首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inducing lymphopenia before adoptive cell transfer can improve the antitumor effect of donor immune cells. It was recently reported that lymphopenic conditions can initiate the differentiation of naive T cells into effector cells. Although T cells require a specific "strong" signal via TCR as well as costimulatory signals during Ag-driven differentiation, there has been little evidence to suggest any requirement for costimulatory signaling for the differentiation of naive T cells in a lymphopenic host. In this study, we demonstrate that naive CD8(+) T cells are indispensable for induction of antitumor effect, and, in addition to Ag-driven differentiation, CD28 signaling is essential for the differentiation of naive CD8(+) T cells into functional effector CTLs during homeostatic proliferation (HP). The systemic administration of IL-2 did not restore the antitumor effect induced by HP in the absence of CD28 signaling. These results suggest that homeostatic cytokines enable CD8(+) T cells to expand and survive, and that TCR and the CD28 signal initiate the differentiation of effector functions. A deeper understanding of the mechanisms underlying enhanced induction of the antitumor immune response with accompanying HP may allow us to more precisely induce enhanced immunity with costimulation signaling and the administration of common gamma-chain cytokines.  相似文献   

2.
Signaling through the TCR as well as engagement of costimulatory molecules are required for efficient T cell activation and progression into differentiated effector cells. The beta2 integrin LFA-1 (CD11a/CD18) has been implicated in TCR costimulation as well as in cell-cell adhesion function, but its exact role is still ambiguous. The present study focuses on the requirement for LFA-1 in CD8+ T cell activation and effector function using LFA-1-deficient cells expressing the 2C transgenic TCR as a model system. The lack of LFA-1 expression in 2C T cells resulted in severely diminished proliferative response toward allogeneic BALB/c splenocytes. Increase in TCR signaling alone by pulsing stimulators with high affinity peptides, p2Ca or QL9, had minimal effects in restoring proliferation. Addition of exogenous IL-2, however, enhanced the effect of peptide pulsing on proliferation of LFA-1-deficient 2C T cells. LFA-1-deficient 2C CTLs generated from alloantigen stimulation exhibited a defective cytotoxic activity when tested on a variety of target cells. Cytolysis could be improved, but not fully rectified by peptide pulsing of target cells. Thus, in the 2C TCR model, LFA-1 has a requisite role for optimal CD8+ T cell activation and effector function, which cannot be overcome by increasing peptide/MHC density on either the APCs or target cells, respectively.  相似文献   

3.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is the most recently identified member of the proprotein convertase family. Genetic and cell biology studies have suggested a critical role of PCSK9 in regulating low-density lipoprotein receptor (LDLR) protein levels and thus modulating plasma LDL cholesterol. Recent data on the molecular basis for PCSK9 action support the model in which PCSK9 is self-cleaved, secreted, and tightly bound to the EGF-A repeat of LDLR extracellular domain. PCSK9 binding to LDLR is essential for the ensuing receptor-mediated endocytosis and is speculated to lock LDLR in a specific conformation that favors degradation in lysosomal compartment instead of recycling back to plasma membrane. We report here a novel human PCSK9 splicing variant, which we named PCSK9sv. PCSK9sv had an in-frame deletion of the eighth exon of 58 amino acids and was expressed in multiple tissues, including liver, small intestine, prostate, uterus, brain, and adipose tissue. Unlike wild-type PCSK9, which is secreted, PCSK9sv expressed in human embryonic kidney HEK293 cells failed to process the prosegment intracellularly and thus was not secreted into the medium. Examination of potential functions revealed that PCSK9sv did not change the LDLR protein levels. Two mutations that have been reported in humans with the associated changes in plasma LDL cholesterol were within exon 8, and thus the expression and function of the two mutants were studied. Both N425S and A443T mutants were processed normally, secreted, and reduced LDLR levels. However, the physiological function of this novel splicing variant of PCSK9 has yet to be determined.  相似文献   

4.
Trogocytosis is a contact-dependent unidirectional transfer of membrane fragments between immune effector cells and their targets, initially detected in T cells following interaction with professional antigen presenting cells (APC). Previously, we have demonstrated that trogocytosis also takes place between melanoma-specific cytotoxic T lymphocytes (CTLs) and their cognate tumors. In the present study, we took this finding a step further, focusing on the ability of melanoma membrane-imprinted CD8+ T cells to act as APCs (CD8+T-APCs). We demonstrate that, following trogocytosis, CD8+T-APCs directly present a variety of melanoma derived peptides to fraternal T cells with the same TCR specificity or to T cells with different TCRs. The resulting T cell-T cell immune synapse leads to (1) Activation of effector CTLs, as determined by proliferation, cytokine secretion and degranulation; (2) Fratricide (killing) of CD8+T-APCs by the activated CTLs. Thus, trogocytosis enables cross-reactivity among CD8+ T cells with interchanging roles of effectors and APCs. This dual function of tumor-reactive CTLs may hint at their ability to amplify or restrict reactivity against the tumor and participate in modulation of the anti-cancer immune response.  相似文献   

5.
Veto cells have been defined as cells capable of inducing apoptosis of effector CD8 cells recognizing their disparate MHC Ags. Tolerance induced by donor-type veto cells is desirable, because it is restricted to depletion of anti-donor clones without depletion of other immune specificities. It has been shown that anti-third party CTLs exhibit marked veto activity with reduced capacity to induce graft-vs-host disease, when tested on naive effector cells. However, presensitized T cells could play an important role in graft rejection, and therefore, their sensitivity to veto cells could be critical to the implementation of the latter cells in bone marrow transplantation. To address this question, we compared naive and presensitized TCR transgenic effector CD8 T cells, bearing a TCR against H-2(d). Both cell types exhibited similar predisposition to killing by veto CTLs in vitro, and this killing was dependent in both cell types on Fas-FasL signaling as shown by using Fas-deficient CD8 T cells from (lprx2c) F(1) mice. When tested in a stringent mouse model, in which bone marrow rejection is mediated by adoptively transferred host type T cells into lethally irradiated recipients, veto CTLs were equally effective in overcoming rejection of naive or presensitized host T cells.  相似文献   

6.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important factor in plasma cholesterol regulation through modulation of low density lipoprotein receptor (LDLR) levels. Naturally occurring mutations can lead to hyper- or hypocholesterolemia in human. Recently, we reported that PCSK9 was also able to modulate CD81 in Huh7 cells. In the present study, several gain-of-function and loss-of-function mutants as well as engineered mutants of PCSK9 were compared for their ability to modulate the cell surface expression of LDLR and CD81. Although PCSK9 gain-of-function D374Y enhanced the degradation both receptors, D374H and D129N seemed to only reduce LDLR levels. In contrast, mutations in the C-terminal hinge-cysteine-histidine-rich domain segment primarily affected the PCSK9-induced CD81 degradation. Furthermore, when C-terminally fused to an ACE2 transmembrane anchor, the secretory N-terminal catalytic or hinge-cysteine-histidine-rich domain domains of PCSK9 were able to reduce CD81 and LDLR levels. These data confirm that PCSK9 reduces CD81 levels via an intracellular pathway as reported for LDLR. Using immunocytochemistry, a proximity ligation assay, and co-immunoprecipitation, we found that the cell surface level of PCSK9 was enhanced upon overexpression of CD81 and that both PCSK9 and LDLR interact with this tetraspanin protein. Interestingly, using CHO-A7 cells lacking LDLR expression, we revealed that LDLR was not required for the degradation of CD81 by PCSK9, but its presence strengthened the PCSK9 effect.  相似文献   

7.
Regulatory T cell (Treg)-mediated suppression of CD8+ T cells has been implicated in the establishment and maintenance of chronic viral infections, but little is known about the mechanism of suppression. In this study an in vitro assay was developed to investigate the suppression of CD8+ T cells by Friend retrovirus (FV)-induced Tregs. CD4+CD25+ T cells isolated from mice chronically infected with the FV suppressed the development of effector function in naive CD8+ T cells without affecting their ability to proliferate or up-regulate activation markers. In vitro restimulation was not required for suppression by FV-induced Tregs, correlating with their high activation state in vivo. Suppression was mediated by direct T cell-T cell interactions and occurred in the absence of APCs. Furthermore, suppression occurred irrespective of the TCR specificity of the CD8+ T cells. Most interestingly, FV-induced Tregs were able to suppress the function of CD8+ effector T cells that had been physiologically activated during acute FV infection. The ability to suppress the effector function of activated CTLs is likely a requisite role for Tregs in limiting immunopathology by CD8+ T cells during antiviral immune responses. Such activity may also have adverse consequences by allowing viruses to establish and maintain chronic infections if suppression of antiviral immune responses occurs before virus eradication.  相似文献   

8.
P14 TCR transgenic CD8+ T cells (LCMV gp33-specific) were activated by antigen in the presence of either IL-2 or IL-2+IL-4 to generate effector cytotoxic T lymphocytes (CTLs). The therapeutic effectiveness of such IL-2- or IL-2+IL-4-grown CTLs was tested in mice that had received intravenous inoculations of B16.gp33 melanoma cells 7 days previously. Administration of P14 CTLs activated by antigen +IL-2+IL-4 was significantly more effective at reducing melanoma colony formation in the lung than those grown in the presence of antigen +IL-2. Highly significant improvement in survival was observed with 80% of B16.gp33-inoculated mice showing long-term survival after therapy with 10×106 antigen +IL-2+IL-4-activated P14 CTLs. Similar therapeutic effectiveness of antigen +IL-2+IL-4-activated P14 CTLs against subcutaneously inoculated B16.gp33 melanoma cells was also found. There was significant reduction in P14 CD8+ T cells in the peripheral blood of B16.gp33-inoculated mice than in mice that did not receive B16.gp33 melanoma cells, indicating possible homing of P14 CD8+ T cells to the site of tumor growth or antigen-induced apoptotic cell death. These results may have implications in tumor therapy using CTLs grown ex vivo, especially during early stages of tumor formation. They also support the concept that the therapeutic effectiveness of CTLs can be governed by the cytokine context in which they are activated.  相似文献   

9.
Emerging evidences have shown that diabetes mellitus not only raises risk but also heightens mortality rate of cancer. It is not clear, however, whether antitumor CD8+ cytotoxic T lymphocyte (CTL) response is down-modulated in diabetic hosts. We investigated the impact of hyperglycemia on CTLs'' acquisition of tumor-killing capability by utilizing streptozotocin-induced diabetic (STZ-diabetic) mice. Murine diabetes was induced by intraperitoneal injection of STZ (200 mg/kg) in C57BL/6 mice, 2C-T cell receptor (TCR) transgenic and P14-TCR transgenic mice. The study found that, despite harboring intact proliferative capacity measured with CFSE labeling and MTT assay, STZ-diabetic CD8+ CTLs displayed impaired effector functions. After stimulation, STZ-diabetic CD8+ CTLs produced less perforin and TNFα assessed by intracellular staining, as well as expressed less CD103 protein. Furthermore, adoptive transfer of STZ-diabetic P14 CD8+ effector cells showed an insufficient recruitment to the B16.gp33 melanoma and inadequate production of perforin, granzyme B and TNFα determined by immunohistochemistry in the tumor milieu. As a result, STZ-diabetic CD8+ effector cells were neither able to eliminate tumor nor to improve survival of tumor-bearing mice. Taken together, our data suggest that CD8+ CTLs are crippled to infiltrate into tumors and thus fail to acquire tumor-killing capability in STZ-diabetic hosts.  相似文献   

10.
CD8 T cell-mediated immune responses fall into two distinct types based on effector cell-derived cytokine production. Type I CD8 T cells (Tc1) produce IFN-gamma, whereas type 2 cells (Tc2) secrete IL-4, IL-5, IL-10, and GM-CSF. Using a murine TCR transgenic T cell/breast tumor model, we show that adoptively transferred Ag-specific Tc1 cells are more effective in delaying mammary tumor growth and progression than that of functionally distinct Tc2 cells. Donor Tc1 cells administered 7 days posttumor challenge localized and persisted at sites of primary tumor growth with antitumor responses that were dependent, in part, on effector cell-derived IFN-gamma. Tc1-mediated responses markedly enhanced the appearance and local accumulation of highly differentiated (CD44(high)) CD4 and CD8 endogenous tumor-infiltrating T cells when compared with that of untreated tumor-bearing mice. Conversely, Tc1 cell transfer markedly delayed the appearance of corresponding nondifferentiated (CD44(low)) endogenous T cells. Such cells were acutely activated as defined by coexpression of surface markers associated with TCR engagement (CD69) and early T cell activation (CD25). Moreover, cellular response kinetics appeared to further correlate with the up-regulation of endogenous T cells producing the chemokine IFN-gamma-inducible protein-10 in vivo. This suggested that CD8-mediated type 1 antitumor responses cannot only promote accumulation of distinct endogenous CD4 and CD8 T cell subpopulations, but also facilitate and preferentially modulate their localization kinetics, persistence, states of activation/differentiation, and function within the primary tumor environment at various stages of tumor progression. These studies offer insight into potential mechanisms for enhancing T cell-based immunotherapy in breast cancer.  相似文献   

11.
CD8+ cytotoxic T lymphocytes (CTLs) are preferred immune cells for targeting cancer. During cancer progression, CTLs encounter dysfunction and exhaustion due to immunerelated tolerance and immunosuppression within the tumor microenvironment (TME), with all favor adaptive immune-resistance. Cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and regulatory T cells (Tregs) could make immunologic barriers against CD8 + T cell-mediated antitumor immune responses. Thus, CD8 + T cells are needed to be primed and activated toward effector CTLs in a process called tumor immunity cycle for making durable and efficient antitumor immune responses. The CD8 + T cell priming is directed essentially as a corroboration work between cells of innate immunity including dendritic cells (DCs) and natural killer (NK) cells with CD4 + T cells in adoptive immunity. Upon activation, effector CTLs infiltrate to the core or invading site of the tumor (so-called infiltrated–inflamed [I–I] TME) and take essential roles for killing cancer cells. Exogenous reactivation and/or priming of CD8 + T cells can be possible using rational immunotherapy strategies. The increase of the ratio for costimulatory to coinhibitory mediators using immune checkpoint blockade (ICB) approach. Programmed death-1 receptor (PD-1)–ligand (PD-L1) and CTL-associated antigen 4 (CTLA-4) are checkpoint receptors that can be targeted for relieving exhaustion of CD8 + T cells and renewing their priming, respectively, and thereby eliminating antigen-expressing cancer cells. Due to a diverse relation between CTLs with Tregs, the Treg activity could be dampened for increasing the number and rescuing the functional potential of CTLs to induce immunosensitivity of cancer cells.  相似文献   

12.
Secreted PCSK9 binds to cell surface LDL receptor (LDLR) and directs the receptor for lysosomal degradation. PCSK9 is potent at inducing LDLR degradation in cultured liver-derived cells, but it is considerably less active in immortalized fibroblasts. We examined PCSK9 trafficking in SV-589 human skin fibroblasts incubated with purified recombinant wild-type PCSK9 or gain-of-function mutant PCSK9-D374Y with increased LDLR binding affinity. Despite LDLR-dependent PCSK9 uptake, cell surface LDLR levels in SV-589 fibroblasts were only modestly reduced by wild-type PCSK9, even at high nonphysiological concentrations (20 µg/ml). Internalized 125I-labeled wild-type PCSK9 underwent lysosomal degradation at high levels, indicating its dissociation from recycling LDLRs. PCSK9-D374Y (2 µg/ml) reduced cell surface LDLRs by approximately 50%, but this effect was still blunted compared with HepG2 hepatoma cells. Radioiodinated PCSK9-D374Y was degraded less efficiently in SV-589 fibroblasts, and Alexa488-labeled PCSK9-D374Y trafficked to both lysosomes and endocytic recycling compartments. Endocytic recycling assays showed that more than 50% of internalized PCSK9-D374Y recycled to the cell surface compared with less than 10% for wild-type PCSK9. These data support that wild-type PCSK9 readily dissociates from the LDLR within early endosomes of SV-589 fibroblasts, contributing to PCSK9-resistance. Although a large proportion of gain-of-function PCSK9-D374Y remains bound to LDLR in these cells, degradative activity is still diminished.  相似文献   

13.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) interferes with the recycling of low-density lipoprotein (LDL) receptor (LDLR). This leads to LDLR degradation and reduced cellular uptake of plasma LDL. Naturally occurring human PCSK9 loss-of-function mutations are associated with low levels of plasma LDL cholesterol and a reduced risk of coronary heart disease. PCSK9 gain-of-function mutations result in lower LDL clearance and increased risk of atherosclerosis. The exact mechanism by which PCSK9 disrupts the normal recycling of LDLR remains to be determined. In this study, we have assembled homologs of human PCSK9 from 20 vertebrates, a cephalochordate and mollusks in order to search for conserved regions of PCSK9 that may be important for the PCSK9-mediated degradation of LDLR. We found a large, conserved protrusion on the surface of the PCSK9 catalytic domain and have performed site-directed mutagenesis experiments for 13 residues on this protrusion. A cluster of residues that is important for the degradation of LDLR by PCSK9 was identified. Another cluster of residues, at the opposite end of the conserved protrusion, appears to be involved in the physical interaction with a putative inhibitor of PCSK9. This study identifies the residues, sequence segments and surface patches of PCSK9 that are under strong purifying selection and provides important information for future studies of PCSK9 mutants and for investigations on the function of this regulator of cholesterol homeostasis.  相似文献   

14.
Effective antitumor immune responses against cerebral malignancies have been demonstrated in several models, but precise cellular function of specific effector cells is poorly understood. We have explored this topic by analyzing the MHC class I-restricted T cell response elicited after implantation of HLA-CW3-transfected P815 mastocytoma cells (P815-CW3) in syngeneic mice. In this model, tumor-specific CTLs use a distinctive repertoire of TCRs that allows ex vivo assessment of the response by immunophenotyping and TCR spectratyping. Thus, for the first time in a brain tumor model, we are able to directly visualize ex vivo CTLs specific for a tumor-expressed Ag. Tumor-specific CTLs are detected in the CNS after intracerebral implantation of P815-CW3, together with other inflammatory cells. Moreover, despite observations in other models suggesting that CTLs infiltrating the brain may be functionally compromised and highly dependent upon CD4 T cells, in this syngeneic P815-CW3 model, intracerebral tumors were efficiently rejected, whether or not CD4 T cells were present. This observation correlated with potent ex vivo cytotoxicity of brain-infiltrating CTLs, specific for the immunodominant epitope CW3170-179 expressed on P815-CW3 tumor cells.  相似文献   

15.
16.
CD8 CTLs have been accountable for the major effector cells responsible for the rejection of tumor cells. And CD40 signaling and IL-12 have been shown to be the essential pathways involved in the activation process. Immunizing mice with dendritic cells transduced with an adenovirus expressing the human melanoma antigen gp100, an immunization strategy of xenoimmunization, stimulated potent tumor protection dependent on effective CD4 T cells in the absence of CD8 T cells. Further studies revealed that neither CD40 signaling nor IL-12 was indispensable for the activation of dendritic and CD4 T cells in this model. Stimulation of effective antitumor immunity targeting the self-antigen did not elicit autoimmunity. The implications of this study were discussed.  相似文献   

17.
A growing body of literature indicates that the Notch pathway can influence the activation and differentiation of peripheral murine T cells, though comparatively little is known about the effects of Notch signaling in human T cells. In the present report we demonstrate that Jagged-1-induced Notch signaling (using immobilized Jagged-1 fusion protein) during stimulation of purified human CD4+ and CD8+ T cells potently inhibits T cell proliferation and effector function, including both Th1- and Th2-associated cytokines. Inhibition of T cell activation is not due to apoptosis or disruption of proximal TCR signaling, but is associated with up-regulation of GRAIL (gene related to anergy in lymphocytes) in CD4+ T cells, with modest effects on other E3 ubiquitin ligases such as c-Cbl and Itch. When evaluated for its effects on CD4+ T cell differentiation, Jagged-1-mediated signaling inhibits T cell cytokine secretion with no significant effect on proliferative responses. Collectively, these data demonstrate that Notch signaling in human T cells induced by Jagged-1 promotes a novel form of T cell hyporesponsiveness that differs from anergy, whereby primary T cell proliferation and cytokine secretion are potently inhibited, and effector function but not proliferative capacity are ameliorated upon secondary stimulation.  相似文献   

18.
The CD8 receptor plays a central role in the recognition and elimination of virally infected and malignant cells by cytolytic CD8(+) T cells. In conjunction with the TCR, the CD8 coreceptor binds Ag-specific class I MHC (MHC-I) molecules expressed by target cells, initiating signaling events that result in T cell activation. Whether CD8 can further function as an adhesion molecule for non-Ag MHC-I is currently unclear in humans. In this study, we show that in human CD8(+) T cells, TCR complex signaling activates CD8 adhesion molecule function, resulting in a CD8 interaction with MHC-I that is sufficient to maintain firm T cell adhesion under shear conditions. Secondly, we found that while CD8 adhesive function was triggered by TCR complex activation in differentiated cells, including in vitro generated CTL and ex vivo effector/memory phenotype CD8(+) T cells, naive CD8(+) T cells were incapable of activated CD8 adhesion. Lastly, we examine the kinetics of, and signaling for, activated CD8 adhesion in humans and identify notable differences from the equivalent CD8 function in mouse. Activated CD8 adhesion induced by TCR signaling may contribute to the more rapid and robust elimination of pathogen-infected cells by differentiated CD8(+) T cells.  相似文献   

19.
A single intratumoral injection of IL-12 and GM-CSF-loaded slow-release microspheres induces T cell-dependent eradication of established primary and metastatic tumors in a murine lung tumor model. To determine how the delivery of cytokines directly to the microenvironment of a tumor nodule induces local and systemic antitumor T cell activity, we characterized therapy-induced phenotypic and functional changes in tumor-infiltrating T cell populations. Analysis of pretherapy tumors demonstrated that advanced primary tumors were infiltrated by CD4+ and CD8+ T cells with an effector/memory phenotype and CD4+CD25+Foxp3+ T suppressor cells. Tumor-associated effector memory CD8+ T cells displayed impaired cytotoxic function, whereas CD4+CD25+Foxp3+ cells effectively inhibited T cell proliferation demonstrating functional integrity. IL-12/GM-CSF treatment promoted a rapid up-regulation of CD43 and CD69 on CD8+ effector/memory T cells, augmented their ability to produce IFN-gamma, and restored granzyme B expression. Importantly, treatment also induced a concomitant and progressive loss of T suppressors from the tumor. Further analysis established that activation of pre-existing effector memory T cells was short-lived and that both the effector/memory and the suppressor T cells became apoptotic within 4 days of treatment. Apoptotic death of pre-existing effector/memory and suppressor T cells was followed by infiltration of the tumor with activated, nonapoptotic CD8+ effector T lymphocytes on day 7 posttherapy. Both CD8+ T cell activation and T suppressor cell purge were mediated primarily by IL-12 and required IFN-gamma. This study provides important insight into how local IL-12 therapy alters the immunosuppressive tumor milieu to one that is immunologically active, ultimately resulting in tumor regression.  相似文献   

20.
Engagement of the Ag receptor on naive CD8+ T cells by specific peptide-MHC complex triggers their activation/expansion/differentiation into effector CTL. The frequency of Ag-specific CD8+ T cells can normally be determined by the binding of specific peptide-MHC tetramer complexes to TCR. In this study we demonstrate that, shortly after Ag activation, CD8+ T cells transiently lose the capacity to efficiently bind peptide-MHC tetramer complexes. This transient loss of tetramer binding, which occurs in response to naturally processed viral peptide during infection in vitro and in vivo, is associated with reduced signaling through the TCR and altered/diminished effector activity. This change in tetramer binding/effector response is likewise associated with a change in cell surface TCR organization. These and related results suggest that early during CD8+ T cell activation, there is a temporary alteration in both cell surface Ag receptor display and functional activity that is associated with a transient loss of cognate tetramer binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号