首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous previously uncharacterized molecules resident within the low molecular weight circulatory proteome may provide a picture of the ongoing pathophysiology of an organism. Recently, proteomic signatures composed of low molecular weight molecules have been identified using mass spectrometry combined with bioinformatic algorithms. Attempts to sequence and identify the molecules that underpin the fingerprints are currently underway. The finding that many of these low molecular weight molecules may exist bound to circulating carrier proteins affords a new opportunity for fractionation and separation techniques prior to mass spectrometry-based analysis. In this study we demonstrate a method whereby nanoporous substrates may be used for the facile and reproducible fractionation and selective binding of the serum-based biomarker material, including subcellular proteins found within the serum. Aminopropyl-coated nanoporous silicon, when exposed to serum, can deplete serum of proteins and yield a serum with a distinct, altered MS profile. Additionally, aminopropyl-coated, nanoporous controlled-pore glass beads are able to bind a subset of serum proteins and release them with stringent elution. The eluted proteins have distinct MS profiles, gel electrophoresis profiles, and differential peptide sequence identities, which vary based on the size of the nanopores. These material surfaces could be employed in strategies for the harvesting and preservation of labile and carrier-protein-bound molecules in the blood.  相似文献   

2.
We have developed a new target plate for matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). This target plate enables direct electric transfer of analytes from the 1-dimensional gel electrophoresis (1-DE) gel to the target plate in one step. Incorporated with a one-step direct transfer technique, this novel 1-DE/MALDI-MS (1-DE/MS) system eliminates staining, extracting, loading, and many other time-consuming intermediate processes, thereby greatly reducing analysis time while providing high throughput proteome analysis. Furthermore, in peptidome analysis, during the 1-DE step this system separates or removes the high molecular weight plasma proteins in blood and the various low molecular weight substances in tissue extracts, which interfere with mass spectrometry. This system can therefore be used for peptide profiling of any biological sample without special pretreatment. In view of these advantages, the 1-DE/MS system will greatly improve the usefulness of current peptidomic modalities in the discovery and validation of biomarker molecules in various body fluids and tissue extracts, permitting early detection, diagnosis, and treatment of diseases.  相似文献   

3.
This report describes a new method for desorption of low-molecular weight (LMW) peptides from abundant blood proteins for use in subsequent mass spectrometry analyses. Heating of diluted blood serum to 98°C for 15min resulted in dissociation of LMW peptides from the most abundant blood proteins. Application of blood plasma/serum fractionation using magnetic beads with a functionalized surface followed by heating of the resultant fractions significantly increases the number of LMW peptides detected by MALDI-TOF MS, enhances the general reproducibility of mass spectrometry profiles and considerably increases the number of identified blood serum peptides by LC-MS/MS using an Agilent 6520 Accurate-Mass Q-TOF.  相似文献   

4.
Mass spectrometric analysis of the low-molecular weight (LMW) range of the serum/plasma proteome is revealing the existence of large numbers of previously unknown peptides and protein fragments predicted to be derived from low-abundance proteins. This raises the question of why such low abundance molecules would be retained at detectable levels in the circulation, instead of being rapidly cleared and excreted. Theoretical models of biomarker production and association with serum carrier proteins have been developed to elucidate the mechanisms governing biomarker half-life in the bloodstream. These models predict that the vast majority of LMW biomarkers exist in association with circulating high molecular mass carrier proteins. Moreover, the total serum/plasma concentration of the biomarker is largely determined by the clearance rate of the carrier protein, not the free-phase biomarker clearance itself. These predictions have been verified experimentally using molecular mass fractionation of human serum before mass spectrometry sequence analysis. These principles have profound implications for biomarker discovery and measurement.  相似文献   

5.
The use of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) to acquire spectral profiles has become a common approach to detect proteomic biomarkers of disease. MALDI-MS signals may represent both intact proteins as well as proteolysis products. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis can tentatively identify the corresponding proteins Here, we describe the application of a data analysis utility called FragMint, which combines MALDI-MS spectral data with LC-MS/MS based protein identifications to generate candidate protein fragments consistent with both types of data. This approach was used to identify protein fragments corresponding to spectral signals in MALDI-MS analyses of unfractionated human serum. The serum also was analyzed by one-dimensional SDS-PAGE and bands corresponding to the MALDI-MS signal masses were excised and subjected to in-gel digestion and LC-MS/MS analysis. Database searches mapped all of the identified peptides to abundant blood proteins larger than the observed MALDI-MS signals. FragMint identified fragments of these proteins that contained the MS/MS identified sequences and were consistent with the observed MALDI-MS signals. This approach should be generally applicable to identify protein species corresponding to MALDI-MS signals.  相似文献   

6.
Serum potentially carries an archive of important histological information whose determination could serve to improve early disease detection. The analysis of serum, however, is analytically challenging due to the high dynamic concentration range of constituent protein/peptide species, necessitating extensive fractionation prior to mass spectrometric analyses. The low molecular weight (LMW) serum proteome is that protein/peptide fraction from which high molecular weight proteins, such as albumin, immunoglobulins, transferrin, and lipoproteins, have been removed. This LMW fraction is made up of several classes of physiologically important proteins such as cytokines, chemokines, peptide hormones, as well as proteolytic fragments of larger proteins. Centrifugal ultrafiltration of serum was used to remove the large constituent proteins resulting in the enrichment of the LMW proteins/peptides. Because albumin is known to bind and transport small molecules and peptides within the circulatory system, the centrifugal ultrafiltration was conducted under solvent conditions effecting the disruption of protein-protein interactions. The LMW serum proteome sample was digested with trypsin, fractionated by strong cation exchange chromatography, and analyzed by microcapillary reversed-phase liquid chromatography coupled on-line with electrospray ionization tandem mass spectrometry. Analysis of the tandem mass spectra resulted in the identification of over 340 human serum proteins; however, not a single peptide from serum albumin was observed. The large number of proteins identified demonstrates the efficacy of this method for the removal of large abundant proteins and the enrichment of the LMW serum proteome.  相似文献   

7.
Mass spectrometric profiling using ProteinChip and magnetic beads has rapidly grown over the past years, particularly to generate serum profiles for cancer diagnosis. The molecular weights of these distinguishing peaks are usually under 30 kDa. To identify those low molecular weight proteins and peptides is important for specific assays to be developed and increases biological insight. In this study, low molecular weight proteins and peptides from serum were purified by a combination of weak cation exchange magnetic beads and high performance liquid chromatography. The purified proteins and peptides were analyzed by 1D SDS PAGE, SELDI and LC-MS/MS. 246 proteins were identified from the HPLC fractions by LC-MS/MS. 95(38.62%) proteins were first identified in serum compare with Sys-BodyFluid database. 11(11/96) proteins were documented cancer associated proteins. We also observed about 109 proteins/peptides in SELDI mass spectrum, and 13 of the SELDI features were identified.  相似文献   

8.
A resurgence of interest in the human plasma proteome has occurred in recent years because it holds great promise of revolution in disease diagnosis and therapeutic monitoring. As one of the most powerful separation techniques, multidimensional liquid chromatography has attracted extensive attention, but most published works have focused on the fractionation of tryptic peptides. In this study, proteins from human plasma were prefractionated by online sequential strong cation exchange chromatography and reversed-phase chromatography. The resulting 30 samples were individually digested by trypsin, and analyzed by capillary reversed-phase liquid chromatography coupled with linear ion trap mass spectrometry. After meeting stringent criteria, a total of 1292 distinct proteins were successfully identified in our work, among which, some proteins known to be present in serum in <10 ng/mL were detected. Compared with other works in published literatures, this analysis offered a more full-scale list of the plasma proteome. Considering our strategy allows high throughput of protein identification in serum, the prefractionation of proteins before MS analysis is a simple and effective method to facilitate human plasma proteome research.  相似文献   

9.
The use of mass spectrometry (MS) for analysing low-molecular weight proteins and peptides from biological fluids has a great, yet not fully realized, potential for biomarker discovery. To prune MS-data as much as possible for non-relevant non-biological variation the development of standardized protocols for handling and processing the samples before MS and adjusting data after MS to compensate for method-induced variability are warranted. This calls for knowledge about how different variables contribute to MS-based proteome analyses. In addition, identification of the peptides involved in pre-analytical variation will be helpful in evaluating the clinical significance of predictive models derived from MS data. Using human sera, extraction by weak cation-exchange magnetic beads, and analysis by MALDI-TOF MS we here evaluated pre-analytical variation and identify peptides involved in this. The influences of humidity, temperature, and time for preparation of sera on spectral changes were evaluated. Also, the reproducibility of the methods and the effect of a baseline correction procedure were examined. Low temperatures, short handling times, and a baseline correction procedure minimize the contribution of artifacts to sample variability as observed by MS. The complement split product C3f and fragments thereof appear to be sensitive indicators of sample handling induced modifications. Other peptides that are indicative of such variability are fibrin and kininogen fragments. Using strict experimental guidelines as well as standardized sample collection procedures it is possible to obtain reproducible peak intensities and positions in serum mass profiling using magnetic bead-based fractionation and MALDI-TOF MS.  相似文献   

10.
Human saliva contains a large number of proteins and peptides (salivary proteome) that help maintain homeostasis in the oral cavity. Global analysis of human salivary proteome is important for understanding oral health and disease pathogenesis. In this study, large-scale identification of salivary proteins was demonstrated by using shotgun proteomics and two-dimensinal gel electrophoresis-mass spectrometry (2-DE-MS). For the shotgun approach, whole saliva proteins were prefractionated according to molecular weight. The smallest fraction, presumably containing salivary peptides, was directly separated by capillary liquid chromatography (LC). However, the large protein fractions were digested into peptides for subsequent LC separation. Separated peptides were analyzed by on-line electrospray tandem mass spectrometry (MS/MS) using a quadrupole-time of flight mass spectrometer, and the obtained spectra were automatically processed to search human protein sequence database for protein identification. Additionally, 2-DE was used to map out the proteins in whole saliva. Protein spots 105 in number were excised and in-gel digested; and the resulting peptide fragments were measured by matrix-assisted laser desorption/ionization-mass spectrometry and sequenced by LC-MS/MS for protein identification. In total, we cataloged 309 proteins from human whole saliva by using these two proteomic approaches.  相似文献   

11.
Protein identification by peptide mass mapping usually involves digestion of gel-separated proteins with trypsin, followed by mass measurement of the resulting peptides by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Positive identification requires measurement of enough peptide masses to obtain a definitive match with sequence information recorded in protein or DNA sequence databases. However, competitive binding and ionization of residual surfactant introduced during polyacrylamide gel electrophoresis (PAGE) can inhibit solid-phase extraction and MS analysis of tryptic peptides. We have evaluated a novel, acid-labile surfactant (ALS) as an alternative to sodium dodecylsulfate (SDS) for two-dimensional (2-D) PAGE separation and MALDI-MS mapping of proteins. ALS was substituted for SDS at the same concentration in buffers and gels used for 2-D PAGE. Manual and automated procedures for spot cutting and in-gel digestion were used to process Coomassie stained proteins for MS analysis. Results indicate that substituting ALS for SDS during PAGE can significantly increase the number of peptides detected by MALDI-MS, especially for proteins of relatively low abundance. This effect is attributed to decomposition of ALS under acidic conditions during gel staining, destaining, peptide extraction and MS sample preparation. Automated excision and digestion procedures reduce contamination by keratin and other impurities, further enhancing MS identification of gel separated proteins.  相似文献   

12.
The aim of this study was to evaluate three principally different top-down protein prefractionation methods for plasma: high-abundance protein depletion, size fractionation and peptide ligand affinity beads, focusing in particular on compatibility with downstream analysis, reproducibility and analytical depth. Our data clearly demonstrates the benefit of high-abundance protein depletion. However, MS/MS analysis of the proteins eluted from the high-abundance protein depletion column show that more proteins than aimed for are removed and, in addition, that the depletion efficacy varies between the different high-abundance proteins. Although a smaller number of proteins were identified per fraction using the peptide ligand affinity beads, this technique showed to be both robust and versatile. Size fractionation, as performed in this study, focusing on the low molecular weight proteome using a combination of gel filtration chromatography and molecular weight cutoff filters, showed limitations in the molecular weight cutoff precision leading detection of high molecular weight proteins and, in the case of the cutoff filters, high variability. GeLC-MS/MS analysis of the fractionation methods in combination with pathway analysis demonstrates that increased fractionation primarily leads to high proteome coverage of pathways related to biological functions of plasma, such as acute phase reaction, complement cascade and coagulation. Further, the prefractionation methods in this study induces limited effect on the proportion of tissue proteins detected, thereby highlighting the importance of extensive or targeted downstream fractionation.  相似文献   

13.
Silica-based nanoporous surfaces have been developed in order to capture low molecular weight peptides from human plasma. Harvested peptides were subjected to mass spectrometric analysis by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a means of detecting and assessing the bound molecules. Peptide profiles consisting of about 70 peaks in the range 800-10,000 m/z were generated. The method could allow detection of small peptides at ng/mL concentration levels, either in standard solutions or in plasma. The same molecular cutoff effect was observed for mixtures of standard proteins and peptides incubated with silicon-based nanoporous surfaces.  相似文献   

14.
Methods for on-chip protein analysis   总被引:7,自引:0,他引:7  
The unambiguous identification of peptides/proteins is crucial for the definition of the proteome. Using ProteinChip Array technology also known as surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF MS), we developed experimental protocols and probed test conditions required for the protein identification on ProteinChip surfaces. We were able to directly digest peptides/proteins on-chip surfaces by specific proteases, such as trypsin, and to obtain the peptide mass fingerprint of the sample under investigation by its direct analysis on a simple laser desorption/ionization mass spectrometer. Furthermore, tandem mass spectrometry was performed on several of the resulting tryptic peptides by using collision quadrupole time of flight (Qq-TOF) MS/MS via the ProteinChip interface, thus allowing the unambiguous identification of the protein(s) within the sample. In addition, we were able to identify the C-terminal sequence of peptides by their digestion with carboxypeptidase Y directly on ProteinChip surfaces coupled with SELDI-TOF MS analysis of the resulting peptide mass ladders employing the instrument's protein ladder sequence software. Moreover, the removal of up to nine amino acid residues from the C-terminal end of a peptide extends the functional range of Qq-TOF MS/MS sequence determination to over 3000 m/z. The utility of these procedures for the proteome exploration are discussed.  相似文献   

15.
In clinical and diagnostic proteomics, it is essential to develop a comprehensive and robust system for proteome analysis. Although multidimensional liquid chromatography/tandem mass spectrometry (LC/MS/MS) systems have been recently developed as powerful tools especially for identification of protein complexes, these systems still some drawbacks in their application to clinical research that requires an analysis of a large number of human samples. Therefore, in this study, we have constructed a technically simple and high throughput protein profiling system comprising a two-dimensional (2D)-LC/MS/MS system which integrates both a strong cation exchange (SCX) chromatography and a microLC/MS/MS system with micro-flowing reversed-phase chromatography. Using the microLC/MS/MS system as the second dimensional chromatography, SCX separation has been optimized as an off-line first dimensional peptide fractionation. To evaluate the performance of the constructed 2D-LC/MS/MS system, the results of detection and identification of proteins were compared using digests mixtures of 6 authentic proteins with those obtained using one-dimensional microLC/MS/MS system. The number of peptide fragments detected and the coverage of protein sequence were found to be more than double through the use of our newly built 2D-LC/MS/MS system. Furthermore, this multidimensional protein profiling system has been applied to plasma proteome in order to examine its feasibility for clinical proteomics. The experimental results revealed the identification of 174 proteins from one serum sample depleted HSA and IgG which corresponds to only 1 microL of plasma, and the total analysis run time was less than half a day, indicating a fairly high possibility of practicing clinical proteomics in a high throughput manner.  相似文献   

16.
Peptidome analysis has received increasing attention in recent years. Cancer diagnosis by serum peptidome has also been reported by peptides' profiling for discovery of peptide biomarkers. Tissue, which may have a higher biomarker concentration than blood, has not been investigated extensively by means of peptidome analysis. Here, a method for the peptidome analysis of mouse liver was developed by the combination of size exclusion chromatography (SEC) prefractionation with nano-liquid chromatography-tamdem mass spectrometry (nanoLC-MS/MS) analysis. The extracted peptides from mouse liver were separated according to their molecular weight using a size exclusion column. MALDI-TOF MS was used to characterize the molecular weight distribution of the peptides in fractions eluted from the SEC column. The low molecular weight (LMW) (MW < 3000 Da) peptides in the collected fractions were directly analyzed by LC-MS/MS which resulted in the identification of 1181 unique peptides (from 371 proteins). The high molecular weight (HMW) (MW > 3000 Da) peptides in the early two fractions from the SEC column were first digested with trypsin, and the resulted digests were then analyzed by LC-MS/MS, which led to the identification of 123 and 127 progenitor proteins of the HMW peptides in fractions 1 and 2, respectively. Analysis of the peptides' cleavage sites showed that the peptides are cleaved in regulation, which may reflect the protease activity and distribution in body, and also represent the biological state of the tissue and provide a fresh source for biomarker discovery.  相似文献   

17.
The ultimate goal of proteomics is to understand complex biological systems. The first step toward this end is the discovery of protein differences by profiling a given proteome. One approach to proteome profiling is to fractionate it into intact proteins, with subsequent identification and quantitation. In this work, lysates of bovine skeletal muscle were prepared. Reproducible proteome profiles were generated by an automatic two-dimensional protein fractionation system. Proteins were separated by isoelectric point and then by hydrophobicity. The data collected from both separations were used to generate proteome profiles. A high protein content fraction with pl above 8.5 was digested with trypsin, and its main protein component was identified as lysozyme C by matrix assisted laser desorption/ionization-time of flight mass spectrometry.  相似文献   

18.
Haloferax volcanii, an extreme halophile originally isolated from the Dead Sea, is used worldwide as a model organism for furthering our understanding of archaeal cell physiology. In this study, a combination of approaches was used to identify a total of 1296 proteins, representing 32% of the theoretical proteome of this haloarchaeon. This included separation of (phospho)proteins/peptides by 2-dimensional gel electrophoresis (2-D), immobilized metal affinity chromatography (IMAC), metal oxide affinity chromatography (MOAC), and Multidimensional Protein Identification Technology (MudPIT) including strong cation exchange (SCX) chromatography coupled with reversed phase (RP) HPLC. Proteins were identified by tandem mass spectrometry (MS/MS) using nanoelectrospray ionization hybrid quadrupole time-of-flight (QSTAR XL Hybrid LC/MS/MS System) and quadrupole ion trap (Thermo LCQ Deca). Results indicate that a SCX RP HPLC fractionation coupled with MS/MS provides the best high-throughput workflow for overall protein identification.  相似文献   

19.
We have merged four different views of the human plasma proteome, based on different methodologies, into a single nonredundant list of 1175 distinct gene products. The methodologies used were 1) literature search for proteins reported to occur in plasma or serum; 2) multidimensional chromatography of proteins followed by two-dimensional electrophoresis and mass spectroscopy (MS) identification of resolved proteins; 3) tryptic digestion and multidimensional chromatography of peptides followed by MS identification; and 4) tryptic digestion and multidimensional chromatography of peptides from low-molecular-mass plasma components followed by MS identification. Of 1,175 nonredundant gene products, 195 were included in more than one of the four input datasets. Only 46 appeared in all four. Predictions of signal sequence and transmembrane domain occurrence, as well as Genome Ontology annotation assignments, allowed characterization of the nonredundant list and comparison of the data sources. The "nonproteomic" literature (468 input proteins) is strongly biased toward signal sequence-containing extracellular proteins, while the three proteomics methods showed a much higher representation of cellular proteins, including nuclear, cytoplasmic, and kinesin complex proteins. Cytokines and protein hormones were almost completely absent from the proteomics data (presumably due to low abundance), while categories like DNA-binding proteins were almost entirely absent from the literature data (perhaps unexpected and therefore not sought). Most major categories of proteins in the human proteome are represented in plasma, with the distribution at successively deeper layers shifting from mostly extracellular to a distribution more like the whole (primarily cellular) proteome. The resulting nonredundant list confirms the presence of a number of interesting candidate marker proteins in plasma and serum.  相似文献   

20.
Gastric cancer, one of the most widespread malignant tumors, still lacks reliable serum/plasma biomarkers of its early detection. In this study we have developed, unified, and tested a new methodology for search of gastric cancer biomarkers based on profiling of low molecular weight proteome (LMWP) (1–17 kDa). This approach included three main components: sample pre-fractionation, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), data analysis by a bioinformatics software package. Applicability and perspectives of the developed approach for detection of potential gastric cancer markers during LMWP analysis have been demonstrated using 69 plasma samples from patients with gastric cancer (stages I-IV) and 238 control samples. The study revealed peptides/polypeptides, which may be potentially used for detection of this pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号