首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
玉米叶片水分利用效率的保守性   总被引:2,自引:0,他引:2  
周怀林  周广胜 《生态学报》2019,39(6):2156-2167
水分利用效率是植物个体或生态系统水分利用过程的重要特征参数,可表征不同时空尺度的植物碳-水耦合关系,对植物适应气候变化研究具有重要意义。以玉米为例,利用中国气象局固城农业气象野外科学试验基地2013—2014年玉米不同灌溉方案模拟试验资料,对不同叶位叶片的水分利用效率特征及其影响因素进行分析。结果表明:植株顶部第1片叶片水分利用效率在拔节期和乳熟期呈现明显的峰值,反映出明显的周期变化规律及其与叶片生理生态特征的紧密相关。在相同环境条件下,不同叶位叶片的水分利用效率不存在显著性差异,即玉米叶片水分利用效率具有空间稳定性与叶龄保守性。同时,研究指出叶片光合速率和蒸腾速率在叶位之间的协调变化是导致空间稳定性和叶龄保守性的主要原因。研究结果可为植物水分关系研究提供参考,也可为水分利用效率的尺度化研究提供依据。  相似文献   

2.
青海省沙珠玉治沙站17种主要植物叶性因子的比较   总被引:18,自引:2,他引:18  
国外大量研究结果表明,具有高叶氮含量和低比叶面积的干旱地区植物往往具有较高的水分利用效率。选取青海省沙珠玉治沙站地区17种主要植物(野生9种,人工8种) ,分别测定其比叶面积(SL A) ,单位重量叶氮含量(Nmass)及单位面积叶氮含量(Narea) ,并与贡嘎山湿润森林样带测定数据进行比较分析。结果表明,Nmass随SL A的增加而增加,但Nmass与SL A关系格局在固定沙丘野生多年生草本-灌木植物(类群1,Narea>3.0 g m- 2 )与流动沙丘野生短命草本植物(类群2 ,Narea<3.0 g m- 2 )之间存在策略位移现象,即在相同SL A下,类群1比类群2具有更高的叶氮含量,或在相同Nmass时类群1比类群2具有更小的比叶面积。在8个人工物种中,柠条锦鸡儿、中间锦鸡儿、绵柳和西北沙柳等灌木属于类群1,而甘草、小叶锦鸡儿、柽柳和青杨属于类群2 ,前者比后者具备更好的干旱适应机制,建议在生产上优先考虑前者。流动沙丘野生短命草本植物具有较低的叶氮含量和较高的比叶面积,这一特征与流动沙丘土壤贫瘠及其生长期内降水集中和土壤水分含量相对丰富密切相关。  相似文献   

3.
The relationships between dark respiration rate (R D) and net photosynthetic rate (P N) in Quercus ilex L. shrubs growing at the Botanical Garden in Rome were analysed. Correlation analysis of the data sets collected in the year 2006 confirmed the dependence among the considered leaf traits, in particular, R D was significantly (p<0.05) correlated with P N (r = 0.40). R D and P N increased from March to May [1.40±0.10 and 10.1±1.8 μmol(CO2) m−2 s−1 mean values of the period, respectively], when air temperature was in the range 14.8–25.2 °C, underlining the highest metabolic activity in the period of the maximum vegetative activity that favoured biomass accumulation. On the contrary, the highest R D [1.60±0.02 μmol(CO2) m−2 s−1], associated to the lowest P N rates (44 % of the maximum) and carbon use efficiency (CUE) in July underlined the mobilization of stored material during drought stress by a higher air temperature (32.7 °C).  相似文献   

4.
植物叶片水分利用效率研究综述   总被引:35,自引:7,他引:35  
植物能否适应当地的极限环境条件,最主要的看它们能否很好地协调碳同化和水分耗散之间的关系,即植物水分利用效率(WUE)是其生存的关键因子.就近来研究最多的叶片水平上的WUE,从叶片WUE的定义,方法,进展等方面对其进行总结概括,并就今后植物叶片水分利用效率的研究提出了几点看法:方法上,叶片碳同位素方法是目前植物叶片长期水分利用效率研究的最佳方法,而δ13C的替代指标将继续是方法研究中的一个方向,前景乐观;研究内容上,要加强极端干旱区河岸林木的δ13C和WUE的研究;结合植物生理生态学,生物学和稳定同位素技术,探究植物叶片长期水分利用效率的机理,特别是要加强运用双重同位素模型加深和理解植物叶片长期水分利用效率变化规律和内在机制的研究;要结合多种方法,加强多时空尺度植物叶片WUE及其之间的转换研究.  相似文献   

5.
叶脉网络功能性状及其生态学意义   总被引:6,自引:0,他引:6       下载免费PDF全文
叶脉网络结构是叶脉系统在叶片里的分布和排列样式。早期叶脉网络结构研究主要集中在其分类学意义上; 近年来叶脉网络功能性状及其在植物水分利用上的意义已成为植物生态学研究的热点。该文介绍了叶脉网络功能性状的指标体系(包括叶脉密度、叶脉直径、叶脉之间的距离、叶脉闭合度等), 综述了叶脉网络功能性状与叶脉系统功能(包括水分、养分和光合产物等物质运输、机械支撑和虫害防御等)的关系, 叶脉网络功能性状与叶片其他功能性状(包括比叶重、叶寿命、光合速率、叶片大小、气孔密度等)的协同变异和权衡关系, 以及叶脉网络功能性状随环境因子(包括水分、温度、光照等)的变化规律等方面的最新研究进展。此外, 叶脉网络功能性状的研究成果也被应用于古环境重建、城市交通规划、流域规划及全球变化研究中。由于叶脉网络功能性状是环境因子与系统发育共同作用的结果, 未来开展分子—叶片—植物—生态系统等多尺度的叶脉网络功能性状研究, 理清叶脉网络功能性状与气孔失水—茎干导水—根系吸水等植物水分利用的关系, 将为预测植物及生态系统对全球变化的响应提供新的启示。  相似文献   

6.
A new type of tool use, leaf cushion, by wild chimpanzees (Pan troglodytes verus) at Bossou, Guinea, was found. We report two cases: one is indirect evidence; the other is direct observation of a chimpanzee who used the tool. Both cases indicate that chimpanzees used a set of leaves as a cushion while sitting on wet ground. Chimpanzees at Bossou show various kinds of tool use, some of which are unique to the community. Most of these behavioral patterns are subsistence tool use for obtaining food, as at other study sites. The use of leaves as a cushion adds to the few instances of nonsubsistence, elementary technology seen used by wild chimpanzees. Am. J. Primatol. 44:215–220, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.

Premise of the Study

The pygmy forest, a plant community of severely stunted conifers and ericaceous angiosperms, occurs on patches of highly acidic, nutrient‐poor soils along the coast of Northern California, USA. This system is an excellent opportunity to study the effect of severe nutrient deficiency on leaf physiology in a naturally‐occurring ecosystem. In this study, we seek to understand the physiological mechanisms stunting the plants' growth and their implications for whole plant function.

Methods

We measured 14 traits pertaining to leaf photosynthetic function or physical structure on seven species. Samples were taken from the pygmy forest community and from conspecifics growing on higher‐nutrient soils, where trees may grow over 30 m tall.

Key Results

Pygmy plants of most species maintained similar area‐based photosynthetic and stomatal conductance rates to conspecific controls, but had lower specific leaf area (leaf area divided by dry weight), lower percent nitrogen, and less leaf area relative to xylem growth. Sequoia sempervirens, a species rare in the pygmy forest, had a categorically different response from the more common plants and had remarkably low photosynthetic rates.

Conclusions

Pygmy plants were not stunted by low photosynthetic rates on a leaf‐area basis; instead, several species had restricted whole‐plant photosynthesis due to low leaf area production. Pygmy plants of all species showed signs of greater carbon investment in their leaves and higher production of nonphotosynthetic leaf tissue, further contributing to slow growth rates.  相似文献   

8.
A central issue in evolutionary biology is the exploration of functional trait variation among populations and the extent to which this variation has adaptive value. It was recently proposed that specific leaf area (SLA), leaf nitrogen concentration per mass (Nmass) and water use efficiency in cork oak play an important role in adaptation to water availability in the environment. In order to investigate this hypothesis, we explored, first, whether there was population-level variation in cork oak (Quercus suber) for these functional traits throughout its distribution range; if this were the case, it would be consistent with the hypothesis that different rainfall patterns have led to ecotypic differentiation in this species. Second, we studied whether the population-level variation matched short-term selection on these traits under different water availability conditions using two fitness components: survival and growth. We found high population-level differentiation in SLA and Nmass, with populations from dry places exhibiting the lowest values for SLA and Nmass. Likewise, reduced SLA had fitness benefits in terms of growth for plants under dry conditions. However, contrary to our expectations, we did not find any pattern of association between functional traits and survival in nine-year-old saplings despite considerable drought during one year of the study period. These results together with findings from the literature suggest that early stages of development are the most critical period for this species. Most importantly, these findings suggest that cork oak saplings have a considerable potential to cope with dry conditions. This capacity to withstand aridity has important implications for conservation of cork oak woodlands under the ongoing climate change.  相似文献   

9.
13C discrimination between atmosphere and bulk leaf matter (Δ13Clb) is frequently used as a proxy for transpiration efficiency (TE). Nevertheless, its relevance is challenged due to: (1) potential deviations from the theoretical discrimination model, and (2) complex time integration and upscaling from leaf to whole plant. Six hybrid genotypes of Populus deltoides×nigra genotypes were grown in climate chambers and tested for whole‐plant TE (i.e. accumulated biomass/water transpired). Net CO2 assimilation rates (A) and stomatal conductance (gs) were recorded in parallel to: (1) 13C in leaf bulk material (δ13Clb) and in soluble sugars (δ13Css) and (2) 18O in leaf water and bulk leaf material. Genotypic means of δ13Clb and δ13Css were tightly correlated. Discrimination between atmosphere and soluble sugars was correlated with daily intrinsic TE at leaf level (daily mean A/gs), and with whole‐plant TE. Finally, gs was positively correlated to 18O enrichment of bulk matter or water of leaves at individual level, but not at genotype level. We conclude that Δ13Clb captures efficiently the genetic variability of whole‐plant TE in poplar. Nevertheless, scaling from leaf level to whole‐plant TE requires to take into account water losses and respiration independent of photosynthesis, which remain poorly documented.  相似文献   

10.
Gross ecosystem productivity (GEP) in tropical forests varies both with the environment and with biotic changes in photosynthetic infrastructure, but our understanding of the relative effects of these factors across timescales is limited. Here, we used a statistical model to partition the variability of seven years of eddy covariance‐derived GEP in a central Amazon evergreen forest into two main causes: variation in environmental drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with model parameters that govern photosynthesis and biotic variation in canopy photosynthetic light‐use efficiency associated with changes in the parameters themselves. Our fitted model was able to explain most of the variability in GEP at hourly (R= 0.77) to interannual (R= 0.80) timescales. At hourly timescales, we found that 75% of observed GEP variability could be attributed to environmental variability. When aggregating GEP to the longer timescales (daily, monthly, and yearly), however, environmental variation explained progressively less GEP variability: At monthly timescales, it explained only 3%, much less than biotic variation in canopy photosynthetic light‐use efficiency, which accounted for 63%. These results challenge modeling approaches that assume GEP is primarily controlled by the environment at both short and long timescales. Our approach distinguishing biotic from environmental variability can help to resolve debates about environmental limitations to tropical forest photosynthesis. For example, we found that biotically regulated canopy photosynthetic light‐use efficiency (associated with leaf phenology) increased with sunlight during dry seasons (consistent with light but not water limitation of canopy development) but that realized GEP was nonetheless lower relative to its potential efficiency during dry than wet seasons (consistent with water limitation of photosynthesis in given assemblages of leaves). This work highlights the importance of accounting for differential regulation of GEP at different timescales and of identifying the underlying feedbacks and adaptive mechanisms.  相似文献   

11.
Knowledge on the physiological parameters that determine the growth of enset (Ensete ventricosum) and on how these parameters develop over time and affect yield under field conditions is scarce. Field experiments were carried out at three sites in southern Ethiopia using suckers of several clones to generate crop physiological parameters and to describe the time course of leaf number, leaf area and plant height. Yield potentials at different sites were estimated using these parameters and weather data, and compared with the actual yield. Plant height and LAI increased faster at Awassa and Areka than at Hagereselam because of a higher leaf appearance rate associated with temperatures being closer to the optimum. The trend in plant height was best described by a logistic function, whereas the trend in LAI was best described by a logistic function only at Awassa and Areka. A high leaf appearance rate (0.18 leaves day?1) during early growth at Awassa and Areka made it possible that leaves that were senesced during unfavourable climatic conditions could be rapidly replaced without strong fluctuation in leaf area index. At Hagereselam, however, the rate of leaf appearance (0.09 leaves day?1) was too small to compensate for the decline in the number of green leaves per plant during adverse conditions and thus LAI fluctuated over the whole growing period. The trend in fraction of PAR intercepted was best described by a generalised logistic function. At 300 days after transplanting the suckers, LAI reached a value of 4.5 and enset clones intercepted 92–97% of incoming PAR. The mean extinction coefficient was between 0.56–0.91 and radiation use efficiency (RUE) ranged from 1.43–2.67 g MJ?1. Dry matter kocho yield potentials of 17.1 to 33.9 t ha‐1 yr‐1 were estimated for enset clones. Important yield potential differences existed between clones mainly because of differences in radiation use efficiency that was probably partly associated with viral infection. The average ratio of actual yield:yield potential (0.24) was low mainly because of large losses associated with traditional fermentation techniques, yield reducing cultivation methods such as repetitive transplanting and leaf pruning, presence of diseases, lack of adequate fertilisation and shortage and uneven distribution of rainfall.  相似文献   

12.
Wind increases leaf water use efficiency   总被引:1,自引:0,他引:1       下载免费PDF全文
A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf‐scale analysis suggests that the observed global decrease in near‐surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long‐term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re‐evaluation of the role of wind in plant water relations and potential re‐interpretation of temporal and geographic trends in leaf sizes.  相似文献   

13.
分根区施保水剂对玉米气孔导度和单叶WUE的影响   总被引:5,自引:0,他引:5  
盆栽条件下,研究了陕单9号玉米(zea mays L.)在根区不施保水剂(对照)、分根区施保水剂和根区全施保水剂3种处理下,叶片气孔导度、CO2吸收和H2O蒸腾的变化。结果表明,在75%土壤饱和持水量下,各指标在3种处理之间没有明显差别;在50%土壤饱和持水量下,分根区施保水剂显著降低了叶片气孔导度,叶片CO2吸收量和H2O蒸腾量也同时降低,但H2O蒸腾量下降幅度更大;在两种水分条件下,分根区施保水剂均能提高玉米单叶水分利用效率(water use efficiency,WUE)。  相似文献   

14.
Net photosynthesis and transpiration of seedlings from shade tolerant, moderately tolerant and intolerant tree species were measured in ambient carbon dioxide (CO2) concentrations ranging from 312 to 734 ppm. The species used, Fagus grandifolia Ehrh. (tolerant), Quercus alba L., Q. rubra L., Liriodendron tulipifera L. (moderately tolerant), Liquidambar styraciflua L. and Pinus taeda L. (intolerant), are found co-occurring in the mixed pine-hardwood forests of the Piedmont region of the southeastern United States. When seedlings were grown in shaded conditions, photosynthetic CO2 efficiency was significantly different in all species with the highest efficiency in the most shade tolerant species, Fagus grandifolia , and progressively lower efficiencies in moderately tolerant and intolerant species. Photosynthetic CO2 efficiency was defined as the rate of increase in net photosynthesis with increase in ambient CO2 concentration. When plants which had grown in a high light environment were tested, the moderately tolerant and intolerant deciduous species had the highest photosynthetic CO2 efficiencies but this capacity was reduced when these species grew in low light. The lowest CO2 efficiency and apparent quantum yield occurred in Pinus taeda in all cases. Water use efficiency was higher for all species in enriched CO2 environments but transpiration rate and leaf conductance were not affected by CO2 concentration. High photosynthetic CO2 efficiency may be advantageous for maintaining a positive carbon balance in the low light environment under a forest canopy.  相似文献   

15.
Grieve  C.M.  Suarez  D.L. 《Plant and Soil》1997,192(2):277-283
Drainage water reuse systems have been proposed for the west side of the San Joaquin Valley of California in order to reduce the volumes of water requiring disposal. Implementation of this system requires development of a cropping system with successively higher salt tolerance. A major limitation is the need to identify alternate species that will be suitable as the final, most salt tolerant crop in the series. These crops must be productive when irrigated with waters that are typically high in sulfate salinity and may be contaminated with potentially toxic trace elements. This study was initiated to evaluate the interactive effects of sulfate salinity and selenium on biomass production and mineral content of purslane (Portulaca oleracea). Plants were grown in greenhouse sand cultures and irrigated four times daily. Treatments consisted of three salinity levels with electrical conductivities (ECi) of 2.1, 15.2, and 28.5 dS m–1, and two selenium levels, 0 and 2.3 mg L–1. In the initial harvests, shoot dry matter was reduced by 15 to 30% at 15.2 dS m–1 and by 80 to 90% at 28.5 dS m–1. Regrowth after clipping above the first node was vigorous and biomass from plants irrigated with 15.2 dS m–1 water was nearly double that from the 2 dS m–1 treatment. Purslane appears to be an excellent candidate for inclusion in saline drainage water reuse systems. It is (i) highly tolerant of both chloride- and sulfate-dominated salinities, (ii) a moderate selenium accumulator in the sulfate-system, and (iii) a valuable, nutritive vegetable crop for human consumption and for livestock forage.  相似文献   

16.
BACKGROUND AND AIMS: Bamboos have long-lived, evergreen leaves that continue to accumulate silica throughout their life. Silica accumulation has been suggested to suppress their photosynthetic activity. However, nitrogen content per unit leaf area (N(area)), an important determinant of maximum photosynthetic capacity per unit leaf area (P(max)), decreases as leaves age and senescence. In many species, P(max) decreases in parallel with the leaf nitrogen content. It is hypothesized that if silica accumulation affects photosynthesis, then P(max) would decrease faster than N(area), leading to a decrease in photosynthetic rate per unit leaf nitrogen (photosynthetic nitrogen use efficiency, PNUE) with increasing silica content in leaves. METHODS: The hypothesis was tested in leaves of Sasa veitchii, which have a life span of 2 years and accumulate silica up to 41 % of dry mass. Seasonal changes in P(max), stomatal conductance, N(area) and silica content were measured for leaves of different ages. KEY RESULTS: Although P(max) and PNUE were negatively related with silica content across leaves of different ages, the relationship between PNUE and silica differed depending on leaf age. In second-year leaves, PNUE was almost constant although there was a large increase in silica content, suggesting that leaf nitrogen was a primary factor determining the variation in P(max) and that silica accumulation did not affect photosynthesis. PNUE was strongly and negatively correlated with silica content in third-year leaves, suggesting that silica accumulation affected photosynthesis of older leaves. CONCLUSIONS: Silica accumulation in long-lived leaves of bamboo did not affect photosynthesis when the silica concentration of a leaf was less than 25 % of dry mass. Silica may be actively transported to epidermal cells rather than chlorenchyma cells, avoiding inhibition of CO2 diffusion from the intercellular space to chloroplasts. However, in older leaves with a larger silica content, silica was also deposited in chlorenchyma cells, which may relate to the decrease in PNUE.  相似文献   

17.
Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per‐area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO2 assimilation. We developed a two‐fraction leaf (sun and shade), two‐layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leaf quantity, quality, and within‐canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground‐based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two‐fraction leaf, two‐layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance‐derived CO2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.  相似文献   

18.
It is unclear whether the shift in leaf traits between species of high- and low-rainfall sites is caused by low rainfall or by species replacement, because leaf traits vary substantially among species and sites. Our objective was to test if the within-species relationship between specific leaf area (SLA) and leaf N concentration (N(mass) ) shifts across a rainfall gradient in the semi-arid sandy lands of northern China. Data for SLA and N(mass) of dominant species and related canopy and soil variables were collected from 33 plots along a rainfall transect (270-390 mm) having similar temperatures in the Mu Us, Inner Mongolia. We further investigated the generality of Mu Us data using 12 additional plots in the southeastern Qaidam Basin, Qinghai. Artemisia ordosica is a widespread species in both regions. Across and within species, the positive SLA-N(mass) relationship shifted between two plant groups in the lowest rainfall plots (270 mm) and other higher rainfall plots (320-390 mm), which was confirmed by additional data from Qinghai. For A. ordosica populations, leaf area index (LAI) decreased and N(mass) increased with decreasing rainfall, while the foliage N pool and SLA varied little. Rainfall was the limiting factor that determined variations in N(mass) and LAI. Accordingly, N(mass) /SLA ratios continually increased with decreasing LAI along the rainfall gradient (r = -0.76, P < 0.001). Results indicate a low rainfall-induced shift in the SLA-N(mass) relationship associated with changes in LAI and foliage N pool, suggesting a link between leaf characteristics and ecosystem function.  相似文献   

19.
A key element of most recently proposed plant strategy schemes is an axis of resource capture, usage and availability. In the search for a simple, robust plant trait (or traits) that will allow plants to be located on this axis, specific leaf area is one of the leading contenders. Using a large new unpublished database, we examine the variability of specific leaf area and other leaf traits, the relationships between them, and their ability to predict position on the resource use axis. Specific leaf area is found to suffer from a number of drawbacks; it is both very variable between replicates and much influenced by leaf thickness. Leaf dry-matter content (sometimes referred to as tissue density) is much less variable, largely independent of leaf thickness and a better predictor of location on an axis of resource capture, usage and availability. However, it is not clear how useful dry matter content will be outside northwest Europe, and in particular in dry climates with many succulents.  相似文献   

20.
Question: In the Northern Hemisphere, species with dispersal limitations are typically absent from secondary forests. In Australia, little is known about dispersal mechanisms and other traits that drive species composition within post‐agricultural, secondary forest. We asked whether mode of seed dispersal, nutrient uptake strategy, fire response, and life form in extant vegetation differ according to land‐use history. We also asked whether functional traits of Australian species that confer tolerance to grazing and re‐colonisation potential differ from those in the Northern Hemisphere. Location: Delatite Peninsula, NE Victoria, Australia. Methods: The vegetation of primary and secondary forests was surveyed using a paired‐plot design. Eight traits were measured for all species recorded. ANOSIM tests and Non‐metric Multi‐dimensional Scaling were used to test differences in the abundance of plant attributes between land‐use types. Results: Land‐use history had a significant effect on vegetation composition. Specific leaf area (SLA) proved to be the best predictor of response to land‐use change. Primary forest species were typically myrmecochorous phanerophytes with low SLA. In the secondary forest, species were typically therophytes with epizoochorous dispersal and high SLA. Conclusions: The attributes of species in secondary forests provide tolerance to grazing suggesting that disturbance caused by past grazing activity determined the composition of these forests. Myrmecochores were rare in secondary forests, suggesting that species had failed to re‐colonise due to dispersal limitations. Functional traits that resulted in species loss through disturbance and prevented re‐colonisation were different to those in the Northern Hemisphere and were attributable to the sclerophyllous nature of the primary forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号