首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

RNA viruses are responsible for a variety of illnesses among people, including but not limited to the common cold, the flu, HIV, and ebola. Developing new drugs and new strategies for treating diseases caused by these viruses can be an expensive and time-consuming process. Mathematical modeling may be used to elucidate host-pathogen interactions and highlight potential targets for drug development, as well providing the basis for optimizing patient treatment strategies. The purpose of this work was to determine whether a genome-scale modeling approach could be used to understand how metabolism is impacted by the host-pathogen interaction during a viral infection. Escherichia coli/MS2 was used as the host-pathogen model system as MS2 is easy to work with, harmless to humans, but shares many features with eukaryotic viruses. In addition, the genome-scale metabolic model of E. coli is the most comprehensive model at this time.  相似文献   

2.

Background  

Researchers using RNA expression microarrays in experimental designs with more than two treatment groups often identify statistically significant genes with ANOVA approaches. However, the ANOVA test does not discriminate which of the multiple treatment groups differ from one another. Thus, post hoc tests, such as linear contrasts, template correlations, and pairwise comparisons are used. Linear contrasts and template correlations work extremely well, especially when the researcher has a priori information pointing to a particular pattern/template among the different treatment groups. Further, all pairwise comparisons can be used to identify particular, treatment group-dependent patterns of gene expression. However, these approaches are biased by the researcher's assumptions, and some treatment-based patterns may fail to be detected using these approaches. Finally, different patterns may have different probabilities of occurring by chance, importantly influencing researchers' conclusions about a pattern and its constituent genes.  相似文献   

3.

Background  

Arthropod-borne viruses (arboviruses) can persistently infect and cause limited damage to mosquito vectors. RNA interference (RNAi) is a mosquito antiviral response important in restricting RNA virus replication and has been shown to be active against some arboviruses. The goal of this study was to use a recombinant Sindbis virus (SINV; family Togaviridae; genus Alphavirus) that expresses B2 protein of Flock House virus (FHV; family Nodaviridae; genus Alphanodavirus), a protein that inhibits RNAi, to determine the effects of linking arbovirus infection with RNAi inhibition.  相似文献   

4.
5.

Background  

Several lines of evidence suggest that codon usage in the Drosophila saltans and D. willistoni lineages has shifted towards a less frequent use of GC-ending codons. Introns in these lineages show a parallel shift toward a lower GC content. These patterns have been alternatively ascribed to either a shift in mutational patterns or changes in the definition of preferred and unpreferred codons in these lineages.  相似文献   

6.

Background  

Recent translocations of autosomal regions to the sex chromosomes represent important systems for identifying the evolutionary forces affecting convergent patterns of sex-chromosome heteromorphism. Additions to the sex chromosomes have been reported in the melanica and robusta species groups, two sister clades of Drosophila. The close relationship between these two species groups and the similarity of their rearranged karyotypes motivates this test of alternative hypotheses; the rearranged sex chromosomes in both groups are derived through a common origin, or the rearrangements are derived through at least two independent origins. Here we examine chromosomal arrangement in representatives of the melanica and the robusta species groups and test these alternative hypotheses using a phylogenetic approach.  相似文献   

7.

Background  

The requirement of a large amount of high-quality RNA is a major limiting factor for microarray experiments using biopsies. An average microarray experiment requires 10–100 μg of RNA. However, due to their small size, most biopsies do not yield this amount. Several different approaches for RNA amplificationin vitrohave been described and applied for microarray studies. In most of these, systematic analyses of the potential bias introduced by the enzymatic modifications are lacking.  相似文献   

8.

Aim

Create a method for highly sensitive, selective, rapid and easy‐to‐use detection and identification of economically significant potato pathogens, including viruses, bacteria and oomycetes, be it single pathogen, or a range of various pathogens occurring simultaneously.

Methods and Results

Test‐systems for real‐time PCR, operating in the unified amplification regime, have been developed for Phytophthora infestans, Pectobacterium atrosepticum, Dickeya dianthicola, Dickeya solani, Ralstonia solanacearum, Pectobacterium carotovorum, Clavibacter michiganensis subsp. sepedonicus, potato viruses Y (ordinary and necrotic forms as well as indiscriminative test system, detecting all forms), A, X, S, M, potato leaf roll virus, potato mop top virus and potato spindle tuber viroid. The test‐systems (including polymerase and revertase) were immobilized and lyophilized in miniature microreactors (1·2 μl) on silicon DNA/RNA microarrays (micromatrices) to be used with a mobile AriaDNA® amplifier.

Conclusions

Preloaded 30‐reaction micromatrices having shelf life of 3 and 6 months (for RNA‐ and DNA‐based pathogens, respectively) at room temperature with no special conditions were successfully tested on both reference and field samples in comparison with traditional ELISA and microbiological methods, showing perfect performance and sensitivity (1 pg).

Significance and Impact of the Study

The accurate, rapid and user‐friendly diagnostic system in a micromatrix format may significantly contribute to pathogen screening and phytopathological studies.  相似文献   

9.
10.

Background  

Viroids, satellite RNAs, satellites viruses and the human hepatitis delta virus form the 'brotherhood' of the smallest known infectious RNA agents, known as the subviral RNAs. For most of these species, it is generally accepted that characteristics such as cell movement, replication, host specificity and pathogenicity are encoded in their RNA sequences and their resulting RNA structures. Although many sequences are indexed in publicly available databases, these sequence annotation databases do not provide the advanced searches and data manipulation capability for identifying and characterizing subviral RNA motifs.  相似文献   

11.

Background  

Long terminal repeat (LTR) retrotransposons are a class of mobile genetic element capable of autonomous transposition via an RNA intermediate. Their large size and proliferative ability make them important contributors to genome size evolution, especially in plants, where they can reach exceptionally high copy numbers and contribute substantially to variation in genome size even among closely related taxa. Using a phylogenetic approach, we characterize dynamics of proliferation events of Ty3/gypsy-like LTR retrotransposons that led to massive genomic expansion in three Helianthus (sunflower) species of ancient hybrid origin. The three hybrid species are independently derived from the same two parental species, offering a unique opportunity to explore patterns of retrotransposon proliferation in light of reticulate evolutionary events in this species group.  相似文献   

12.

Background  

The Burkholderia cenocepacia CepIR quorum sensing system has been shown to positively and negatively regulate genes involved in siderophore production, protease expression, motility, biofilm formation and virulence. In this study, two approaches were used to identify genes regulated by the CepIR quorum sensing system. Transposon mutagenesis was used to create lacZ promoter fusions in a cepI mutant that were screened for differential expression in the presence of N-acylhomoserine lactones. A bioinformatics approach was used to screen the B. cenocepacia J2315 genome for CepR binding site motifs.  相似文献   

13.
14.

Background  

Given its sequenced genome and efficient systemic RNA interference response, the red flour beetle Tribolium castaneum is a model organism well suited for reverse genetics. Even so, there is a pressing need for forward genetic analysis to escape the bias inherent in candidate gene approaches.  相似文献   

15.

Background  

The C↔U substitution types of RNA editing have been observed frequently in organellar genomes of land plants. Although various attempts have been made to explain why such a seemingly inefficient genetic mechanism would have evolved, no satisfactory explanation exists in our view. In this study, we examined editing patterns in chloroplast genomes of the hornwort Anthoceros formosae and the fern Adiantum capillus-veneris and in mitochondrial genomes of the angiosperms Arabidopsis thaliana, Beta vulgaris and Oryza sativa, to gain an understanding of the question of how RNA editing originated.  相似文献   

16.

Background  

PL10 homologs exist in a wide range of eukaryotes from yeast, plants to animals. They share a DEAD motif and belong to the DEAD-box polypeptide 3 (DDX3) subfamily with a major role in RNA metabolism. The lineage-specific expression patterns and various genomic structures and locations of PL10 homologs indicate these homologs have an interesting evolutionary history.  相似文献   

17.

Background  

Mutation rate (μ) per generation per locus is an important parameter in the models of population genetics. Studies on mutation rate and its variation are of significance to elucidate the extent and distribution of genetic variation, further infer evolutionary relationships among closely related species, and deeply understand genetic variation of genomes. However, patterns of rate variation of microsatellite loci are still poorly understood in plant species. Furthermore, how their mutation rates vary in di-, tri-, and tetra-nucleotide repeats within the species is largely uninvestigated across related plant genomes.  相似文献   

18.

Aim

To test the influence of historical and contemporary environment in shaping the genetic diversity of freshwater fauna we contrast genetic structure in two co‐distributed, but ecologically distinct, rainbowfish; a habitat generalist (Melanotaenia splendida) and a habitat specialist (M. trifasciata).

Location

Fishes were sampled from far northern Australia (Queensland and Northern Territory).

Methods

We used sequence data from one mitochondrial gene and one nuclear gene to investigate patterns of genetic diversity in M. splendida and M. trifasciata to determine how differences in habitat preference and historical changes in drainage boundaries affected patterns of connectivity.

Results

Melanotaenia splendida showed high levels of genetic diversity and little population structure across its range. In contrast, M. trifasciata showed high levels of population structure. Whereas phylogeographic patterns differed, both species showed a strong relationship between geographical distance and genetic differentiation between populations. Melanotaenia splendida showed a shallower relationship with geographical distance, and genetic differentiation was best explained by stream length and a lower scaled ocean distance (11.98 times coast length). For M. trifasciata, genetic differentiation was best explained by overwater distance between catchments and ocean distance scaled at 1.16 × 106 times coast length.

Main conclusions

Connectivity of freshwater populations inhabiting regions periodically interconnected during glacial periods appears to have been affected by ecological differences between species. Species‐specific differences are epitomized here by the contrast between co‐distributed congeners with different habitat requirements: for the habitat generalist, M. splendida, there was evidence for greater historical genetic connectivity with oceans as a weaker barrier to gene exchange in contrast with the habitat specialist, M. trifasciata.  相似文献   

19.

   

FASH (Fourier Alignment Sequence Heuristics) is a web application, based on the Fast Fourier Transform, for finding remote homologs within a long nucleic acid sequence. Given a query sequence and a long text-sequence (e.g, the human genome), FASH detects subsequences within the text that are remotely-similar to the query. FASH offers an alternative approach to Blast/Fasta for querying long RNA/DNA sequences. FASH differs from these other approaches in that it does not depend on the existence of contiguous seed-sequences in its initial detection phase. The FASH web server is user friendly and very easy to operate.  相似文献   

20.

Background  

Detecting new coding sequences (CDSs) in viral genomes can be difficult for several reasons. The typically compact genomes often contain a number of overlapping coding and non-coding functional elements, which can result in unusual patterns of codon usage; conservation between related sequences can be difficult to interpret – especially within overlapping genes; and viruses often employ non-canonical translational mechanisms – e.g. frameshifting, stop codon read-through, leaky-scanning and internal ribosome entry sites – which can conceal potentially coding open reading frames (ORFs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号