共查询到20条相似文献,搜索用时 0 毫秒
1.
Murine monoclonal anti-DNA antibodies bind directly to glomerular antigens and form immune deposits 总被引:34,自引:0,他引:34
M P Madaio J Carlson J Cataldo A Ucci P Migliorini O Pankewycz 《Journal of immunology (Baltimore, Md. : 1950)》1987,138(9):2883-2889
The capacity of monoclonal anti-DNA antibodies, derived spontaneously from MRL-lpr/lpr mice, to bind directly to intrinsic glomerular antigens and form immune deposits was evaluated. Two antibodies, H130 (IgM-kappa) and H241 (IgG2a-kappa), bound to normal glomeruli in vitro. This binding was not inhibited by DNAase, but it was, in the case of H130, inhibited by the anti-idiotype anti-H130. Both antibodies also bound to glomerular digests on nitrocellulose. After i.v. injection, however, H241 bound to glomeruli and formed glomerular immune deposits, whereas H130 did not. Similarly, after i.p. injection of H241 hybridomas to normal mice, all mice developed glomerular immune deposits. In contrast, administration of H130 hybridomas, other anti-DNA-producing hybridomas, and other unrelated hybridomas did not lead to glomerular immune deposit formation. We conclude that certain lupus auto-antibodies can form glomerular immune deposits by binding directly to non-DNA antigenic structures that are normally present in extracellular locations within normal glomeruli. 相似文献
2.
Gluconeogenesis in the isolated perfused rat kidney 总被引:8,自引:0,他引:8
R H Bowman 《The Journal of biological chemistry》1970,245(7):1604-1612
3.
1. Anaerobic formation of lactate from glucose by isolated perfused rat kidney (411mumol/h per g dry wt.) was three times as fast as in aerobic conditions (138mumol/h per g). 2. In aerobic or in anaerobic conditions, the ratio of lactate production to glucose utilization was about 2. 3. Starvation or acidosis caused a decline of about 30% in the rate of aerobic glycolysis. 4. The rate of formation of glucose from lactate by perfused kidney from a well-fed rat, in the presence of 5mm-acetoacetate (83mumol/h per g dry wt.), was of the same order as the rate of aerobic glycolysis. 5. During perfusion with physiological concentrations of glucose (5mm) and lactate (2mm) there were negligible changes in the concentration of either substrate. 6. Comparison of kidneys perfused with lactate, from well-fed or starved rats, showed no major differences in contents of intermediates of gluconeogenesis. 7. The tissue concentrations of hexose monophosphates and C(3) phosphorylated glycolytic intermediates (except triose phosphate) were decreased in anaerobic conditions. 8. Aerobic metabolism of fructose by perfused kidney was rapid: the rate of glucose formation was 726mumol/h per g dry wt. and of lactate formation 168mumol/h per g (dry wt.). Glycerol and d-glyceraldehyde were also released into the medium. 9. Aerobically, fructose generated high concentrations of glycolytic intermediates. 10. Anaerobic production of lactate from fructose (74mumol/h per g dry wt.) was slower than the aerobic rate. 11. In both anaerobic and aerobic conditions the ratio [lactate]/[pyruvate] in kidney or medium was lower during perfusion with fructose than with glucose. 12. These results are discussed in terms of the regulation of renal carbohydrate metabolism. 相似文献
4.
Renal handling of glycyl-proline was studied in the isolated perfused rat kidney. Glycyl-proline disappeared from the perfusate as a function of time. The dipeptide was freely filtered at the glomerulus but only 6% of the filtered load was excreted in the urine as the intact peptide. More than 90% of the filtered dipeptide was reabsorbed as the intact peptide and/or its hydrolytic products. Non-filtration mechanisms were also involved to a significant extent in the clearance of the peptide. Hydrolysis at intratubular, intracellular and peritubular sites all contribute to the disappearance of the dipeptide from the perfusate, though the relative contributions of each mechanism are not known. Significant metabolic conversions, especially the conversion of glycine to serine, were also observed during perfusion. 相似文献
5.
6.
Donald Wilk 《Life sciences》1976,18(11):1265-1272
L-alanine transport kinetics were examined in the isolated perfused rat kidney (1) using different perfusate concentrations of alanine (PAla) to obtain different filtered loads and (2) under conditions of osmotic diuresis. The transport maximum for alanine (TmAla) was found to be very high relative to filtered loads of alanine. The apparent TmAla was dependent on glomerular filtration rate (GFR) and it could be modified by osmotic diuresis. It is suggested that the variation of TmAla with changes in GFR may be the consequence of variations in fractional volume flow through the proximal tubule. 相似文献
7.
S.T. Azar J.C. Melby M.M. Holbrook T.E. Wilson J. LaRaia W. Lieberthal 《The Journal of steroid biochemistry and molecular biology》1991,39(6):937-939
19-nor-deoxycorticosterone (19-nor-DOC) is a potent salt retaining and hypertensinogenic mineralocorticoid that is excreted in the urine. While the precursor of 19-nor-DOC, 19-oxo-DOC, is produced by the adrenal cortex, conversion to 19-nor-DOC does not occur in the adrenal gland. We have examined the hypothesis that 19-nor-DOC is synthesized from precursors in the kidney. 19-oxo-DOC was added to the perfusate of isolated rat kidney preparations (n = 5) at a concentration of 10 μM. During 1 h of perfusion following addition of 19-oxo-DOC, 71 ± 6% of the precursor was converted to 19-oic-DOC, an immediate precursor of 19-nor-DOC, and 8.3 ± 1.8% was converted to 19-nor-DOC. This represents the first definitive evidence that 19-nor-DOC is produced in the kidney from adrenal precursors. 相似文献
8.
1. A technique for perfusing the isolated rat kidney is described. It is primarily designed for the study of renal metabolism but is also suitable for studying some aspects of the secretory function; this was normal with respect to minimal glucosuria. The glomerular filtration rate as measured by creatinine clearance was lower than in vivo and slowly decreased with time. 2. Gluconeogenesis from a variety of precursors was rapid and similar to that in kidney-cortex slices, in contrast with liver where the perfused organ is more effective than slices. Whereas the maximal rates of gluconeogenesis from glycerol and pyruvate were similar in liver and kidney, the rates from succinate, malate and fumarate were 14–20 times, and those from glutamate and aspartate about three times, as high in the kidney. 3. The oxygen consumption of the perfused organ was about twice that of cortex slices, presumably because of the secretory work done in the perfused organ but not in slices. 4. The rate of acetoacetate oxidation was about the same in the perfused organ and in slices but, because of the higher rate of oxygen consumption, the percentage contribution of acetoacetate to the fuel of respiration was lower in the perfused organ. The results suggest that acetoacetate can supply energy for the basal requirements and for gluconeogenesis but not for the secretory work. 5. Glutamine was formed at a high rate from glutamate and at a lower rate from aspartate. The high rates indicate that, in the rat, the kidney is a major source of body glutamine. 相似文献
9.
Dopamine production by the isolated perfused rat kidney 总被引:1,自引:0,他引:1
We used isolated perfused rat kidneys to examine dopamine (DA) production and its relation to renal function. Both innervated and chronically surgically denervated kidneys perfused with a solution containing neither albumin nor tyrosine, excreted 0.2 +/- 0.1 ng DA X min-1 X g wet weight-1 during the 10-min collection period between 30 and 40 min after starting perfusion. When perfused with 6.7% albumin, without tyrosine, innervated kidneys excreted 1.0 +/- 0.06 ng DA X min-1 X g-1 and denervated kidneys excreted 1.0 +/- 0.07 DA X min-1 X g-1. When 0.03 mM tyrosine was included in the albumin perfusate, innervated kidneys excreted 1.2 +/- 0.1 ng DA X min-1 X g-1 (p less than 0.1). Under these conditions DA excretion continued for at least 100 min at which time it was 0.6 ng X min-1 X g-1 and 86 ng/g kidney weight had been excreted. Denervated kidneys perfused with albumin + tyrosine excreted 0.9 +/- 0.13 ng DA X min-1 X g-1. Renal stores of free DA, conjugated DA, and dihydroxyphenylalanine (DOPA) could have provided at the most 30 ng/g of DA. Carbidopa inhibited DA excretion completely. DA excretion did not correlate with renal vascular resistance, inulin clearance, or fractional sodium excretion. In summary, nonneural tissue in isolated perfused kidneys produced DA at the same rate as denervated kidneys in vivo. Less than one-third of the DA produced by isolated kidneys could have come from intrarenal stores of DOPA, free DA, and conjugated DA; the rest was synthesized from unknown precursors.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
D B Ornt 《Canadian journal of physiology and pharmacology》1986,64(11):1427-1433
Renal adaptation for potassium (K) conservation has been demonstrated in isolated perfused kidneys from rats within 3 days of K depletion and appears to be independent of aldosterone and sodium excretion. This study was designed to investigate whether the renal adaptation for K conservation is independent of ambient [K] and renal tissue levels of K and whether ouabain may have effects on K excretion, which are in contrast to the effects on K excretion in normal animals. In the first study, rats K depleted for 3 days received 2500 mu equiv. KCI intraperitoneally, while other K-depleted rats and a group of control diet animals received intraperitoneal H2O alone to determine whether simple restoration of K deficits would reverse the renal adaptation for K conservation. Intraperitoneal KCI increased plasma [K] and kidney tissue K significantly within 3 h in the K-repleted group compared with the K-depleted rats. Isolated Kidneys were perfused from the three groups of rats 3 h after intraperitoneal injection. Despite K repletion in vivo, perfused kidneys from the K-repleted group still had significantly decreased K excretion (1.28 +/- 0.085 mu equiv./min) compared with controls (2.05 +/- 0.291 mu equiv./min), and K excretion was still not different from the K-depleted group (0.57 +/- 0.134 mu equiv./min). However, fractional K excretion by the kidneys from K-repleted rats was increased above K-depleted kidneys (0.48 +/- 0.051 vs. 0.18 +/- 0.034, p less than 0.01). Despite the increased renal tissue K in K-repleted kidneys at the start of perfusion (285 +/- 5.1 vs. 257 +/- 5.4 mu equiv./g), by the end of the perfusion tissue K in perfused kidneys was identical in all three groups.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
The isolated perfused rat kidney allows a simultaneous kinetic study of both the renal metabolism and the urinary excretion of cortisol and its metabolites in the rat. In this system, cortisol was completely metabolized within 120 minutes. The main renal metabolites of cortisol (cortisone, 20 reduced cortisol and 20 reduced cortisone) were found in the recirculating perfusate and in urine. The formation of these metabolites was quantitatively evaluated and compared to a theoretical model. 相似文献
12.
Functional evaluation of isolated perfused rat kidney 总被引:1,自引:0,他引:1
Bauman Arthur W.; Clarkson Thomas W.; Miles Ellen M. 《Journal of applied physiology》1963,18(6):1239-1246
13.
The localization of renal glutathione oxidase activity studied in the isolated, perfused rat kidney 总被引:1,自引:0,他引:1
The metabolism of extracellular glutathione was studied in the isolated, perfused rat kidney. Both recirculating and single-pass perfusions were associated with rapid conversion of reduced glutathione to glutathione disulfide in the perfusate. Only a minor fraction of perfusate glutathione was recovered in urine; however, this fraction was markedly increased in the presence of the inhibitor of γ-glutamyltransferase, serine·borate. In contrast, serine·borate had no effect on either oxidation or disappearance of perfusate glutathione. The results indicate that renal glutathione oxidase activity is restricted to glutathione present in plasma, while γ-glutamyltransferase acts on glutathione in the glomerular filtrate. 相似文献
14.
K.L. Liu H.Hadi Aissa M.C. Lareal D. Benzoni J. Sassard P. Zech 《Prostaglandins, leukotrienes, and essential fatty acids》1990,39(4):261-265
In order to assess the main characteristics of the prostaglandin (PG) biosynthesis by the isolated perfused rat kidney, the urinary and venous outputs of PGE2, PGF2alpha, 6-keto-PGF1alpha and of thromboxane (Tx)B2 were followed during 120 min after an equilibration period of 30 min. Single pass kidneys were perfused with a Krebs-Henseleit solution added with Polygeline at a constant flow rate providing a perfusion pressure about 90 mm Hg. From the beginning of the study, major differences could be observed in the renal biosynthetic rate of the 4 PG studied which were mainly excreted into the venous effluent. During the perfusion, urinary and venous outputs of PGE2, PGF2alpha and of TxB2 remained stable whereas those of 6-keto-PGF1alpha sharply increased and were found inversely related to the glomerular filtration rate (r = -0.95; p n 0.001). Finally, the urinary and venous outputs of each of the four PGs studied were found positively related. It is concluded that the isolated perfused rat kidney is a valuable preparation for studying the biosynthesis of PGs and that, at least in thi model, the urinary excretion of PGs is a good index of their renal synthesis. 相似文献
15.
16.
The proximal tubule of the nephron is subdivided into three structurally and functionally distinct segments, which can be differentiated with the help of special methods. With the aim of producing selective markers for these three portions of the proximal tubule, we raised monoclonal antibodies against the brush border membranes of the rat kidney. Immunohistochemistry was carried out with eleven different monoclonal antibodies to sections of rat kidney and other tissues at the light- and electron-microscopical level. These monoclonal antibodies mainly detect antigens located on the brush border of the proximal tubule, and they allow a distinction between its three segments. However, some antibodies also recognize other portions of the nephron, or even the glomerulus or stromal elements. Sites recognized by the antibodies are not limited to the kidney, but staining is observed on the intestinal brush border, the intralobular ducts of the pancreas, the bile canaliculi of the liver and on the macrophage clusters of the spleen. These antibodies are interesting reagents which can be applied to study biochemical differences between brush border membranes. In addition, they recognize antigenically related sites in other organs with reabsorptive or secretory tasks. 相似文献
17.
Longoni B Migliori M Ferretti A Origlia N Panichi V Boggi U Filippi C Cuttano MG Giovannini L Mosca F 《Free radical research》2002,36(3):357-363
Cyclosporine A (CsA) is a potent and effective immunosuppressive agent, but its action is frequently accompanied by severe renal toxicity. The precise mechanism by which CsA causes renal injury is not known. Reactive oxygen species (ROS) have been shown to play a role, since CsA-induced renal lipid peroxidation is attenuated in vivo and in vitro by the concomitant administration of antioxidants such as vitamin E. We show here the effect of the antioxidant melatonin (MLT), a hormone produced by the pineal gland during the dark phase of the circadian cycle, in a model of CsA nephrotoxicity in the isolated and perfused rat kidney. Kidneys isolated from rats were divided into seven groups. At the end of perfusion, malondialdehyde and 4-hydroxyalkenals (MDA+4-HDA), metabolites of nitric oxide N O 2 - +N O 3 - were measured and histopathological examination was performed. CsA treatment induced a significant increase in MDA+4-HDA while not affecting the nitric oxide metabolite level. MLT remarkably prevented glomerular collapse and tubular damage as revealed by morphometric analysis. Our study suggests that lipid peroxidation is an early important event in the pathogenesis of CsA nephrotoxicity and that MLT is able to protect kidneys from CsA at a relatively low concentration. 相似文献
18.
The present study has been performed to test for cell volume regulatory potassium release from the isolated perfused rat kidney exposed to hypotonic perfusate and for its sensitivity to potassium channel blocker barium and calcium channel blocker verapamil. Replacement of 25 mmol/l NaCl with 50 mmol/l mannitol has little effect on effluent potassium activity, whereas subsequent omission of mannitol from the perfusate leads to a transient increase of effluent potassium activity, reflecting volume regulatory potassium release. Barium (1 mmol/l) leads to a marked transient decrease of effluent potassium activity, pointing to net cellular uptake of potassium. Verapamil (1 mumol/l) leads to a slight decrease of effluent potassium activity. Both barium and verapamil virtually abolish the rapid, transient increase of effluent potassium activity upon exposure to hypotonic perfusates. Thus, the substances either block or markedly retard volume regulatory potassium release. The apparent renal vascular resistance is transiently increased by exposure to hypotonic perfusates and by barium, but is reduced by verapamil. Cell volume regulation of isolated perfused mouse straight proximal tubules is retarded but not abolished by verapamil (0.1 mmol/l). In conclusion, cellular potassium release from rat kidney can be determined by continuous measurement of effluent potassium activity. The volume regulatory potassium release and cell volume regulation are impaired by both barium and verapamil. The persisting cell volume regulation could be due either to slow potassium release and/or some mechanism independent of potassium. 相似文献
19.
Mechanism of neopterin-induced myocardial dysfunction in the isolated perfused rat heart 总被引:1,自引:0,他引:1
Balogh A Mittermayr M Schlager A Balogh D Schobersberger W Fuchs D Margreiter J 《Biochimica et biophysica acta》2005,1724(1-2):17-22
Neopterin is a sensitive marker for diseases involving increased activity of the cellular immune system in humans. Many studies, however, provide evidence for neopterin not only as a marker, but also for its characteristic effects. Recently, we were able to demonstrate a considerable influence of exogenous neopterin at a concentration of 100 mumol/l on cardiac performance in the Langendorff model of isolated perfused rat hearts. The present study was designed to investigate its possible mechanism. During co-infusion of neopterin at a concentration of 100 mumol/l with the unspecific nitric oxide synthase inhibitor N(G)-monomethyl-l-arginine monoacetate, the nitric oxide donor PAPA NONOate, the free radical scavenger N-acetylcysteine, or the pro-inflammatory cytokine tumor necrosis factor-alpha the effects on cardiac contractility parameters and coronary vascular resistance were studied in 67 male Sprague-Dawley rats. The temperature-controlled and pressure-constant Langendorff apparatus was used with retrograde perfusion of the aorta and a Krebs-Henseleit buffer. Neither the unspecific nitric oxide synthase inhibitor nor the nitric oxide donor excludes nitric oxide from playing a mechanistic role in our perfusion studies. Tumor necrosis factor-alpha was without any synergistic or antagonistic effects when co-treated with neopterin. N-acetylcysteine was most effective in abolishing neopterin-dependent effects on cardiac function. The negative effects of neopterin on cardiac performance might be due to an enhancement of oxidative stress by neopterin that can be attenuated by the antioxidant N-acetylcysteine. Neopterin has to be considered a pathogenic factor in the development of cardiac dysfunction in chronic disease states with high neopterin levels secondary to activation of the immune system. 相似文献
20.
The oxidation of ten substrates: monosaccharides, fatty acids and amino acids, was studied in the isolated perfused rat kidney. Glucose, when offered 3.75 mM, contributed to tissue respiration by a rate equivalent to 18% of the total O2-consumption of the preparation. The corresponding data for the other nine substrates, each offered in the presence of 3.75 mM glucose, were as follows: pyruvate: 66 %, lactate: 45 %, acetate: 34 %, palmitate: 30 %, glutamate: 25 %, fructose: 18 %, propionate: 12 %, alanine: 10 %, and tyrosine: < 1 %. Under the conditions used less than 2.2 % of the metabolized glucose, pyruvate, lactate and acetate respectively were recovered in the lipid fraction of the kidney, indicating direct oxidation of the respiratory fuels offered and a rather low turnover rate of the endogeneous lipid pool. 相似文献