首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Flöck D  Helms V 《Proteins》2002,47(1):75-85
Electron transferring protein complexes form only transiently and the crystal structures of electron transfer protein--protein complexes involving cytochrome c could so far be determined only for the pairs of yeast cytochrome c peroxidase (CcP) with iso-1-cytochrome c (iso-1-cyt c) and with horse heart cytochrome c (cyt c). This article presents models from computational docking for complexes of cytochrome c oxidase (COX) from Paracoccus denitrificans with horse heart cytochrome c, and with its physiological counterpart cytochrome c552 (c552). Initial docking is performed with the FTDOCK program, which permits an exhaustive search of translational and rotational space. A filtering procedure is then applied to reduce the number of complexes to a manageable number. In a final step of structural and energetic refinement, the complexes are optimized by rigid-body energy minimization with the molecular mechanics package CHARMM. This methodology was first tested on the CcP:iso-1-cyt c complex, in which the complex with the lowest CHARMM energy has an RMSD from the crystal structure of only 1.8 A (C(alpha) carbon atoms). Notably, the crystal conformation has an even lower energy. The same procedure was then applied to COX:cyt c and COX:c552. The lowest-energy COX:cyt c complex is very similar to a docking model previously described for the complex of bovine cytochrome c oxidase with horse heart cytochrome c. For the COX:c552 complex, cytochrome c552 is found in two different orientations, depending on whether it is docked against COX from a two-subunit or from a four-subunit crystal structure, respectively. Both conformations are discussed critically in the light of the available experimental data.  相似文献   

4.
A novel method for initiating intramolecular electron transfer in cytochrome c oxidase is reported. The method is based upon photoreduction of cytochrome c labeled with thiouredopyrene-3,6, 8-trisulfonate in complex with cytochrome oxidase. The thiouredopyrene-3,6,8-trisulfonate-labeled cytochrome c was prepared by incubating the thiol reactive form of the dye with yeast iso-1-cytochrome c, containing a single cysteine residue. Laser pulse excitation of a stoichiometrical complex between thiouredopyrene-3,6,8-trisulfonate-cytochrome c and bovine heart cytochrome oxidase at low ionic strength resulted in the reduction of cytochrome c by the excited form of thiouredopyrene-3,6, 8-trisulfonate and subsequent intramolecular electron transfer from the reduced cytochrome c to cytochrome oxidase. The maximum efficiency by a single laser pulse resulted in the reduction of approximately 17% of cytochrome a, and was achieved only at a 1 : 1 ratio of cytochrome c to cytochrome oxidase. At higher cytochrome c to cytochrome oxidase ratios the heme a reduction was strongly suppressed.  相似文献   

5.
Mixtures of cytochrome c oxidase and cytochrome c have been titrated by coulometrically generated reductant, methyl viologen radical cation, and physiological oxidant, O2. Charge distribution among the heme components in mixtures of these two redox enzymes has been evaluated by monitoring the absorbance changes at 605 and 550 nm. Differences in the pathway of the electron transfer process during a reduction cycle as compared to an oxidation cycle are indicated by variations found in the absorbance behavior of the heme components during successive reductive and oxidative titrations. It is apparent that the potential of the cytochrome a heme is dependent upon whether oxidation or reduction is occurring.  相似文献   

6.
Dilatometry is a sensitive technique for measuring volume changes occurring during a chemical reaction. We applied it to the reduction-oxidation cycle of cytochrome c oxidase, and to the binding of cytochrome c to the oxidase. We measured the volume changes that occur during the interconversion of oxidase intermediates. The numerical values of these volume changes have allowed the construction of a thermodynamic cycle that includes many of the redox intermediates. The system volume for each of the intermediates is different. We suggest that these differences arise by two mechanisms that are not mutually exclusive: intermediates in the catalytic cycle could be hydrated to different extents, and/or small voids in the protein could open and close. Based on our experience with osmotic stress, we believe that at least a portion of the volume changes represent the obligatory movement of solvent into and out of the oxidase during the combined electron and proton transfer process. The volume changes associated with the binding of cytochrome c to cytochrome c oxidase have been studied as a function of the redox state of the two proteins. The volume changes determined by dilatometry are large and negative. The data indicate quite clearly that there are structural alterations in the two proteins that occur on complex formation.  相似文献   

7.
8.
Electron transfer between the redox centres is essential for the function of the haem-copper oxidases. To date, the fastest rate of electron transfer between the haem groups has been determined to be ca. 3 x 10(5) s(-1). Here, we show by optical spectroscopy that about one half of this electron transfer actually occurs at least three orders of magnitude faster, after photolysis of carbon monoxide from the half-reduced bovine heart enzyme. We ascribe this to the true haem-haem electron tunnelling rate between the haem groups.  相似文献   

9.
Metalloprotein autoreduction is a complex phenomenon composed of multiple reactions, the nature of which depends on the metal, its prosthetic group, and the manner in which they interact with the protein. In all types of autoreduction the protein amino acid side chains are implicated as being a potential source of reducing equivalents, with H2O2 playing a critical role in the side chain oxidation. CO-facilitated autoreduction is distinguished from this more general process by the fact that the CO can be directly oxidized to CO2 on reacting with a peroxide-derived ferryl-oxo species. The implications of the findings with respect to methodologies for isolation of minimally perturbed hemeproteins and the mechanism of hemeprotein turnover are discussed.  相似文献   

10.
The oxidation of ferrocytochrome c mediated by cytochrome c oxidase was investigated in the presence of ferricytochrome c, trifluoroacetyl-cytochrome c, the heme fragments Hse65-[1-65] and Hse80-[1-80] and their respective porphyrin derivatives, as well as carboxymethylated apoprotein and related fragments, polycations, salts and neutral additives. The inhibition of the redox reaction by salts and neutral molecules, even if in theoretical agreement with their effect on electrostatic interactions, may alternatively be interpreted in terms of hydrophobicity. The latter can account for the inhibitory properties of trifluoroacetylated ferricytochrome c, similar to those of ferricytochrome c. On the assumption that the inhibitory properties of some of the investigated derivatives monitor their binding affinities to the cytochrome c oxidase at the cytochrome c binding sites, the experimental results do not confirm a primarily electrostatic character for the cytochrome c/cytochrome c oxidase association process. Strong indication was found that the cytochrome c C-terminal sequence is critically involved in the complex formation. Conformational studies by circular dichroism measurements and IR spectroscopy in solution and in solid state respectively, show that some of the derivatives examined may possibly acqkuire in the binding process to the oxidase, as secondary structure similar to that present in the native cytochrome c.  相似文献   

11.
When cytochrome c oxidase is isolated from mitochondria, the purified enzyme requires both cytochrome c and O2 to achieve its maximum rate of internal electron transfer from cytochrome a to cytochrome a3. When reductants other than cytochrome c are used, the rate of internal electron transfer is very slow. In this paper we offer an explanation for the slow reduction of cytochrome a3 when reductants other than cytochrome c are used and for the apparent allosteric effects of cytochrome c and O2. Our model is based on the conventional understanding of cytochrome oxidase mechanism (i.e. electron transfer from cytochrome a/CuA to cytochrome a3/CuB), but assumes a relatively rapid two-electron transfer between cytochrome a/CuA and cytochrome a3/CuB and a thermodynamic equilibrium in the "resting" enzyme (the enzyme as isolated) which favors reduced cytochrome a and oxidized cytochrome a3. Using the kinetic constants that are known for this reaction, we find that the activating effects of O2 and cytochrome c on the rate of electron transfer from cytochrome a to cytochrome a3 conform to the predictions of the model and so provide no evidence of any allosteric effects or control of cytochrome c oxidase by O2 or cytochrome c.  相似文献   

12.
Intramolecular electron transfer in the electrostatic cytochrome c oxidase/cytochrome c complex was investigated using a novel photoactivatable dye. Laser photolysis of thiouredopyrenetrisulfonate (TUPS), covalently linked to cysteine 102 on yeast iso-1-cytochrome c, generates a triplet state of the dye, which donates an electron to cytochrome c, followed by electron transfer to cytochrome c oxidase. Time-resolved optical absorption difference spectra were collected at delay times from 100 ns to 200 ms between 325 and 650 nm. On the basis of singular value decomposition (SVD) and multiexponential fitting, three apparent lifetimes were resolved. A sequential kinetic mechanism is proposed from which the microscopic rate constants and spectra of the intermediates were determined. The triplet state of TUPS donates an electron to cytochrome c with a forward rate constant of approximately 2.0 x 10(4) s(-1). A significant fraction of the triplet returns back to the ground state on a similar time scale. The reduction of cytochrome c is followed by faster electron transfer from cytochrome c to Cu(A), with the equilibrium favoring the reduced cytochrome c. Subsequently, Cu(A) equilibrates with heme a with an apparent rate constant of approximately 1 x 10(4) s(-1). On a millisecond time scale, the oxidized TUPS returns to the ground state and heme a becomes reoxidized. The extracted intermediate spectra are in excellent agreement with model spectra of the postulated intermediates, supporting the proposed mechanism.  相似文献   

13.
The ability of various native and modified cytochromes c to transfer electrons to cytochrome oxidase is compared in cytochrome c depleted beef heart mitochondrial particles. The kinetics are followed at -49 degrees C after the reaction is initiated by photolysis of the CO compound of cytochrome oxidase in the presence of oxygen. Horse, human, yeast iso-2, and carboxydinitrophenyl (CDNP)-lysine-60 horse cytochromes c all give initial rates of electron transfer that are equal to those observed in whole beef mitochondria. Euglena, CDNP-lysine-72, and CDNP-lysine-13 horse cytochromes c give rates about one-tenth that of whole mitochondria. These rates were independent of the concentration of cytochrome c. Since the inhibited cytochromes c, but not the active proteins, had previously been shown to have lowered affinity for cytochrome oxidase, the results indicate that the structural characteristics important for the association of cytochrome c and oxidase are also essential for achieving normal rates of electron transfer within the complex once formed.  相似文献   

14.
15.
Suspensions of membranous cytochrome c oxidase prepared from beef heart mitochondria by Triton extraction were ultra-rapidly cooled (in excess of 10,000 deg.C/s) and analyzed using freeze-fracture and freeze-fracture-etch techniques. The preparations contained non-crystalline and crystalline vesicles as isolated vesicles, vesicles inside other vesicles and stacks of vesicles. In non-crystalline vesicles the particles (about 100 Å diameter) are probably formed by the deviation of hydrophobic fracture planes of the membranes around the large transmembrane enzymes. The intramembrane particles thus formed are compared to particles (about 80 Å diameter) in a vesicle reconstituted from purified enzyme and lipid. Crystalline membranous cytochrome c oxidase vesicles display an unusual fracture pattern in which adjacent crystalline surfaces are separated from each other and from the surrounding ice by fracture steps that are approximately the thickness of a single membrane (100 to 120 Å). In addition adjacent crystalline fracture surfaces have similar low-relief textures, both of which differ significantly from the hydrophobic surfaces normally exposed in membrane fractures. This fracture morphology is interpreted in terms of fractures along hydrophilic surfaces of the membranes. Images of etched crystalline vesicles provide support for this interpretation because etching exposes no new surfaces. It is concluded that the crystalline lattices are derived from the portions of enzymes that protrude from the membrane bilayers and that the interdigitation of the enzymes on the inside surfaces of the vesicles or between vesicles determines the appearance of the crystalline surfaces. The arrangement of the tails of the y-shaped molecules on the cytoplasmic sides of the crystalline membranes can be visualized in micrographs directly and in reconstructions of filtered images. The more complex pattern of arms protruding on the matrix side is obscured by the unidirectional shadowing. Fragmentation of the crystalline membranes during fracturing is indicated by particles sometimes present at the edges of fractured membranes and by deep, irregular pits observed in crystalline surfaces. Particles resting on some crystalline surfaces may be fragments of crystalline membranes removed during fracturing. In other crystalline membranes non-protein is removed during fracturing, leaving globular particles embedded in the lattice, which measure about 118 Å diameter. Comparing these particles to the 3-dimensional arrangement of protein described in the accompanying paper (Frey et al., 1982) suggests that such particles are composed of 2 dimers paired along the a-axis. Intramembrane and fragmentation particles of similar size may also have this protein composition.  相似文献   

16.
Reactions of mercaptans with cytochrome c oxidase and cytochrome c   总被引:2,自引:0,他引:2  
1. The steady-state oxidation of ferrocytochrome c by dioxygen catalyzed by cytochrome c oxidase, is inhibited non-competitively towards cytochrome c by methanethiol, ethanethiol, 1-propanethiol and 1-butanethiol with Ki values of 4.5, 91, 200 and 330 microM, respectively. 2. The inhibition constant Ki of ethanethiol is found to be constant between pH 5 and 8, which suggests that only the neutral form of the thiol inhibits the enzyme. 3. The absorption spectrum of oxidized cytochrome c oxidase in the Soret region shows rapid absorbance changes upon addition of ethanethiol to the enzyme. This process is followed by a very slow reduction of the enzyme. The fast reaction, which represents a binding reaction of ethanethiol to cytochrome c oxidase, has a k1 of 33 M-1 . s-1 and a dissociation constant Kd of 3.9 mM. 4. Ethanethiol induces fast spectral changes in the absorption spectrum of cytochrome c, which are followed by a very slow reduction of the heme. The rate constant for the fast ethanethiol reaction representing a bimolecular binding step is 50 M-1 . s-1 and the dissociation constant is about 2 mM. Addition of up to 25 mM ethanethiol to ferrocytochrome c does not cause spectral changes. 5. EPR (electron paramagnetic resonance) spectra of cytochrome c oxidase, incubated with methanethiol or ethanethiol in the presence of cytochrome c and ascorbate, show the formation of low-spin cytochrome alpha 3-mercaptide compounds with g values of 2.39, 2.23, 1.93 and of 2.43, 2.24, 1.91, respectively.  相似文献   

17.
The reactions of horse heart cytochrome c with succinate-cytochrome c reductase and cytochrome oxidase were studied as a function of ionic strength using both spectrophotometric and oxygen electrode assay techniques. The kinetic parameter Vmax/Km for both reactions decreased very rapidly as the ionic strength was increased, indicating that electrostatic interactions were important to the reactions. A new semiempirical relationship for the electrostatic energy of interaction between cytochrome c and its oxidation-reduction partners was developed, in which specific complementary charge-pair interactions between lysine amino groups on cytochrome c and negatively charged carboxylate groups on the other protein are assumed to dominate the interaction. The contribution of individual cytochrome c lysine amino groups to the electrostatic interaction was estimated from the decrease in reaction rate caused by specific modification of the lysine amino groups by reagents that change the charge to 0 or -1. These estimates range from -0.9 kcal/mol for lysines immediately surrounding the heme crevice of cytochrome c to 0 kcal/mol for lysines well removed from the heme crevice region. The semiempirical relationship for the total electrostatic energy of interaction was in quantitative agreement with the experimental ionic strength dependence of the reaction rates when the parameters were based on the specific lysine modification results. The electrostatic energies of interaction between cytochrome c and its reductase and oxidase were nearly the same, providing additional evidence that the two reactions take place at similar sites on cytochrome c.  相似文献   

18.
Pulsed cytochrome c oxidase   总被引:1,自引:0,他引:1  
The identification of two functionally distinct states, called pulsed and resting, has led to a number of investigations on the conformational variants of the enzyme. However, the catalytic properties of cytochrome oxidase may depend on a number of experimental conditions related to the solvent as well as to the protocol followed to determine the turnover number of the enzyme. This paper reports results which illustrate that the steady-state differences between pulsed and resting oxidase may, or may not, be detected depending on experimental conditions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号