首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The normal human FMR1 gene contains a genetically stable (CGG) n trinucleotide repeat which usually carries interspersed AGG triplets. An increase in repeat number and the loss of interspersions results in array instability, predominantly expansion, leading to FMR1 gene silencing. Instability is directly related to the length of the uninterrupted (CGG) n repeat and is widely assumed to be related to an increased propensity to form G-rich secondary structures which lead to expansion through replication slippage. In order to investigate this we have cloned human FMR1 arrays with internal structures representing the normal, intermediate and unstable states. In one replicative orientation, arrays show a length-dependent instability, deletions occurring in a polar manner. With longer arrays these extend into the FMR1 5'-flanking DNA, terminating at either of two short CGG triplet arrays. The orientation-dependent instability suggests that secondary structure forms in the G-rich lagging strand template, resolution of which results in intra-array deletion. These data provide direct in vivo evidence for a G-rich lagging strand secondary structure which is believed to be involved in the process of triplet expansion in humans.  相似文献   

2.
Peier AM  Nelson DL 《Genomics》2002,80(4):423-432
Fragile X syndrome results from the massive expansion of a CGG repeat in the 5' untranslated region of the gene FMR1. Data suggest that the hyperexpansion properties of FMR1 CGG repeats may depend on flanking cis-acting elements. We have therefore used homologous recombination in yeast to introduce an in situ CGG expansion corresponding to a premutation-sized allele into a human YAC carrying the FMR1 locus. Several transgenic lines were generated that carried repeats of varying lengths and amounts of flanking sequence. Length-dependent instability in the form of small expansions and contractions was observed in both male and female transmissions over five generations. No parent-of-origin effect or somatic instability was observed. Alterations in tract length were found to occur exclusively in the 3' uninterrupted CGG tract. Large expansion events indicative of a transition from a premutation to a full mutation were not observed. Overall, our results indicate both similarities and differences between the behavior of a premutation-sized repeat in mouse and that in human.  相似文献   

3.
4.
Hairpin and tetrahelical structures of a d(CGG)(n) sequence in the FMR1 gene have been implicated in its expansion in fragile X syndrome. The identification of tetraplex d(CGG)(n) destabilizing proteins (Fry, M., and Loeb, L. A.(1999) J. Biol. Chem. 274, 12797-12803; Weisman-Shomer, P., Naot, Y., and Fry, M. (2000) J. Biol. Chem. 275, 2231-2238) suggested that proteins might modulate d(CGG)(n) folding and aggregation. We assayed human TK-6 lymphoblastoid cell extracts for d(CGG)(8) oligomer binding proteins. The principal binding protein was identified as Ku antigen by its partial amino acid sequence and antigenicity. The purified 88/75-kDa heterodimeric Ku bound with similar affinities (K(d) approximately 1. 8-10.2 x 10(-9) mol/liter) to double-stranded d(CGG)(8).d(CCG)(8), hairpin d(CGG)(8), single-stranded d(CII)(8), or tetraplex structures of telomeric or IgG switch region sequences. However, Ku associated more tightly with bimolecular G'2 tetraplex d(CGG)(8) (K(d) approximately 0.35 x 10(-9) mol/liter). Binding to Ku protected G'2 d(CGG)(8) against nuclease digestion and impeded its unwinding by the tetraplex destabilizing protein qTBP42. Stabilization of d(CGG)(n) tetraplex domains in FMR1 by Ku or other proteins might promote d(CGG) expansion and FMR1 silencing.  相似文献   

5.
Sharma D  Gupta M  Thelma BK 《Human genetics》2003,112(3):262-271
This study on allelic/haplotypic fragile X associations evaluated using STR (DXS548, FRAXAC1, FRAXAC2) and SNP (ATL1) markers flanking the (CGG)(n) locus of FMR1is the first report from the large ethnically complex Indian population. Results have been compared with allele/haplotype distributions reported for other major ethnic groups, including White Caucasians, Africans, and Pacific Asians. Though overall allele frequency distributions at the individual loci are more similar to Western Caucasians compared with others, significant differences are observed in haplotypic associations with the mutated X. The striking findings are: (1) high diversity and heterozygosity of haplotypes among fragile X chromosomes ( n=40) and controls ( n=262), including four haplotypes found exclusively in this study sample; (2) weak association of DXS548-FRAXAC1-FRAXAC2 haplotypes, 2-1-3, 6-3-3+ and 7-4-6+ with the disorder, and absence of White Caucasian fragile X haplotypes 6-4-4 and 6-4-5; (3) weak founder effect for the fragile X expansion mutation in the Indians; (4) lack of a continuum of haplotype-based FMR1 alleles between intermediate (CGG)(n) size ranges and expanded alleles; (5) exclusion of ATL1 as a candidate genetic indicator of FMR1 instability. The high STR-based haplotype diversity observed among fragile X lineages, irrespective of ethnic alliances, strongly suggests the inappropriateness of using STR haplotypes to infer predisposition to instability among ethnically separated fragile X pedigrees and may reiterate the need for identifying newer SNPs from this region to not only determine true founder effects for the fragile X mutation, but also decipher possible mechanisms leading to CGG instability.  相似文献   

6.
7.
8.
Dynamic mutation resulting in the expansion of CGG repeats in the untranslated region (UTR) of the first exon of the FMR1 gene in humans results in fragile X syndrome. Long stretches of CGG repeats that are known to be highly unstable in humans have so far failed to show similar intergenerational instability in transgenic mice. We generated transgenic lines that show a dramatic increase from 26 to >300 repeats in three generations. One of the salient features of our transgene is the inclusion of the origin of replication of simian virus-40 (SV40), which is known to exclude nucleosomes. Three founder mice in FVB/NJ background show expansion of CGG repeats present in the transgene, supporting a postzygotic mechanism for CGG expansion that is independent of a genomic imprinting effect. We discuss here the results of analyzing one of the lines established.  相似文献   

9.
10.
11.
The influence of mutations in the 3' to 5' exonucleolytic proofreading epsilon-subunit of Escherichia coli DNA polymerase III on the genetic instabilities of the CGG.CCG and the CTG.CAG repeats that cause human hereditary neurological diseases was investigated. The dnaQ49(ts) and the mutD5 mutations destabilize the CGG.CCG repeats. The distributions of the deletion products indicate that slipped structures containing a small number of repeats in the loop mediate the deletion process. The CTG.CAG repeats were destabilized by the dnaQ49(ts) mutation by a process mediated by long hairpin loop structures (>/=5 repeats). The mutD5 mutator strain stabilized the (CTG.CAG)(175) tract, which contained two interruptions. Since the mutD5 mutator strain has a saturated mismatch repair system, the stabilization is probably an indirect effect of the nonfunctional mismatch repair system in these strains. Shorter uninterrupted tracts expand readily in the mutD5 strain, presumably due to the greater stability of long CTG.CAG tracts (>100 repeats) in this strain. When parallel studies were conducted in minimal medium, where the mutD5 strain is defective in exonucleolytic proofreading but has a functional MMR system, both CTG.CAG and CGG.CCG repeats were destabilized, showing that the proofreading activity is essential for maintaining the integrity of TRS tracts. Thus, we conclude that the expansion and deletion of triplet repeats are enhanced by mutations that reduce the fidelity of replication.  相似文献   

12.
The human FMR1 gene contains a CGG repeat in its 5' untranslated region. The repeat length in the normal population is polymorphic (5-55 CGG repeats). Lengths beyond 200 CGGs (full mutation) result in the absence of the FMR1 gene product, FMRP, through abnormal methylation and gene silencing. This causes Fragile X syndrome, the most common inherited form of mental retardation. Elderly carriers of the premutation, defined as a repeat length between 55 and 200 CGGs, can develop a progressive neurodegenerative syndrome: Fragile X-associated tremor/ataxia syndrome (FXTAS). In FXTAS, FMR1 mRNA levels are elevated and it has been hypothesised that FXTAS is caused by a pathogenic RNA gain-of-function mechanism. We have developed a knock in mouse model carrying an expanded CGG repeat (98 repeats), which shows repeat instability and displays biochemical, phenotypic and neuropathological characteristics of FXTAS. Here, we report further repeat instability, up to 230 CGGs. An expansion bias was observed, with the largest expansion being 43 CGG units and the largest contraction 80 CGG repeats. In humans, this length would be considered a full mutation and would be expected to result in gene silencing. Mice carrying long repeats ( approximately 230 CGGs) display elevated mRNA levels and decreased FMRP levels, but absence of abnormal methylation, suggesting that modelling the Fragile X full mutation in mice requires additional repeats or other genetic manipulation.  相似文献   

13.
Fragile X syndrome, the most common form of inherited mental retardation in males, arises when the normally stable 5 to 50 CGG repeats in the 5' untranslated region of the fragile X mental retardation protein 1 (FMR1) gene expand to over 200, leading to DNA methylation and silencing of the FMR1 promoter. Although the events that trigger local CGG expansion remain unknown, the stability of trinucleotide repeat tracts is affected by their position relative to an origin of DNA replication in model systems. Origins of DNA replication in the FMR1 locus have not yet been described. Here, we report an origin of replication adjacent to the FMR1 promoter and CGG repeats that was identified by scanning a 35-kb region. Prereplication proteins Orc3p and Mcm4p bind to chromatin in the FMR1 initiation region in vivo. The position of the FMR1 origin relative to the CGG repeats is consistent with a role in repeat maintenance. The FMR1 origin is active in transformed cell lines, fibroblasts from healthy individuals, fibroblasts from patients with fragile X syndrome, and fetal cells as early as 8 weeks old. The potential role of the FMR1 origin in CGG tract instability is discussed.  相似文献   

14.
15.
16.
Fragile X syndrome, the most common inherited form of mental retardation, arises in individuals with more than 200 CGG repeats in the 5 untranslated region of the fragile X mental retardation 1 (FMR1) gene. Although CGG repeat numbers comparable to those found in the normal human population are found in various non-human primates, neither the within-species size variation nor the propensity for expansion of the CGG repeat has been described for any non-human primate species. The allele distribution has now been determined for FMR1 (homologue) CGG repeats of 265 unrelated founder females of Macaca mulatta monkeys. Among 530 X chromosomes, at least 26 distinct repeat lengths were identified, ranging from 16 to 54 CGG repeats. Of these alleles 79% have between 25 and 33 CGG repeats. Detailed examination of the CGG region revealed a conserved G (CGG)2 G interruption, although in no case was an AGG trinucleotide detected. Two animals carried borderline premutation alleles with 54 CGG repeats, within the region of marginal instability for humans. Thus, M. mulatta may be useful as an animal model for the study of fragile X syndrome.  相似文献   

17.
Fragile X syndrome is the most common form of hereditary mental retardation. The molecular basis of this syndrome is mainly a CGG expansion in the 5' untranslated region of the FMR1 gene. Expansions with more than 200 CGG repeats abolish gene expression causing the classical fragile X phenotype. Premutation carriers (55-200 CGG) have normal cognitive function with increased risk of developing premature ovarian failure and fragile X-associated tremor-ataxia syndrome (FXTAS). Some clinical features associated with FXTAS, such as tremor, gait ataxia, cognitive decline, and generalized brain atrophy, are also seen in other movement disorders. Ninety-five patients referred for HD, who tested negative for the expansion in the IT15 gene, were screened for FMR1 CGG-repeat expansion. One FMR1 premutation male carrier was detected, giving an FXTAS frequency of 1.6%. Our results highlight that FXTAS is still not well diagnosed; therefore, we recommend FMR1 premutation screenings in all patients with late-onset tremor, ataxia, and cognitive dysfunction.  相似文献   

18.
The mechanisms of trinucleotide repeat expansions, underlying more than a dozen hereditary neurological disorders, are yet to be understood. Here we looked at the replication of (CGG)(n) x (CCG)(n) and (CAG)(n) x (CTG)(n) repeats and their propensity to expand in Saccharomyces cerevisiae. Using electrophoretic analysis of replication intermediates, we found that (CGG)(n) x (CCG)(n) repeats significantly attenuate replication fork progression. Replication inhibition for this sequence becomes evident at as few as approximately 10 repeats and reaches a maximal level at 30 to 40 repeats. This is the first direct demonstration of replication attenuation by a triplet repeat in a eukaryotic system in vivo. For (CAG)(n) x (CTG)(n) repeats, on the contrary, there is only a marginal replication inhibition even at 80 repeats. The propensity of trinucleotide repeats to expand was evaluated in a parallel genetic study. In wild-type cells, expansions of (CGG)(25) x (CCG)(25) and (CAG)(25) x (CTG)(25) repeat tracts occurred with similar low rates. A mutation in the large subunit of the replicative replication factor C complex (rfc1-1) increased the expansion rate for the (CGG)(25) repeat approximately 50-fold but had a much smaller effect on the expansion of the (CTG)(25) repeat. These data show dramatic sequence-specific expansion effects due to a mutation in the lagging strand DNA synthesis machinery. Together, the results of this study suggest that expansions are likely to result when the replication fork attempts to escape from the stall site.  相似文献   

19.
20.
The molecular mechanism of the fragile X syndrome is based on the expansion of an CGG repeat in the 5' UTR of the FMR1 gene in the majority of fragile X patients. This repeat displays instability both between individuals and within an individual. We studied the instability of the CGG repeat and the expression of the FMR1 protein (FMRP) in several different tissues derived from a male fragile X patient. Using Southern blot analysis, only a full mutation is detected in 9 of the 11 tissues tested. The lung tumor contains a methylated premutation of 160 repeats, whereas in the testis, besides the full mutation, a premutation of 60 CGG repeats is detected. Immunohistochemistry of the testis revealed expression of FMR1 in the spermatogonia only, confirming the previous finding that, in the sperm cells of fragile X patients with a full mutation in their blood cells, only a premutation is present. Immunohistochemistry of brain and lung tissue revealed that 1% of the cells are expressing the FMRP. PCR analysis demonstrated the presence of a premutation of 160 repeats in these FMR1-expressing cells. This indicates that the tumor was derived from a lung cell containing a premutation. Remarkably, despite the methylation of the EagI and BssHII sites, FMRP expression is detected in the tumor. Methylation of both restriction sites has thus far resulted in a 100% correlation with the lack of FMR1 expression, but the results found in the tumor suggest that the CpGs in these restriction sites are not essential for regulation of FMR1 expression. This indicates a need for a more accurate study of the exact promoter of FMR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号