首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conspecific brood parasitism (CBP) is a common strategy in several species of birds. Currently, some studies suggest that relatedness between host and parasite enhances CBP, since indirect fitness benefits could select for acceptance of related eggs by hosts. Conversely, parasites should avoid laying eggs in nests of relatives if this is costly for the host. Based on the latter argument, kinship should not promote brood parasitism. A recent model clarified this relationship, and showed that kinship can promote brood parasitism, assuming kin recognition. However, in that model kin recognition was assumed perfect. Here we present a model that addresses the role of relatedness and kin selection in CBP, when kin recognition is not perfect and hosts do not always detect parasitism. We consider both the indirect fitness of the parasite and the possible responses of the host. Our results indicate that the existence and accuracy of a kin recognition system is crucial to the final outcome. When CBP represents a cost to the host, a parasitic female that has the choice should avoid parasitizing relatives, unless (1) the costs are not too high and (2) hosts can accurately enough recognize eggs laid by relatives, rejecting them less often than eggs laid by nonkin. But if ‘parasitism’ enhances the direct fitness of the host (which is possible in species with precocial young) parasites should choose relatives whenever possible, even if hosts do not recognize kin eggs. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

2.
Conspecific brood parasitism (CBP), an alternative reproductive tactic where some females lay eggs in the nests of other females of the same species, occurs in many animals with egg care. It is particularly common in waterfowl, for reasons that are debated. Many waterfowl females nest near their birthplace, making it likely that some local females are relatives. We analyse brood parasitism in a Hudson Bay population of common eiders, testing predictions from two alternative hypotheses on the role of relatedness in CBP. Some models predict host-parasite relatedness, others predict that parasites avoid close relatives as hosts. To distinguish between the alternatives, we use a novel approach, where the relatedness of host-parasite pairs is tested against the spatial population trend in pairwise relatedness. We estimate parasitism, nest take-over and relatedness with protein fingerprinting and bandsharing analysis of egg albumen, nondestructively sampled from each new egg in the nest throughout the laying period. The results refute the hypothesis that parasites avoid laying eggs in the nests of related hosts, and corroborate the alternative of host-parasite relatedness. With an estimated r of 0.12-0.14, females laying eggs in the same nest are on average closer kin than nesting neighbour females. Absence of a population trend in female pairwise relatedness vs. distance implies that host-parasite relatedness is not only an effect of strong natal philopatry: some additional form of kin bias is also involved.  相似文献   

3.
Conspecific brood parasitism (CBP), females laying eggs in the nest of other ‘host’ females of the same species, is a common alternative reproductive tactic among birds. For hosts there are likely costs of incubating and rearing foreign offspring, but costs may be low in species with precocial chicks such as waterfowl, among which CBP is common. Waterfowl show strong female natal philopatry, and spatial relatedness among females may influence the evolution of CBP. Here we investigate fine‐scale kin structure in a Baltic colony of barnacle geese, Branta leucopsis, estimating female spatial relatedness using protein fingerprints of egg albumen, and testing the performance of this estimator in known mother‐daughter pairs. Relatedness was significantly higher between neighbour females (nesting ≤ 40 metres from each other) than between females nesting farther apart, but there was no further distance trend in relatedness. This pattern may be explained by earlier observations of females nesting close to their mother or brood sisters, even when far from the birth nest. Hosts and parasites were on average not more closely related than neighbour females. In 25 of 35 sampled parasitized nests, parasitic eggs were laid after the host female finished laying, too late to develop and hatch. Timely parasites, laying eggs in the host’s laying sequence, had similar relatedness to hosts as that between neighbours. Females laying late parasitic eggs tended to be less related to the host, but not significantly so. Our results suggest that CBP in barnacle geese might represent different tactical life‐history responses.  相似文献   

4.
Mode of development in birds helps determine the form of brood parasitism a species exhibits. Most knowledge of precocial brood parasites comes from a single avian family, the waterfowl (Anatidae: Anseriformes). Here we review cases of interspecific brood parasitism (IBP) in a second group of precocial birds, the order Galliformes. IBP is uncommon but taxonomically widespread, occurring in at least 11 species and in four of five galliform families. By far the most common brood parasite is the Ring-necked Pheasant Phasianus colchicus . Hosts were generally other ground-nesting precocial species. It is unclear whether the absence of IBP in the Cracidae (Guans, Curassows, and Chachalacas) is due to the paucity of research on tropical gamebirds or because tropical birds such as the Cracidae may be less likely to practise IBP. Galliform birds mirror the trend found in ducks in which virtually all species that parasitize heterospecifics are also conspecific brood parasites (CBP). This association supports the hypothesis that IBP as an adaptive tactic or strategy may evolve from CBP. Alternatively, or additionally, egg-dumping may represent reproductive error on the part of females, such that concordance between CBP and IBP could be a byproduct of having sufficient knowledge of breeding biology only for a subset of galliform species.  相似文献   

5.
In conspecific brood parasitism (CBP), a parasitic female takes advantage of the parental care performed by a host female by laying eggs in the nest of the host. The host female raises the offspring of the parasitic female as well as her own. In species where local females are related, direct costs for the host might be more than compensated for by gains in inclusive fitness through increased reproduction of a related parasite, but the role of relatedness in CBP is debated. This inclusive-fitness model of parasitism, structured as a game between host and parasite, suggests that both females can gain inclusive fitness and that host-parasite relatedness can therefore facilitate the evolution of CBP. Crucial assumptions are that there is kin discrimination and a potential for host resistance to parasitism by unrelated females but close relatives are accepted. The cost of parasitism in terms of reduced clutch size or offspring survival for the host must not be large; otherwise, parasitism will reduce her inclusive fitness. Therefore, if these costs are high, it does not benefit a host to accept a parasite, even if the parasite is closely related. The secondary female may still have higher fitness from parasitism, but if the costs are high, she should parasitize an unrelated host, not a relative. This requires that the reduction in parasite success that a host can cause by resistance is not too large; otherwise, it will be better for the secondary female to parasitize an accepting related host or to nest solitarily. For these reasons, host-parasite relatedness is most likely to occur in animals where costs of being parasitized are low and host resistance can markedly reduce the success of an unrelated parasite. When costs are higher, parasitism of unrelated hosts may be better, and if host resistance strongly reduces parasite success, solitary breeding is preferable. In some cases, CBP is directly advantageous for the host, and it may sometimes evolve in close connection with cooperative breeding, which is also considered in the model. Some but not all empirical results support these ideas, and more detailed studies of behavior, relatedness, and reproduction of host and parasite are needed for critical tests.  相似文献   

6.
Conspecific brood parasitism (CBP) is a reproductive tactic in which parasitic females lay eggs in nests of other females of the same species that then raise the joint brood. Parasites benefit by increased reproduction, without costs of parental care for the parasitic eggs. CBP occurs in many egg‐laying animals, among birds most often in species with large clutches and self‐feeding young: two major factors facilitating successful parasitism. CBP is particularly common in waterfowl (Anatidae), a group with female‐biased natal philopatry and locally related females. Theory suggests that relatedness between host and parasite can lead to inclusive fitness benefits for both, but if host costs are high, parasites should instead target unrelated females. Pairwise relatedness (r) in host–parasite (h‐p) pairs of females has been estimated using molecular genetic methods in seven waterfowl (10 studies). In many h‐p pairs, the two females were unrelated (with low r, near the local population mean). However, close relatives (r = 0.5) were over‐represented in h‐p pairs, which in all 10 studies had higher mean relatedness than other females. In one species where this was studied, h‐p relatedness was higher than between nesting close neighbours, and hosts parasitized by non‐relatives aggressively rejected other females. In another species, birth nest‐mates (mother–daughters, sisters) associated in the breeding area as adults, and became h‐p pairs more often than expected by chance. These and other results point to recognition of birth nest‐mates and perhaps other close relatives. For small to medium host clutch sizes, addition of a few parasitic eggs need not reduce host offspring success. Estimates in two species suggest that hosts can then gain inclusive fitness if parasitized by relatives. Other evidence of female cooperation is incubation by old eider Somateria mollissima females of clutches laid by their relatives, and merging and joint care of broods of young. Merging females tended to be more closely related. Eiders associate with kin in many situations, and in some geese and swans, related females may associate over many years. Recent genetic evidence shows that also New World quails (Odontophoridae) have female‐biased natal philopatry, CBP and brood merging, inviting further study and comparison with waterfowl. Kin‐related parasitism also occurs in some insects, with revealing parallels and differences compared to birds. In hemipteran bugs, receiving extra eggs is beneficial for hosts by diluting offspring predation. In eggplant lace bugs Gargaphia solani, host and parasite are closely related, and kin selection favours egg donation to related females. Further studies of kinship in CBP, brood merging and other contexts can test if some of these species are socially more advanced than presently known.  相似文献   

7.
Conspecific brood parasitism allows females to exploit other females' nests and enhance their reproductive output. Here, we test a recent theoretical model of how host females gain inclusive fitness from brood parasitism. High levels of relatedness between host and parasitizer can be maintained either by: (a) kin recognizing and parasitizing each other as a form of cooperative breeding or (b) natal philopatry and nest site fidelity facilitating the formation of kin groups, thereby increasing the probability of parasitism between relatives nesting in close proximity. To address these two hypotheses we genotyped feathers and hatch membranes of common eiders (Somateria mollissima) from western Hudson Bay, Canada, using a noninvasive sampling methodology. We found that most instances of brood parasitism do result in inclusive fitness gains. Furthermore, females with failed nests moved an average of 492 m from their previous year's nest site, while successful females only moved an average of 13 m. Therefore, we observed host–parasite relatedness can occur at levels higher than would be expected by chance even in the absence of kin grouping, suggesting that closely related females nesting near one another is not essential to maintain high host–parasitizer relatedness. In addition, kin grouping is only a transient phenomenon that cannot occur every year due to the propensity for females of failed nests to nest farther away from their nest site in subsequent years than females with successful nests, which provides support for kin recognition as a more likely mechanism to maintain high host–parasitizer relatedness over time.  相似文献   

8.
Kin selection theory predicts that, in species where progeny members compete for limiting parental care, individual offspring should be more prone to monopolize parental resources as their genetic relatedness to brood competitors decreases. Mixed parentage among broodmates may arise as a consequence, for example, of extra-pair fertilization or brood parasitism events. In this experimental study of barn swallows (Hirundo rustica), we reciprocally partially cross-fostered hatchlings between broods and compared the behaviour of pairs of related and unrelated broodmates in a competitive context, both under normal food provisioning regime and after mild food deprivation. We found that scramble competition for food mediated by visual and vocal solicitation displays (begging) is inversely related to relatedness among competitors, independent of their level of satiation. Nestlings may modulate their competitive behaviour according to vocal cues that vary with their origin and allow kin recognition. We also uncover direct fitness costs to both parents and offspring arising from mixed parentage in a brood, in terms of increased parental workload and reduced survival of the nestlings. Such previously neglected costs may select for reduced frequency of extra-pair fertilizations and brood parasitism in species with extensive parental care.  相似文献   

9.
Mode of development and interspecific avian brood parasitism   总被引:2,自引:2,他引:0  
Avian interspecific brood parasites differ considerably in theircommitment to parasitism; 87 species are obligate brood parasites,whereas 35 species are known to be facultative brood parasites.This variation is strongly related to mode of development. Obligateparasitism is found almost exclusively in altricial species,whereas facultative interspecific parasitism is predominantin precocial birds. We propose that the association betweenmode of development and form of parasitism reflects a fundamentaldifference between altricial and precocial birds in the relativebenefits of emancipation from parental care after laying. Weargue that altricial brood parasites obtain such a large increasein realized fecundity by avoiding the costs of parental carethat obligate parasitism is favored over facultative parasitism.In contrast, precocial brood parasites gain relatively littlein terms of increased fecundity via obligate parasitism, andmuch of this increase could potentially be gained by facultativeparasitism. Thus, obligate interspecific brood parasitism willnot be favored in precocial birds. Three factors influence thisdifference between altricial and precocial species: (1) altricialbirds have relatively more energy and nutrients with which tolay additional eggs, (2) altricial birds can produce more eggsfor the same amount of energy and nutrients, and (3) altricialbirds realize a greater relative gain in fecundity for eachadditional egg laid. We suggest further that facultative interspecificparasitism in birds may originate simply through a carry overof intraspecific parasitism; 29 of 33 facultative interspecificparasites also parasitize conspecifics. Facultative parasitismof other species would provide a greater range of potentialhost nests and could be maintained as an evolutionarily stableend point by the same mechanisms that maintain intraspecificbrood parasitism. [Behav Ecol 1991;2:309–318]  相似文献   

10.
Recent studies, which have found evidence for kin-biased egg donation, have sparked interest in re-assessing the parasitic nature of conspecific brood parasitism (CBP). Since host–parasite kinship is essential for mutual benefits to arise from CBP, we explored the role of relatedness in determining the behaviour of conspecific nest parasites and their hosts in nesting female Barrow's goldeneyes ( Bucephala islandica ), a duck in which CBP is common. The results revealed that the amount of parasitism increased with host–parasite relatedness, the effect of which was independent of geographical proximity of host and parasite nests. Proximity per se was also positively associated with the amount of parasitism. Furthermore, while hosts appeared to reduce their clutch size as a response to the presence of parasitic eggs, the magnitude of host clutch reduction also tended to increase with increasing relatedness to the parasite. Hence, our results indicate that both relatedness and spatial proximity are important determinants of CBP, and that host clutch reduction may be an adaptation to nest parasitism, modulated by host–parasite relatedness. Taken together, the results provide a demonstration that relatedness influences host and parasite behaviour in Barrow's goldeneyes, resulting in kin-biased egg donation.  相似文献   

11.
Conspecific brood parasites lay eggs in nests of other females of the same species. A variety of methods have been developed and used to detect conspecific brood parasitism (CBP). Traditional methods may be inaccurate in detecting CBP and in revealing its true frequency. On the other hand more accurate molecular methods are expensive and time consuming. Eadie developed a method for revealing CBP based on differences in egg morphology. That method is based on Euclidean distances calculated for pairs of eggs within a clutch using standardized egg measurements (length, width and weight). We tested the applicability of this method in the common pochard Aythya ferina using nests that were identified as parasitized (39 nests) or non‐parasitized (16 nests) based on protein fingerprinting of eggs. We also analyzed whether we can distinguish between parasitic and host eggs in the nest. We found that variation in MED can be explained by parasitism but there was a huge overlap in MED between parasitized and non‐parasitized nests. MED also increased with clutch size. Using discriminant function analysis (DFA) we found that only 76.4% of nests were correctly assigned as parasitized or non‐parasitized and only 68.3% of eggs as parasitic or host eggs. Moreover we found that MED in parasitized nests increased with relatedness of the females that laid eggs in the nest. This finding was supported by positive correlation between MED and estimated relatedness in female–female pairs. Although variation in egg morphology is associated with CBP, it does not provide a reliable clue for distinguishing parasitized nests from non‐parasitized nests in common pochard.  相似文献   

12.
Host-parasite relatedness may facilitate the evolution of conspecific brood parasitism, but empirical support for this contention remains inconclusive. One reason for this disparity may relate to the diversity of parasitic tactics, a key distinguishing feature being whether the parasite has a nest of her own. Previous work suggests that parasites without nests of their own may be of inferior phenotypic quality, but because of difficulties in identifying these parasitic individuals, little is known about their host selection criteria. We used high-resolution molecular maternity tests to assign parasitic offspring to known parasites with and without their own nests in a population of Barrow's goldeneyes (Bucephala islandica). We determined whether parasite nesting status, host-parasite relatedness and distance between host and parasite nests affected the probability of parasitizing a host and the number of eggs laid per host. We also investigated whether nesting parasites, conventionally nesting females and non-nesting parasites differed regarding their age, structural size, body condition, nesting phenology or total brood size. The probability of engaging in parasitism increased with host-parasite relatedness and spatial proximity to host nests for nesting and non-nesting females alike. However, nesting parasites increased the number of eggs donated with relatedness to the host, while non-nesting parasites did not do so. Non-nesting parasites laid fewer eggs in total, but did not differ by any of the other quality measures from conventional nesters or nesting parasites. Our study provides the first demonstration that nesting and non-nesting parasites from the same population may use different host selection criteria.  相似文献   

13.
The spatial structure of relatedness between individuals ina population can be crucial for social selection and evolution.Here we analyze a female alternative reproductive tactic, conspecificbrood parasitism, in relation to spatial relatedness among femalesin a Baltic Sea population of the common eider Somateria mollissima.The role of relatedness in brood parasitism is debated: somemodels predict parasite avoidance of related hosts, others predicthost–parasite relatedness. We estimate pairwise relatednessfrom protein fingerprinting of egg albumen in 156 nests, withpairwise nest distances ranging from 1 to 6 km. Relatednessincreases significantly from the longest distances to an averageof r 0.09 below 20 m. Brood parasitism is common, and averagepairwise relatedness between host and parasite is estimatedat 0.18–0.21. Parasites thus do not avoid relatives, andcombined with the findings of a similar study in another eiderpopulation, the results show that mean host–parasite relatednessis higher than that among close neighbors. High host–parasiterelatedness is therefore not an effect of natal philopatry alone;some other form of kin bias is also involved. Recognition andassociation between birth nest mates is a candidate mechanismfor further study.  相似文献   

14.
Dickinson JL 《Molecular ecology》2007,16(13):2610-2612
Conspecific brood parasitism, where females of the same species lay eggs in each other's nests, is common in waterfowl, and is usually considered costly to host females, which are stuck looking after eggs and chicks that are not their own. However, since female waterfowl often exhibit an unusual propensity to nest near where they were born, there has been some uncertainty over whether, in ducks and geese, laying in nests of conspecifics really is parasitism. Do parasitic and host females tend to be related? And is parasitism actually a form of cooperation in disguise? In a population in Hudson Bay, Andersson & Waldeck (this issue) found that ‘parasitic’ eggs in nests of the common eider, Somateria mollissima sedentaria, are more closely related to host eggs than expected by chance. In fact, host and ‘donor’ eggs are more closely related than are females breeding at neighbouring nests. The Hudson Bay population of common eiders is unusual, because unlike in more benign climates, females do not tend to breed near their natal nest. Spatial proximity alone cannot account for the high relatedness between host eggs and ‘dumped’ or donor eggs. Instead, the high relatedness values are probably the result of active recognition, where females favour kin, either when dumping or accepting eggs. These new data, along with evidence indicating that the donor lays the first egg in the nest nearly half the time, suggest that what appears to be parasitism in common eiders may be a form of kin‐based cooperation.  相似文献   

15.
Molecular genetic perspectives on avian brood parasitism   总被引:2,自引:0,他引:2  
Advances in molecular genetic techniques have provided new approachesfor addressing evolutionary questions about brood parasiticbirds. We review recent studies that apply genetic data to thesystematics, population biology, and social systems of avianbrood parasites and suggest directions for future research.Recent molecular systematics studies indicate that obligatebrood parasitism has evolved independently in seven differentavian lineages, a tally that has increased by one in cuckoos(Cuculiformes) and decreased by one in passeriforms (Passeriformes)as compared to conventional taxonomy. Genetic parentage analysessuggest that brood parasitic birds are less promiscuous thanmight be expected given their lack of nesting and parental carebehavior. Host-specificity in brood parasites, which has importantimplications for host-parasite coevolution, has been evaluatedusing both population genetic and parentage analyses. Femalelineages are faithful to particular host species over evolutionarilysignificant time scales in both common cuckoos (Cuculus canorus)and indigobirds (Vidua spp.), but differences in the host-specificityof male parasites has resulted in different patterns of diversificationin these two lineages. Future research on brood parasitism willbenefit from the availability of comprehensive molecular phylogeniesfor brood parasites and their hosts and from advances in functionalgenomics.  相似文献   

16.
Conspecific brood parasitism (CBP) is an alternative reproductive tactic found in many animals with parental care. Parasitizing females lay eggs in the nests of other females (hosts) of the same species, which incubate and raise both their own and the foreign offspring. The causes and consequences of CBP are debated. Using albumen fingerprinting of eggs for accurately detecting parasitism, we here analyse its relation to female condition and clutch size in High Arctic common eiders Somateria mollissima borealis. Among 166 clutches in a Svalbard colony, 31 (19%) contained eggs from more than one female, and 40 of 670 eggs (6%) were parasitic. In 6 cases an active nest with egg(s) was taken over by another female. Many suitable nest sites were unoccupied, indicating that CBP and nest takeover are reproductive tactics, not only consequences of nest site shortage. Similarity in body mass between female categories suggests that condition does not determine whether a nesting female becomes parasitised. There was no evidence of low condition in parasites: egg size was similar in hosts and parasites, and parasitism was equally frequent early and late in the laying season. Meta‐analysis of this and 3 other eider studies shows that there is a cost of being parasitised in this precocial species: host females laid on average 7% fewer eggs than other females.  相似文献   

17.
Avian brood parasites have evolved striking begging abilitythat often allows them to prevail over the host progeny in competitionfor parental resources. Host young are therefore selected bybrood parasites to evolve behavioral strategies that reducethe cost of parasitism. We tested the prediction that the intensityof nestling begging displays functioning to attract parentalcare increases across species with the frequency of parasitismby the brown-headed cowbird (Molothrus ater). This was expectedbecause host young should try to prevail over highly competitiveparasitic broodmates in scramble interactions, act more selfishlywhen frequency of parasitism is high because brood parasitesoften affect more severely host condition than conspecific broodmates,and discount the kin selection costs of subtracting resourcesto unrelated parasites. Across 31 North American host species,begging loudness positively covaried with parasitism rate inPasserines, and such effect was stronger in species with smallcompared with large clutches. Begging loudness increased withbrood parasitism and nest predation among the most suitablehost species. These results held after controlling for concomitantecological factors and for common ancestry effects. Our resultssupport the hypothesis that avian brood parasitism has playeda role in the evolution of begging behavior of host young.  相似文献   

18.
Efforts to evaluate the evolutionary and ecological dynamics of conspecific brood parasitism in birds and other animals have focused on the fitness costs of parasitism to hosts and fitness benefits to parasites. However, it has been speculated recently that, in species with biparental care, host males might cooperate with parasitic females by allowing access to the host nest in exchange for copulations. We develop a cost-benefit model to explore the conditions under which such host-parasite cooperation might occur. When the brood parasite does not have a nest of her own, the only benefit to the host male is siring some of the parasitic eggs (quasi-parasitism). Cooperation with the parasite is favored when the ratio of host male paternity of his own eggs relative to his paternity of parasitic eggs exceeds the cost of parasitism. When the brood parasite has a nest of her own, a host male can gain additional, potentially more important benefits by siring the high-value, low-cost eggs laid by the parasite in her own nest. Under these conditions, host males should be even more likely to accept parasitic eggs in return for copulations with the parasitic female. We tested these predictions for American coots (Fulica americana), a species with a high frequency of conspecific brood parasitism. Multilocus DNA profiling indicated that host males did not sire any of the parasitic eggs laid in host nests, nor did they sire eggs laid by the parasite in her own nest. We used field estimates of the model parameters from a four-year study of coots to predict the minimum levels of paternity required for the costs of parasitism to be offset by the benefits of mating with brood parasites. Observed levels of paternity were significantly lower than those predicted under a variety of assumptions, and we reject the hypothesis that host males cooperated with parasitic females. Our model clarifies the specific costs and benefits that influence host-parasite cooperation and, more generally, yields precise predictions about expected levels of host male paternity. These predictions will enable a more rigorous assessment of field studies designed to test adaptive hypotheses of host-parasite cooperation.  相似文献   

19.
Animal societies of varying complexity have been the favoured testing ground for inclusive fitness theory, and there is now abundant evidence that kin selection has played a critical role in the evolution of cooperative behaviour. One of the key theoretical and empirical findings underlying this conclusion is that cooperative systems have a degree of kin structure, often the product of delayed dispersal, that facilitates interactions with relatives. However, recent population genetic studies have revealed that many non‐cooperative animals also have kin‐structured populations, providing more cryptic opportunities for kin selection to operate. In this article, I first review the evidence that kin structure is widespread among non‐cooperative vertebrates, and then consider the various contexts in which kin selection may occur in such taxa, including: leks, brood parasitism, crèches, breeding associations, territoriality and population dynamics, foraging and predator deterrence. I describe the evidence that kin‐selected benefits arise from interacting with kin in each of these contexts, notwithstanding the potential costs of kin competition and inbreeding. I conclude that as the tools required to determine population genetic structure are readily available, measurement of kin structure and the potential for kin selection on a routine basis is likely to reveal that this process has been an important driver of evolutionary adaptation in many non‐cooperative as well as cooperative species.  相似文献   

20.
Coevolutionary arms races between brood parasites and hosts provide tractable systems for understanding antagonistic coevolution in nature; however, little is known about the fate of frontline antiparasite defenses when the host “wins” the coevolutionary arms race. By recreating bygone species interactions, using artificial parasitism experiments, lingering defensive behaviors that evolved in the context of parasitism can be understood and may even be used to identify the unknown agent of parasitism past. Here we present the first study of this type by evaluating lingering “frontline” nest defenses that have evolved to prevent egg laying in a former brood parasite host. The Australian reed warbler Acrocephalus australis is currently not parasitized but is known to exhibit fine-tuned egg discrimination—a defensive behavior indicative of a past brood parasite–host arms race and common in closely related parasitized species. Here, using 3D-printed models of adult brood parasites, we examined whether the Australian reed warbler also exhibits frontline defenses to adult brood parasites, and whether we could use these defenses to identify the warbler’s “ghost of parasitism past.” Our findings provide evidence that the Australian reed warbler readily engages in frontline defenses that are considered adaptive specifically in the context of brood parasitism. However, individuals were unable to discriminate between adults of different brood parasite species at their nest. Overall, our results demonstrate that despite a relaxation in selection, defenses against brood parasitism can be maintained across multiple stages of the host’s nesting cycle, and further suggest that, in accordance with previous findings, that learning may be important for fine-tuning frontline defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号