首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptation of the vaccinia virus expression system to HeLa S3 suspension bioreactor culture for the production of recombinant protein was conducted. Evaluation of hollow fiber perfusion of suspension culture demonstrated its potential for increased cell density prior to infection. The hollow fiber was also used for medium manipulations prior to infection. Two process parameters, multiplicity of infection (MOI) and temperature during the protein production phase, were evaluated to determine their effect on expression of the reporter protein, enhanced green fluorescent protein (EGFP). An MOI of 1.0 was sufficient for infection and led to the highest level of intracellular EGFP expression. Reducing the temperature to 34 °C during the protein production phase increased production of the protein two-fold compared to 37 °C in spinner flask culture. Scaling up the process to a 1.5-liter bioreactor with hollow fiber perfusion led to an overall production level of 9.9 μg EGFP/106 infected cells, or 27 mg EGFP per liter.  相似文献   

2.
Parameters that affect production of the recombinant reporter protein, EGFP, in the T7 promoter based VOTE vaccinia virus-HeLa cell expression system were examined. Length of infection phase, inducer concentration, and timing of its addition relative to infection were evaluated in 6-well plate monolayer cultures. One hour infection with 1.0 mM IPTG added at the time of infection provided a robust process. For larger scale experiments, anchorage-dependent HeLa cells were grown on 5 g/L Cytodex 3 microcarriers. The change to this dynamic culture environment, with cell-covered microcarriers suspended in culture medium in spinner flasks, suggested a re-examination of the multiplicity of infection (MOI) for this culture type that indicated a need for an increase in the number of virus particles per cell to 5.0, higher than that needed for complete infection in monolayer tissue flask culture. Additionally, dissolved oxygen level and temperature during the protein production phase were evaluated for their effect on EGFP expression in microcarrier spinner flask culture. Both increased dissolved oxygen, based on surface area to volume (SA/V) adjustments, and decreased temperature from 37 to 31 degrees C showed increases in EGFP production over the course of the production phase. The level of production achieved with this system reached approximately 17 microg EGFP/10(6) infected cells.  相似文献   

3.
A BacMam baculovirus was designed in our laboratory to express the reporter protein secreted alkaline phosphatase (SEAP) driven by the immediate early promoter of human cytomegalovirus promoter (CMV). In vitro tests have been carried out using this recombinant baculovirus to study the secreted protein in two cell lines and under various culture conditions. The transductions were carried out on two commonly used mammalian cell lines namely the human embryonic kidney (HEK 293A) and Chinese hamster ovary (CHO-K1). Initial studies clearly demonstrated that the transient expression of SEAP was at least 10-fold higher in the HEK 293 cells than the CHO cells under equivalent experimental conditions. Factorial design experiments were done to study the effect of different parameters such as cell density, MOI, and the histone deacetylase inhibitor, trichostatin A concentration. The multiplicity of infection (MOI) and the cell density were found to have the most impact on the process. The enhancer trichostatin A also showed some positive effect. The production of secreted protein in a batch reactor was studied using the Wave disposable bioreactor system. A semi-continuous perfusion process was developed to extend the period of gene expression in mammalian cells using a hollow fiber bioreactor system (HFBR). The growth of cells and viability in both systems was monitored by offline analyses of metabolites. The expression of recombinant protein could be maintained over an extended period of time up to 30 days in the HFBR.  相似文献   

4.
The HeLa cell-vaccinia virus expression system was evaluated for the production of recombinant proteins (enhanced green fluorescent protein (EGFP) and HIV envelope coat protein, gp120) using microcarriers in 1.5 L perfused bioreactor cultures. Perfusion was achieved by use of an alternating tangential flow device (ATF), increasing the length of the exponential phase by 50 h compared to batch culture and increasing the maximum cell density from 1.5x10(6) to 4.4x10(6) cell/mL. A seed train expansion method using cells harvested from microcarrier culture and reseeding onto fresh carriers was developed. EGFP was first used as a model protein to study process parameters affecting protein yield, specifically dissolved oxygen (DO) and temperature during the production phase. The highest level of EGFP, 12+/-1.5 microg/10(6) infected cells, was obtained at 50% DO and 31 degrees C. These setpoints were then used to produce glycoprotein, gp120, which was purified and deglycosylated, revealing a significant amount of N-linked glycosylation. Also, biological activity was assayed, resulting in an ID50 of 3.1 microg/mL, which is comparable to previous reports.  相似文献   

5.
A recombinant vaccinia virus was engineered to express enhanced green fluorescent protein (EGFP) under control of the T7 promoter using the VOTE expression system in HeLa cells. Infection of HeLa cells with this virus and induction with IPTG demonstrated the utility of this construct for easily measuring protein expression. This construct was used to evaluate several production parameters, specifically, multiplicity of infection (MOI), volume during infection, and serum concentration during the infection phase. In static culture, increasing multiplicity of infection was found to increase expression of EGFP up to a plateau around MOI of 1.0. Expression was also shown to increase with decreasing volume during the infection phase. Serum concentration during the infection phase was only marginally significant from 0 to 7.5%. Cytodex 3 microcarriers were found to have the best characteristics for HeLa cell growth. These cells were grown and infected in microcarrier spinner flask culture, and the maximum expression was 2.2 microg EGFP/(million cells at the time of infection), demonstrating the ability of this system to successfully express recombinant proteins at larger scale.  相似文献   

6.
Based upon the results of scale-down intermittent perfusion processes, a cell-once-through (COT) perfusion concept was applied to a dual bioreactor system coupled to a Centritech Lab II centrifuge for culture of recombinant Chinese hamster ovary (rCHO) cells for monoclonal antibody production. In this new culture mode, i.e., the COT perfusion process, total spent medium was transferred to the centrifuge and a fixed percentage was removed. Approximately 99% of the viable cells are transferred to another bioreactor filled with fresh medium by single operation of the Centritech Lab II centrifuge system for about 30 min. Accordingly, a significant reduction of the cell-passage frequency to the centrifuge led to minimization of cell damage caused by mechanical shear stress, oxygen limitation, nutrient limitation, and low temperature outside the bioreactor. The effects of culture temperature shift and fortified medium on cell growth and recombinant antibody production in the COT perfusion process were investigated. Although the suppressive effects of low culture temperature on cell growth led to a loss of stability in a long-term COT perfusion culture system, the average antibody concentration at 33 degrees C was 157.8 mg/L, approximately 2.4-fold higher than that at 37 degrees C. By the use of a fortified medium at 37 degrees C, rCHO cells were maintained at high density above 1.2 x 10(7) cells/mL, and antibody was produced continuously in a range of 260-280 mg/L in a stable long-term COT perfusion culture. The proposed new culture mode, the COT perfusion approach, guarantees the recovery of rCHO cells damaged by lowered temperature or high lactate and ammonium concentration. It will be an attractive choice for minimization of cell damage and stable long-term antibody production with high cell density.  相似文献   

7.
Reovirus serotype 3 Dearing (T3D) has shown potential as a novel cancer therapy. To support the increasing demand for reovirus, a two-stage perfusion mode scheme is proposed for cell growth and reovirus production. Mouse L-929 cells were used as the host for reovirus infection due to their ability to grow well in suspension culture. Several L-929 cell growth and reovirus infection characteristics were investigated and optimized in spinner flask batch cultures. For the growth of L-929 cells, a balanced nutrient-fortification of SMEM medium increased the maximum cell density by 30%, compared to normal SMEM; however, ammonia and lactate accumulations were found to inhibit further cell growth. For the production of reovirus, approximately 90% increase in viral yield resulted when the infection temperature was reduced from 37 to 33 degrees C. Infectious reovirus particles were shown to be stable in conditioned medium at 37 and 33 degrees C. The final virus titer was dependent on the multiplicity of infection (MOI) and the host cell density at the time of infection. A combination of an MOI of 0.1 pfu/cell and an initial host cell density of 1.0 x 10(6) cells/mL in fortified medium resulted in a maximum virus titer of (4.59 +/- 0.16) x 10(9) pfu/mL and a specific yield of (2.34 +/- 0.08) x 10(3) pfu/cell. At an optimal harvest time of the infection process, 99% of the virus was associated with the cellular debris. Finally, the presence of 5.0 mM ammonia in the culture medium was shown to seriously inhibit the reovirus yield, whereas lactate concentrations up to 20 mM had no effect.  相似文献   

8.
We have developed a serum-free cell culture process utilizing a recombinant baculovirus (AcNPV) expression vector to infect Trichoplusia ni insect cells for the production of the human lysosomal enzyme, glucocerebrosidase. The enzyme, which is harvested as a secreted protein in this process, can serve as a replacement therapy for the genetic deficiency Gaucher disease. In the course of pilot scale-up of a batch glucocerebrosidase process from 25-mL working volume shaker flask units to 25-L working volume stirred bioreactor units, a semi-empirical model was developed for the rational determination of scaleable process parameters, including host cell density at infection, multiplicity of infection (MOI), and harvest time. A key assumption of the model is that maximum protein production is limited by the serum-free medium's nutritional capacity, which can, in turn, be determined from the growth of uninfected cells. For the host cell/medium combination used in this study, the nutritional limit was determined to be 1.3 x 10(7) to 1.7 x 10(7) viable-cell-days/mL. Based on this, the model predicts that optimal protein expression is consistent with a 4-day batch process where the host cell density at the time of infection is 1.5 x 10(6) to 2.0 x 10(6) cells/mL and the MOI is 0.09-0.3. These parameters were empirically confirmed to give the highest achievable batch product yield, first in shaker flasks and then at larger scales. The low MOI allows at least one population doubling to take place post viral addition, so that the effective infected cell density producing product generally exceeds 4 x 10(6) cells/mL. It was also interesting to note that this process consistently achieved the same level of maximum protein production at the 25-L bioreactor scale in 4 days compared to 5 days at the shaker flask scale. This may be attributable to better control of the culture environment in the bioreactor. Unlike some other lepidopteran insect cells, such as Sf-9, T. ni cells were found to produce significant levels of the inhibitory metabolites ammonia and lactate. Our results suggest that reduction and/or removal of inhibitory metabolites might be beneficial for infection of high-density cultures of these cells and might also facilitate application of more sophisticated culture strategies, including fed-batch. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
由于各种疾病在全球范围内的肆虐,国际市场对重组腺病毒载体(adenoviral vector,Adv)疫苗的需求量急剧增加,而工艺研究是解决这一问题的有效手段之一。在细胞接毒前施加高渗胁迫可以提高分批培养模式下的Adv产量,新兴的灌流培养也可以显著提高Adv的产量。将高渗胁迫工艺与灌流培养相结合,有望进一步提升高细胞密度生产过程中的Adv产量。本研究利用摇瓶结合拟灌流培养作为生物反应器灌流培养的缩小模型,使用渗透压为300–405 mOsm的培养基研究了高渗胁迫对细胞生长和Adv生产的影响。结果显示,在细胞生长阶段使用370 mOsm的高渗透压培养基,在病毒生产阶段使用300 mOsm的等渗透压培养基的灌流培养工艺有效地提高了Adv的产量。进一步研究发现这可能归因于病毒复制后期HSP70蛋白的表达量增加。将这种工艺放大至生物反应器中,Adv的产量达到3.2×1010 IFU/mL,是传统灌流培养工艺的3倍。本研究首次将高渗胁迫工艺与灌流培养相结合的策略应用于HEK 293细胞生产Adv,同时揭示了高渗胁迫工艺增产Adv的可能原因,为HEK 293细胞生产其他类型Adv的工艺优化提供了借鉴。  相似文献   

10.
Respiration rates in Spodoptera frugiperda (Sf-9) cell bioreactor cultures were successfully measured on-line using two methods: The O(2) uptake rate (OUR) was determined using gas phase pO(2) values imposed by a dissolved oxygen controller and the CO(2) evolution rate (CER) was measured using an infrared detector. The measurement methods were accurate, reliable, and relatively inexpensive. The CER was routinely determined in bioreactor cultures used for the production of several recombinant proteins. Simple linear relationships between viable cell densities and both OUR and CER in exponentially growing cultures were used to predict viable cell density. Respiration measurements were also used to follow the progress of baculoviral infections in Sf-9 cultures. Infection led to increases in volumetric and per-cell respiration rates. The relationships between respiration and several other culture parameters, including viable cell density, cell protein, cell volume, glucose consumption, lactate production, viral titer, and recombinant beta-galactosidase accumulation, were examined. The extent of the increase in CER following infection and the time postinfection at which maximum CER was attained were negatively correlated with the multiplicity of infection (MOI) at multiplicities below the level required to infect all the cells in a culture. Delays in the respiration peak related to the MOI employed were correlated with delays in the peak in recombinant protein accumulation. DO levels in the range 5-100% did not exert any major effects on viable cell densities, CER, or product titer in cultures infected with a baculovirus expressing recombinant beta-galactosidase. (c) 1996 John Wiley & Sons, Inc.  相似文献   

11.
Measles vaccination remains the most efficient way to control the spread of the virus. This work focuses on the production of a measles vaccine using stirred conditions as an advanced option for process scale up. Non-porous Cytodex 1 microcarriers were used to support MRC-5 cell growth in suspension cultures. Virus replication was first optimized in spinner flasks, and the effects of various operational parameters were investigated. Cell infection with AIK-C measles strain at an MOI (multiplicity of infection) of 0.005, without glucose regulation and in M199 medium, resulted in a virus titer of 106.25 TCID50 (median tissue culture infective dose)/ml. To optimize the production process in a 7-l bioreactor, we carried out various perfused cultures using minimum essential medium (MEM) + 5% FCS diluted with phosphate-buffered saline (PBS). We achieved a high cell density level (4.1 × 106 cells/ml) with an efficient use of the medium when MEM + 5% FCS diluted with PBS at 25% was used during the cell amplification step. Optimization of measles production in MRC-5 cells grown on Cytodex 1 beads in a 7-l bioreactor showed that perfusion was the most efficient when compared to repeated-batch culture. Perfusion at a rate of 0.25 V (reactor volume)/day showed the highest specific productivity (1.6 IVP [infectious virus particle] cell−1 day−1). Testing of several stabilizers containing pharmaceutically improved components such as sugars, amino acids, and charged ions showed that the formulation composed of sucrose and MgCl2, led to the maintenance of the infectivity of the AIK-C measles virus strain to a significant level, when stored at +28 °C, +4 °C and −60 °C.  相似文献   

12.
The baculovirus/insect cell expression system has provided a vital tool to produce a high level of active proteins for many applications. We have developed a very high-density insect cell perfusion process with an ultrasonic filter as a cell retention device. The separation efficiency of the filter was studied under various operating conditions. A cell density of over 30 million cells/mL was achieved in a controlled perfusion bioreactor and cell viability remained greater than 90%. Sf9 cells from a high-density culture and a spinner culture were infected with two recombinant baculoviruses expressing genes for the production of human chitinase and monocyte-colony inhibition factor. The protein yield on a cell basis from infecting high-density Sf9 cells was the same as or higher than that from the spinner Sf9 culture. Virus production from the high-density culture was similar to that from the spinner culture. The results show that the ultrasonic filter did not affect insect cells' ability to support protein expression and virus production following infection with baculovirus. The potential applications of the high-density perfusion culture for large-scale protein expression from Sf9 cells are also highlighted.  相似文献   

13.
Perfusion cultures of recombinant Chinese hamster ovary cells, producing recombinant antibody against the S surface antigen of Hepatitis B virus, were carried out in continuous and intermittent mode using a Centritech Lab II Centrifuge. In the continuous perfusion process, despite the absence of shear stress from the pump head, long-term operation was not possible because of continuously repeated exposure to oxygen limitation and low temperature, as well as shear stress from centrifugal force. In the intermittent perfusion processes, the frequency of cell-passage through the centrifuge was substantially reduced, compared with the continuous perfusion mode; however, the degree of reduction could not guarantee stable long-term operation. Although various operating parameters were applied in the intermittent perfusion cultures, high cell densities could not be maintained stably. In a single bioreactor culture system, a specific cell that is returned from the centrifuge to the bioreactor could be transferred from the bioreactor to the centrifuge again in the next cycle. These repetitive damages, caused by shear stress from the pump head and centrifugal force, as well as exposure to suboptimal conditions such as oxygen limitation and low temperature below 37 degrees C, were more serious at higher perfusion rates. Subsequently, damaged cells and dead cells were continuously accumulated in the bioreactor. Culture temperature shift from 37 to 33 degrees C increased antibody concentrations but showed inhibitory effects on cell growth. The negative effects of lowering culture temperature on cell growth overwhelmed the positive effects on antibody production. To protect cells from shear stress, Pluronic F-68 was 2-fold concentrated in the culture medium; nevertheless, a significantly higher concentration of Pluronic F-68 (2 g/L) may have inhibitory effects on cell growth.  相似文献   

14.
Batch cell cultures of a human-human hybridoma line in a convective flow dominant intercalated-spiral altetnate-dead-ended hollow fiber are compared with those using conventional axial-flow hollow fiber bioreactors and a stirred-tank bioreactor. Relatively short-term fed-batch and perfusion cell cultures were also employed for the intercalated-spiral bioreactor. When operating conditions of a batch intercalated-spiral bioreactor were properly chosen, the cell growth and substrate consumption paralleled that of a batch stirred-tank culture. The results verified the premise of the intercalated-spiral hollow fiber bioreactor that nutrient transport limitations can be eliminated when the convective flux through the extracapillary space is sufficiently high.(c) John Wiley & Sons, Inc.  相似文献   

15.
In this work the proteolytic activity in the supernatant and inside insect cells in culture was evaluated for different multiplicities of infection (MOI) and times of infection (TOI). Several methods to detect proteolytic activity in insect cells were tested and that using fluorescein thiocyanite-casein as a substrate was chosen. It was observed that infection caused not only a reduction in the concentration of proteases by decreasing their synthesis but also an inhibition of the intracellular proteolytic activity by increasing the intracellular ATP level (measured by in vivo nuclear magnetic resonance, NMR). The maximum proteolytic activity in the supernatant was observed at 72 hpi except when the cells were infected in the late exponential growth phase or with very low MOI, yielding a nonsynchronous infection. The proteolytic degradation of Pr55gag particles was studied during culture and after harvest. In this particular case it was concluded that the supernatant should be stored at low temperature or quickly purified, since the degradation after 24 h is only 3% at 4 degrees C while at 27 degrees C this value rises to 23%. There is a complex relationship between MOI, TOI, proteolytic activity, and product titer and quality. Thus, the optimal conditions for each case will be a compromise between the final product titer, the desired product quality, and operational issues like process time and capacity, requiring proper integration between bioreaction and downstream processing.  相似文献   

16.
The primary advantage of an inducible promoter expression system is that production of the recombinant protein can be biochemically controlled, allowing for the separation of unique growth and production phases of the culture. During the growth phase, the culture is rapidly grown to high cell density prior to induction without the extra metabolic burden of exogenous protein production, thus minimizing the nonproductive period of the culture. Induction of the culture at high cell density ensures that the volumetric production will be maximized. In this work, we have demonstrated the feasibility of overexpressing a reporter glycoprotein from the inducible MMTV promoter in recombinant Chinese hamster ovary (CHO) cells cultured in a high cell density perfusion bioreactor system. Retention of suspension-adapted CHO cells was achieved by inclined sedimentation. To maximize volumetric production of the culture, we have demonstrated that high cell density must be achieved prior to induction. This operating scheme resulted in a 10-fold increase in volumetric titer over the low density induction culture, corresponding directly to a 10-fold increase in viable cell density during the highly productive period of the culture. The amount of glycoprotein produced in this high cell density induction culture during 26 days was 84-fold greater than that produced in a week long batch bioreactor. Long-term perfusion cultures of the recombinant cell line showed a production instability, a phenomenon that is currently being investigated.  相似文献   

17.
To investigate the effect of culture pH in the range of 6.85-7.80 on cell growth and erythropoietin (EPO) production at 32.5 and 37.0 degrees C, serum-free suspension cultures of recombinant CHO cells (rCHO) were performed in a bioreactor with pH control. Lowering culture temperature from 37.0 to 32.5 degrees C suppressed cell growth, but cell viability remained high for a longer culture period. Regardless of culture temperature, the highest specific growth rate (mu) and maximum viable cell concentration were obtained at pH values of 7.00 and 7.20, respectively. Like mu, the specific consumption rates of glucose and glutamine decreased at 32.5 degrees C compared to 37.0 degrees C. In addition, they increased with increasing culture pH. Culture pH at 32.5 degrees C affected specific EPO productivity (q(EPO)) in a different fashion from that at 37 degrees C. At 37 degrees C, the q(EPO) was fairly constant in the pH range of 6.85-7.80, while at 32.5 degrees C, the q(EPO) was significantly influenced by culture pH. The highest q(EPO) was obtained at pH 7.00 and 32.5 degrees C, and its value was approximately 1.5-fold higher than that at pH 7.00 and 37.0 degrees C. The proportion of acidic EPO isoforms, which is a critical factor for high in vivo biological activity of EPO, was highest in the stationary phase of growth, regardless of culture temperature and pH. Although cell viability rapidly decreased in death phase at both 32.5 and 37.0 degrees C, the significant degradation of produced EPO, probably by the action of proteases released from lysed cells, was observed only at 37.0 degrees C. Taken together, through the optimization of culture temperature and pH, a 3-fold increase in maximum EPO concentration and a 1.4-fold increase in volumetric productivity were obtained at pH 7.00 and 32.5 degrees C when compared with those at 37.0 degrees C. These results demonstrate the importance of optimization of culture temperature and pH for enhancing EPO production in serum-free, suspension culture of rCHO cells.  相似文献   

18.
A hollow fiber cartridge may be used in an extraneous recycle loop to facilitate perfusion operation of a stirred tank bioreactor. Retention of cells while removing waste products and replenishment with fresh nutrients allows higher than normal cell densities obtained in batch or continuous culture systems. This system successfully propagated HeLa cells to over 11 million viable cells per milliliter. Much higher perfusion rates (up to 4 vessel volumes per day) were necessary for high density culture of HeLa cells compared to BHK or a hybridoma cell line because of a much higher specific cellular metabolic rate. Cell specific glucose consumption rate, lactate production and ammonia production rates are several times higher for HeLa cells. Reproducible high cell densities and viabilities can be repeatedly obtained after harvest and dilution of a HeLa cell culture by partial drainage and reconstitution in the bioreactor.  相似文献   

19.
Measles virus (MV) with attenuated pathogenicity has potential as oncolytic agent. However, the clinical translation of this therapy concept has one major hurdle: the production of sufficient amounts of infectious oncolytic MV particles. The current study describes oncolytic MV production in Vero cells grown on microcarrier using serum‐free medium. The impact of the number of harvests, cell concentration at infection (CCI), multiplicity of infection (MOI), and temperature on MV production was determined in different production scales/systems (static T‐flasks, dynamic spinner, and bioreactor system) and modes (batch, repeated‐batch, and perfusion). Cell growth, metabolic, and production kinetics were analyzed. It was found that the number of harvests had the strongest positive impact on MV yield in each production scale, and that high temperatures affected MV yield adversely. Moderate MV titers were produced in T‐ and spinner flasks at 37°C (~107 TCID50 mL?1, where TCID50 is tissue culture infective doses 50%), but stirred tank reactor (STR) MV production at 37°C yielded up to 10 000‐fold lower MV titers. In contrast, at lower temperatures (32°C, 27°C), 1.4 × 107 TCID50 mL?1 were achieved in the STR. Variations in MOI and CCI had almost no influence on MV production yield. The current study improves oncolytic MV production process understanding and identifies process bottlenecks for large‐scale production.  相似文献   

20.
To investigate the effect of culture temperature on erythropoietin (EPO) production and glycosylation in recombinant Chinese hamster ovary (CHO) cells, we cultivated CHO cells using a perfusion bioreactor. Cells were cultivated at 37 degrees C until viable cell concentration reached 1 x 10(7) cells/mL, and then culture temperature was shifted to 25 degrees C, 28 degrees C, 30 degrees C, 32 degrees C, 37 degrees C (control), respectively. Lowering culture temperature suppressed cell growth but was beneficial to maintain high cell viability for a longer period. In a control culture at 37 degrees C, cell viability gradually decreased and fell below 80% on day 18 while it remained over 90% throughout the culture at low culture temperature. The cumulative EPO production and specific EPO productivity, q(EPO), increased at low culture temperature and were the highest at 32 degrees C and 30 degrees C, respectively. Interestingly, the cumulative EPO production at culture temperature below 32 degrees C was not as high as the cumulative EPO production at 32 degrees C although the q(EPO) at culture temperature below 32 degrees C was comparable or even higher than the q(EPO) at 32 degrees C. This implies that the beneficial effect of lowering culture temperature below 32 degrees C on q(EPO) is outweighed by its detrimental effect on the integral of viable cells. The glycosylation of EPO was evaluated by isoelectric focusing, normal phase HPLC and anion exchange chromatography analyses. The quality of EPO at 32 degrees C in regard to acidic isoforms, antennary structures and sialylated N-linked glycans was comparable to that at 37 degrees C. However, at culture temperatures below 32 degrees C, the proportions of acidic isoforms, tetra-antennary structures and tetra-sialylated N-linked glycans were further reduced, suggesting that lowering culture temperature below 32 degrees C negatively affect the quality of EPO. Thus, taken together, cell culture at 32 degrees C turned out to be the most satisfactory since it showed the highest cumulative EPO production, and moreover, EPO quality at 32 degrees C was not deteriorated as obtained at 37 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号