首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature-sensitive (ts) mutants ofSalmonella enteritidis were isolated after mutagenesis with UV light and enrichment with antibiotic. Mutants were characterized according to their growth profile at the permissive (28°C) and the nonpermissive (37°C) temperatures, persistence of surface antigens, reversion frequencies, and potentials for inducing humoral immunity and protection against challenge with the parental wild-type (wt) in mice. We obtained 32 strains ofS. enteritidis able to grow well at 28°C, but capable of only limited or no replication at 37°C. The ts mutants were positive for factor 9 in an agglutination assay and were susceptible to infection with phage P22. Three mutants of different phenotypes were selected for protection studies. A single intraperitoneal (i.p.) immunization with any of the mutants studied induced significant protection from i.p. challenge with 100 LD50 of the wt strain.  相似文献   

2.
Intranasal (i.n.) immunization with two temperature-sensitive (ts) mutants ofPseudomonas aeruginosa protected, in a dose-related manner, granulocytopenic (GCP) mice challenged with a lethal dose of the wild-type (wt) organism. The number of ts mutants in oronasopharyngeal lavage fluids and stools decreased steadily in both normal and GCP mice after i.n. immunization. Intranasal immunization with 107 colony-forming units (CFU) of either mutant induced significant protection, whereas intraperitoneal (i.p.) immunization with similar doses induced lower protection. Protection induced by i.n. immunization was accompanied by increased levels of anti-P. aeruginosa IgA in lung lavage fluids. The results of this study demonstrate the usefulness of ts mutants ofP. aeruginosa for local immunization to protect GCP hosts from fatalP. aeruginosa pneumonia.  相似文献   

3.
Ethanol-hypersensitive strains (ets mutants), unable to grow on media containing 6% ethanol, were isolated from a sample of mutagenized Schizosaccharomyces pombe wild-type cells. Genetic analysis of these ets strains demonstrated that the ets phenotype is associated with mutations in a large set of genes, including cell division cycle (cdc) genes, largely non-overlapping with the set represented by the temperature conditional method; accordingly, we isolated some ets non-ts cdc mutants, which may identify novel essential genes required for regulation of the S. pombe cell cycle. Conversely, seven well characterized ts cdc mutants were tested for their ethanol sensitivity; among them, cdc1–7 and cdc13–117 exhibited a tight ets phenotype. Ethanol sensitivity was also tested in strains bearing different alleles of the cdc2 gene, and we found that some of them were ets, but others were non-ets; thus, ethanol hypersensitivity is an allele-specific phenotype. Based on the single base changes found in each particular allele of the cdc2 gene, it is shown that a single amino acid substitution in the p34cdc2 gene product can produce this ets phenotype, and that ethanol hypersensitivity is probably due to the influence of this alcohol on the secondary and/or tertiary structure of the target protein. Ethanol-dependent (etd) mutants were also identified as mutants that can only be propagated on ethanol-containing media. This novel type of conditional phenotype also covers many unrelated genes. One of these etd mutants, etd1-1, was further characterized because of the lethal cdc phenotype of the mutant cells under restrictive conditions (absence of ethanol). The isolation of extragenic suppressors of etd1-1, and the complementation cloning of a DNA fragment encompassing the etd1 + wild-type gene (or an extragenic multicopy suppressor) demonstrate that current genetic techniques may be applied to mutants isolated by using ethanol as a selective agent.  相似文献   

4.
We reported previously that the product of DIN7, a DNA damage-inducible gene of Saccharomyces cerevisiae, belongs to the XPG family of proteins, which are involved in DNA repair and replication. This family includes the S. cerevisiae protein Rad2p and its human homolog XPGC, Rad27p and its mammalian homolog FEN-1, and Exonuclease I (Exo I). Interestingly, Din7p is the only member of the XPG family which specifically functions in mitochondria. We reported previously that overexpression of DIN7 results in a mitochondrial mutator phenotype. In the present study we wished to test the hypothesis that this phenotype is dependent on the nuclease activity of Din7p. For this purpose, we constructed two alleles, din7-D78A and din7-D173A, which encode proteins in which highly conserved aspartates important for the nuclease activity of the XPG proteins have been replaced by alanines. Here, we report that overexpression of the mutant alleles, in contrast to DIN7, fails to increase the frequency of mitochondrial petite mutants or erythromycin-resistant (Er) mutants. Also, overproduction of din7-D78Ap does not result in destabilization of poly GT tracts in mitochondrial DNA (mtDNA), the phenotype observed in cells that overexpress Din7p. We also show that petite mutants induced by enhanced synthesis of wild-type Din7p exhibit gross rearrangements of mtDNA, and that this correlates with enhanced recombination within the mitochondrial cyt b gene. These results suggest that the stability of the mitochondrial genome of S. cerevisiae is modulated by the level of the nuclease Din7p.Communicated by R. Devoret  相似文献   

5.
DNA hybridization results confirm the proposed separation of coagulase-positive staphylococci into two distinct species. Strains ofStaphylococcus aureus representing the various biotypes and different phage typing groups of the human biotype gave high values of reassociation with DNA fromS. aureus reference strain RN 450, at both optimal and restrictive reassociation temperatures. Similar results were obtained between strains ofS. intermedius and its reference strain K 3. Interspecific reassociation between the two coagulase-positive species was low, and each reference strain showed low DNA sequence homology with 10 coagulase-negative species.S. staphylolyticus, strain PS 73, and putative pleiotropic mutants ofS. aureus were shown to be unrelated toS. aureus.  相似文献   

6.
In order to further elucidate the contribution of complex alleles to the wide phenotypic variability of cystic fibrosis (CF), we investigated the structure-function relationships of a severe CF-associated complex allele [p.S912L;p.G1244V]. To evaluate the contribution of each mutation to the phenotype, cystic fibrosis transmembrane conductance regulator (CFTR) mutants were expressed in HeLa cells and analysed for protein processing and Cl channel activity. Both p.G1244V and [p.S912L;p.G1244V] mutants had normal protein processing but markedly decreased Cl channel activity compared with wild-type. Notably, the double mutant displayed a dramatic decrease in Cl channel activity compared with p.G1244V (P<0.001). p.S912L had normal protein processing and no detectable impact on CFTR function. In other respects, the p.S912L variation was identified in compound heterozygosity with p.R709X in a healthy fertile man. Together, these data strongly support the view that p.S912L in isolation should be considered as a neutral variant but one that might significantly impair CFTR function when inherited in cis with another CFTR mutation. Our data also further document the contribution of complex alleles to the wide phenotypic variability of CF. The results of functional studies of such complex alleles in other genetic diseases are discussed.  相似文献   

7.
Production of phosphatidylinositol-specific phospholipase C (PIPLC), an exoenzyme of some strains ofStaphylococcus aureus, has been epidemiologically associated with virulence. To investigate the elaboration ofS. aureus PIPLC, we have evaluated in vitro conditions that maximize production of enzymatically active PIPLC. PIPLC activity was assessed by measuring the release of3H-inositol-phosphate from the substrate3H-phosphatidylinositol. Lowering the pH ofS. aureus cultures from 7.0 to 5.4 progressively increased the yield of PIPLC. The final yield of PIPLC was at least five-fold greater when the initial culture pH was 5.4 compared with 7.0. Low pH enhanced PIPLC activity recovered from twoS. aureus strains capable of high PIPLC production, but not from a strain producing little PIPLC. At both pH 5.0 and 7.4, PIPLC production peaked during mid- to late-logarithmic phase. We conclude that an acidic starting pH of culture media increases the yield of PIPLC activity elaborated during active growth ofS. aureus.  相似文献   

8.
9.
Serratia marcescens SM-6 when starved for a required amino acid stops synthesizing protein and RNA and accumulates two nucleotides which cochromatograph with ppGpp and pppGpp. These features are characteristic of bacterial strains with stringent RNA control (rel +). Two independent mutants were isolated which resemble relaxed (relA) mutants ofEscherichia coli; they continue to synthesize RNA and accumulate neither ppGpp nor pppGpp when deprived of the required amino acid. The extracellular enzyme activities (nuclease, protease, lipase) of the relaxed mutants are about the same as those of the parental stringent strain when studied under standard growth conditions. Exoenzyme-deficient (nuc; prt) and exoenzyme-hyperproducing (nuc su) mutants were isolated from both stringent and relaxed strains ofS. marcences SM-6 and no change of the cellular ability to form ppGpp and pppGpp could be observed. From these results it appears that the formation of exoenzymes ofS. marcescens SM-6 is independent of stringent/relaxed RNA control.Abbreviations cpd cyclic nucleotide phosphodiesterase deficient - nuc nuclease deficient - nuc su nuclease hyperproducing - prt protease deficient - rel relaxed control - spo ppGpp deficient (spot less) - ppGpp guanosine tetraphosphate - pppGpp guanosine pentaphosphate - TCA trichloroacetic acid - OD optical density - EU enzyme units  相似文献   

10.
Staphylococcus aureus is a pathogen that infects multiple anatomical sites leading to a diverse array of diseases. Although vertebrates can restrict the growth of invading pathogens by sequestering iron within haem, S. aureus surmounts this challenge by employing high‐affinity haem uptake systems. However, the presence of excess haem is highly toxic, necessitating tight regulation of haem levels. To overcome haem stress, S. aureus expresses the detoxification system HrtAB. In this work, a transposon screen was performed in the background of a haem‐susceptible, HrtAB‐deficient S. aureus strain to identify the substrate transported by this putative pump and the source of haem toxicity. While a recent report indicates that HrtAB exports haem itself, the haem‐resistant mutants uncovered by the transposon selection enabled us to elucidate the cellular factors contributing to haem toxicity. All mutants identified in this screen inactivated the menaquinone (MK) biosynthesis pathway. Deletion of the final steps of this pathway revealed that quinone molecules localizing to the cell membrane potentiate haem‐associated superoxide production and subsequent oxidative damage. These data suggest a model in which membrane‐associated haem and quinone molecules form a redox cycle that continuously generates semiquinones and reduced haem, both of which react with atmospheric oxygen to produce superoxide.  相似文献   

11.
Potassium (K+) plays a vital role in bacterial physiology, including regulation of cytoplasmic pH, turgor pressure and transmembrane electrical potential. Here, we examine the Staphylococcus aureus Ktr system uniquely comprised of two ion‐conducting proteins (KtrB and KtrD) and only one regulator (KtrA). Growth of Ktr system mutants was severely inhibited under K+ limitation, yet detectable after an extended lag phase, indicating the presence of a secondary K+ transporter. Disruption of both ktrA and the Kdp‐ATPase system, important for K+ uptake in other organisms, eliminated regrowth in 0.1 mM K+, demonstrating a compensatory role for Kdp to the Ktr system. Consistent with K+ transport mutations, S. aureus devoid of the Ktr system became sensitive to hyperosmotic conditions, exhibited a hyperpolarized plasma membrane, and increased susceptibility to aminoglycoside antibiotics and cationic antimicrobials. In contrast to other organisms, the S. aureus Ktr system was shown to be important for low‐K+ growth under alkaline conditions, but played only a minor role in neutral and acidic conditions. In a mouse competitive index model of bacteraemia, the ktrA mutant was significantly outcompeted by the parental strain. Combined, these results demonstrate a primary mechanism of K+ uptake in S. aureus and a role for this system in pathogenesis.  相似文献   

12.
Previously, a patient-derived orthotopic xenograft (PDOX) model was established with a lung metastasis from an osteosarcoma patient which developed after adjuvant cisplatinum (CDDP) treatment. In this model, we previously demonstrated the efficacy of trabectedin (TRAB) and temozolomide (TEM) compared with CDDP. In the present report, osteosarcoma tissue was implanted orthotopically in the distal femur of mice which were randomized into the following groups when tumor volume reached approximately 100 mm3; On day 14 after initiation of treatment, all but CDDP significantly inhibited tumor volume growth compared with untreated controls. Control (G1): 793.7 ± 215.0 mm3; CDDP (G2): 588.1 ± 176.9 mm3; Salmonella typhimurium A1-R (S. typhimurium A1-R) intravenous (i.v.) (G3): 269.7 ± 72.7 mm3; S. typhimurium A1-R intra-arterial (i.a.) (G4): 70.2 ± 18.9 mm3 (CDDP: p = 0.056; S. typhimurium A1-R i.v.: p = 0.0001; S. typhimurium A1-R i.a.: p = 0.00003, all vs. untreated controls). i.a. administration of S. typhimurium A1-R was significantly more effective than either CDDP (p = 0.00007), or i.v. administration of S. typhimurium A1-R (p = 0.00007) and significantly regressed the tumor volume compared with day 0 (p = 0.001). The new model of i.a. administration of S. typhimurium A1-R has great promise for the treatment of recalcitrant osteosarcoma.  相似文献   

13.
Amplification of thec-erbB2gene and overexpression of p185erbB2is found in approximately one-third of primary breast and ovarian cancers and also in some colon carcinomas. Moreover, a single point mutation inerbB2(V 664 E)confers transforming potential to erbB2 in NIH3T3 cells, even when expressed at low levels. To examine the transformation potential oferbB2orerbB2(V-E)in colon epithelial cells, we have transfected a nontumorigenic clone of SW 613-S cells with either wild-type p185erbB2or mutated p185erbB2(V-E). In contrast to p185erbB2, p185erbB2(V-E)associated constitutively with members of the Shc protein family, leading to phosphorylation of Shc and to stimulation of mitogen-activated protein kinase (MAP kinase). However, constitutive activation of MAP kinase activation in p185erbB2(V-E)expressing cells did not result in a tumorigenic phenotype. In addition, p185erbB2(V-E)expressing cells displayed a reduced ability to grow in soft agar compared to the parental cell line. In contrast these transfected cells were able to grow in three-dimensional collagen gels, whereas parental cells were not. Thus, expression oferbB2(V-E)in SW 613-S cells induced multiple changes in intracellular signaling and in growth requirement phenotype, particularly in response to the extracellular environment.  相似文献   

14.
A series of ts mutations in the GSP1 gene of Saccharomyces cerevisiae was isolated by error-prone PCR. A total of 25 ts gsp1 strains was obtained. Each of these mutants showed between one and seven different amino acid alterations. In several of these ts gsp1 strains, the same amino acid residues in Gsp1p were repeatedly mutated, indicating that our screen for ts gsp1 mutations was saturating. All of the ts gsp1 strains isolated had a defect in nuclear protein import, but only 16 of the 25 ts gsp1 strains had a defect in mRNA export. Thus, Gsp1p is suggested to be directly involved in nuclear protein import, but not in mRNA export. Following release from α-factor arrest, 11 of the ts gsp1 mutants arrested in G1; the remainder did not show any specific cell-cycle arrest, at 37° C, the nonpermissive temperature. While the mutants that are defective in both mRNA export and protein import have a tendency to arrest in G1, there was no clear correlation between the cell cycle phenotype and the defects in mRNA export and nuclear protein import. Based on this, we assume that Ran/Gsp1p GTPase regulates the cell cycle and the nucleus/cytosol exchange of macromolecules through interactions with effectors that were independent of each other, and are differentially affected by mutation. Received: 30 June 1997 / Accepted: 23 October 1997  相似文献   

15.
Ethanol-hypersensitive strains (ets mutants), unable to grow on media containing 6% ethanol, were isolated from a sample of mutagenized Schizosaccharomyces pombe wild-type cells. Genetic analysis of these ets strains demonstrated that the ets phenotype is associated with mutations in a large set of genes, including cell division cycle (cdc) genes, largely non-overlapping with the set represented by the temperature conditional method; accordingly, we isolated some ets non-ts cdc ? mutants, which may identify novel essential genes required for regulation of the S. pombe cell cycle. Conversely, seven well characterized ts cdc ? mutants were tested for their ethanol sensitivity; among them, cdc1–7 and cdc13–117 exhibited a tight ets phenotype. Ethanol sensitivity was also tested in strains bearing different alleles of the cdc2 gene, and we found that some of them were ets, but others were non-ets; thus, ethanol hypersensitivity is an allele-specific phenotype. Based on the single base changes found in each particular allele of the cdc2 gene, it is shown that a single amino acid substitution in the p34cdc2 gene product can produce this ets phenotype, and that ethanol hypersensitivity is probably due to the influence of this alcohol on the secondary and/or tertiary structure of the target protein. Ethanol-dependent (etd) mutants were also identified as mutants that can only be propagated on ethanol-containing media. This novel type of conditional phenotype also covers many unrelated genes. One of these etd mutants, etd1-1, was further characterized because of the lethal cdc ? phenotype of the mutant cells under restrictive conditions (absence of ethanol). The isolation of extragenic suppressors of etd1-1, and the complementation cloning of a DNA fragment encompassing the etd1 + wild-type gene (or an extragenic multicopy suppressor) demonstrate that current genetic techniques may be applied to mutants isolated by using ethanol as a selective agent.  相似文献   

16.
Disruption of genes encoding endogenous transport proteins inSaccharomyces cerevisiae has facilitated the recent cloning, by functional expression, of cDNAs encoding K+ channels and amino acid transporters from the plantArabidopsis thaliana [1–4]. In the present study, we demonstrate in whole-cell patch clamp experiments that the inability oftrk1Δtrk2Δ mutants ofS. cerevisiae to grow on submillimolar K+ correlates with the lack of K+ inward currents, which are present in wild-type cells, and that transformation of thetrk1Δtrk2Δ double-deletion mutant withKAT1 fromArabidopsis thaliana restores this phenotype by encoding a plasma membrane protein that allows large K+ inward currents. Similar K+ inward currents are induced by transformation of atrk1 mutant withAKT1 fromA. thaliana. This work was supported by a grant from theForschungsgemeinschaft (A.B.), TheU.S. Department of Energy (c.L.S.), The U.S. National Science Foundation (R.F.G.) Lisboa, Portugal.  相似文献   

17.
In the present study, a patient-derived orthotopic xenograft (PDOX) model of recurrent cisplatinum (CDDP)-resistant metastatic osteosarcoma was treated with Salmonella typhimurium A1-R (S. typhimurium A1-R), which decoys chemoresistant quiescent cancer cells to cycle, and recombinant methioninase (rMETase), which selectively traps cancer cells in late S/G2, and chemotherapy. The PDOX models were randomized into the following groups 14 days after implantation: G1, control without treatment; G2, CDDP (6 mg/kg, intraperitoneal (i.p.) injection, weekly, for 2 weeks); G3, rMETase (100 unit/mouse, i.p., daily, for 2 weeks). G4, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., weekly, for 2 weeks); G5, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., weekly, for 2 weeks) combined with rMETase (100 unit/mouse, i.p., daily, for 2 weeks); G6, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., weekly, for 2 weeks) combined with rMETase (100 unit/mouse, i.p., daily, for 2 weeks) and CDDP (6 mg/kg, i.p. injection, weekly, for 2 weeks). On day 14 after initiation, all treatments except CDDP alone, significantly inhibited tumor growth compared to untreated control: (CDDP: p = 0.586; rMETase: p = 0.002; S. typhimurium A1-R: p = 0.002; S. typhimurium A1-R combined with rMETase: p = 0.0004; rMETase combined with both S. typhimurium A1-R and CDDP: p = 0.0001). The decoy, trap and kill combination of S. typhimurium A1-R, rMETase and CDDP was the most effective of all therapies and was able to eradicate the metastatic osteosarcoma PDOX.  相似文献   

18.
19.
The specificity of the enhancement in lung defences after local immunization of mice with three temperature-sensitive (ts) mutants of Pseudomonas aeruginosa was investigated. The three selected mutants display altered growth characteristics when transferred from 29 degrees C to mammalian body temperature. Mice immunized with the live ts mutants by aerosol exposure or multiple intranasal inoculations were challenged with aerosols containing wild-type (wt) P. aeruginosa. Aerosol immunization with ts mutant A/10/25 significantly enhanced the lung clearance of the wt but did not enhance the clearance of either Klebsiella pneumoniae or Staphylococcus aureus. Aerosol immunization with ts mutants D/1/8 or E/9/9 enhanced the lung defences against the parental wt (of identical immunotype 1) but not against immunotype 4; similarly, intranasal immunization enhanced the lung defences against the parental wt but not against immunotypes 4 or 5. We conclude that local immunization with ts mutants of P. aeruginosa enhances lung defences against the wt in a genus- and immunotype-specific fashion. It is suggested that local immunity may play a central role in immunoprophylaxis against P. aeruginosa lung infection.  相似文献   

20.
Summary Bacterial mutants tolerant to bacteriophages 15 and 29 were isolated from early-blocked asporogenous mutants ofBacillus subtilis 168. These mutants are able to adsorb phages but are not killed by them.Two classes of tolerant mutants were recognized:tolA mutants which are tolerant to 15 but not 29, andtolB mutants which are tolerant to both phages. Although the parental strain (spoA12) used for the isolation of thetol mutants is a pleiotropic negative mutant, alltol mutants which have been examined have regained some wild type traits. Genetic studies have shown that thesetol mutants are neither revertants nor suppressor mutants of thespoA gene. Thesetol mutants affect bothspoA andspoB mutations. These mutants do not sporulate and they do not lyse as rapidly as the parental strain. All these results are consistent with the hypothesis that they are all cell envelope mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号