image (202KB)
  2. Download : Download full-size image
  相似文献   

17.
Coronavirus disease 2019 (COVID-19) has emerged from China and globally affected the entire population through the human-to-human transmission of a newly emerged virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The genome of SARS-CoV-2 encodes several proteins that are essential for multiplication and pathogenesis. The main protease (Mpro or 3CLpro) of SARS-CoV-2 plays a central role in its pathogenesis and thus is considered as an attractive drug target for the drug design and development of small-molecule inhibitors. We have employed an extensive structure-based high-throughput virtual screening to discover potential natural compounds from the ZINC database which could inhibit the Mpro of SARS-CoV-2. Initially, the hits were selected on the basis of their physicochemical and drug-like properties. Subsequently, the PAINS filter, estimation of binding affinities using molecular docking, and interaction analyses were performed to find safe and potential inhibitors of SARS-CoV-2 Mpro. We have identified ZINC02123811 (1-(3-(2,5,9-trimethyl-7-oxo-3-phenyl-7H-furo[3,2-g]chromen-6-yl)propanoyl)piperidine-4-carboxamide), a natural compound bearing appreciable affinity, efficiency, and specificity towards the binding pocket of SARS-CoV-2 Mpro. The identified compound showed a set of drug-like properties and preferentially binds to the active site of SARS-CoV-2 Mpro. All-atom molecular dynamics (MD) simulations were performed to evaluate the conformational dynamics, stability and interaction mechanism of Mpro with ZINC02123811. MD simulation results indicated that Mpro with ZINC02123811 forms a stable complex throughout the trajectory of 100 ns. These findings suggest that ZINC02123811 may be further exploited as a promising scaffold for the development of potential inhibitors of SARS-CoV-2 Mpro to address COVID-19.  相似文献   

18.
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a global threat to human health has highlighted the need for the development of novel therapies targeting current and emerging coronaviruses with pandemic potential. The coronavirus main protease (Mpro, also called 3CLpro) is a validated drug target against coronaviruses and has been heavily studied since the emergence of SARS-CoV-2 in late 2019. Here, we report the biophysical and enzymatic characterization of native Mpro, then characterize the steady-state kinetics of several commonly used FRET substrates, fluorogenic substrates, and six of the 11 reported SARS-CoV-2 polyprotein cleavage sequences. We then assessed the suitability of these substrates for high-throughput screening. Guided by our assessment of these substrates, we developed an improved 5-carboxyfluorescein-based FRET substrate, which is better suited for high-throughput screening and is less susceptible to interference and false positives than existing substrates. This study provides a useful framework for the design of coronavirus Mpro enzyme assays to facilitate the discovery and development of therapies targeting Mpro.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号