首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
It has been suggested that birds prefer to use a particular eye while learning to detect cryptic prey and that this eye preference enhances foraging performance. European starlings (Sturnus vulgaris) with the left, right, or both eyes available learned to detect inconspicuous cues associated with the presence of hidden prey. Acquisition scores were not significantly different between left and right-eyed birds; however, performance in the binocular condition was significantly higher than in the two monocular conditions. When binocular birds were tested with familiar and unfamiliar cues present simultaneously, the familiar cue was selected significantly more often than the unfamiliar cue, suggesting that the birds were searching for specific cue features. When monocular birds were tested using only the naïve eye, performance dropped significantly. In right-eyed birds using the naïve left eye, performance remained at chance levels over transfer trials. However, left-eyed birds using the naïve right eye had a superior performance compared to the initial acquisition scores of right-eyed birds and also showed a significant improvement in performance over transfer trials. Thus, although there was no direct evidence of lateralization during acquisition, there was unilateral transfer of the prey detection skill from the right to the left hemisphere.  相似文献   

2.
Birds choose mates on the basis of colour, song and body size, but little is known about the mechanisms underlying these mating decisions. Reports that zebra finches prefer to view mates with the right eye during courtship, and that immediate early gene expression associated with courtship behaviour is lateralized in their left hemisphere suggest that visual mate choice itself may be lateralized. To test this hypothesis, we used the Gouldian finch, a polymorphic species in which individuals exhibit strong, adaptive visual preferences for mates of their own head colour. Black males were tested in a mate-choice apparatus under three eye conditions: left-monocular, right-monocular and binocular. We found that black male preference for black females is so strongly lateralized in the right-eye/left-hemisphere system that if the right eye is unavailable, males are unable to respond preferentially, not only to males and females of the same morph, but also to the strikingly dissimilar female morphs. Courtship singing is consistent with these lateralized mate preferences; more black males sing to black females when using their right eye than when using their left. Beauty, therefore, is in the right eye of the beholder for these songbirds, providing, to our knowledge, the first demonstration of visual mate choice lateralization.  相似文献   

3.
In a two-choice discrimination paradigm, a bottlenose dolphin discriminated relational dimensions between visual numerosity stimuli under monocular viewing conditions. After prior binocular acquisition of the task, two monocular test series with different number stimuli were conducted. In accordance with recent studies on visual lateralization in the bottlenose dolphin, our results revealed an overall advantage of the right visual field. Due to the complete decussation of the optic nerve fibers, this suggests a specialization of the left hemisphere for analysing relational features between stimuli as required in tests for numerical abilities. These processes are typically right hemisphere-based in other mammals (including humans) and birds. The present data provide further evidence for a general right visual field advantage in bottlenose dolphins for visual information processing. It is thus assumed that dolphins possess a unique functional architecture of their cerebral asymmetries.  相似文献   

4.
Analyzing cerebral asymmetries in various species helps in understanding brain organization. The left and right sides of the brain (lateralization) are involved in different cognitive and sensory functions. This study focuses on dolphin visual lateralization as expressed by spontaneous eye preference when performing a complex cognitive task; we examine lateralization when processing different visual stimuli displayed on an underwater touch-screen (two-dimensional figures, three-dimensional figures and dolphin/human video sequences). Three female bottlenose dolphins (Tursiops truncatus) were submitted to a 2-, 3- or 4-, choice visual/auditory discrimination problem, without any food reward: the subjects had to correctly match visual and acoustic stimuli together. In order to visualize and to touch the underwater target, the dolphins had to come close to the touch-screen and to position themselves using monocular vision (left or right eye) and/or binocular naso-ventral vision. The results showed an ability to associate simple visual forms and auditory information using an underwater touch-screen. Moreover, the subjects showed a spontaneous tendency to use monocular vision. Contrary to previous findings, our results did not clearly demonstrate right eye preference in spontaneous choice. However, the individuals' scores of correct answers were correlated with right eye vision, demonstrating the advantage of this visual field in visual information processing and suggesting a left hemispheric dominance. We also demonstrated that the nature of the presented visual stimulus does not seem to have any influence on the animals' monocular vision choice.  相似文献   

5.
Four monocularly and two binocularly viewing pigeons were trained to peck a key when it displayed one stimulus (S+) but not to peck when it displayed another stimulus (S−). S+ and S− were a lateral mirror-image pair of two-coloured stimuli. When tested for transfer with the untrained eye open, two of the monocular birds pecked more during S− than S+, the other two continuing to favour S+. During generalization tests on the wavelength dimension all monocular birds pecked much more often during one S+ colour than during the other. The colour controlling pecking was that displayed on the side of the key facing the open eye during S+ presentations. Both binocular birds developed asymmetrical responses to the key, one favouring the left, the other the right side of the key. Generalization tests on the wavelength dimension showed selective control by the colour displayed on the favoured side of the key during S+ presentations. The results are interpreted as supporting the view that pigeons learn to discriminate lateral mirror images by developing asymmetrical observing responses that convert the left-right difference between the mirror images into a difference more easily discriminable.  相似文献   

6.
Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation). We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i) eye use and body motion were, each, lateralized at the tested group level (N = 26), (ii) in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one – to threat approaching from the right (left- and right-biased subgroups), (iii) the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i) in the left-biased sub-group, eye use is not lateralized, (ii) in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii) the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans'' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons'' visual control of body motion during avoidance.  相似文献   

7.
Two previous experiments on food storing and one-trial associative learning in marsh tits (Clayton 1992a; Clayton and Krebs 1992) demonstrate that information coming into the brain from the left eye disappears from the left eye system between 3 and 24 h after memory formation, whereas that coming into the brain from the right eye remains stable within the right eye system for at least 51 h after memory formation. Performance after a 7 h retention interval appears to represent an intermediate stage in which the information is no longer accessible to the left eye system but is not yet available to the right eye system, suggesting a unilateral transfer of memory. The experiments reported here further investigated lateralization and unilateral transfer of memory in food-storing marsh tits, Parus palustris, using the technique of monocular occlusion. Birds were tested for their ability to retrieve stored seeds after retention intervals of 3, 7 and 24 h under 4 different occlusion treatments. Two predictions were tested: (a) with right eye occlusion during storage, birds should show better memory performance after 3 and 24 h than after 7 h and (b) memory should be more accurate when both eyes are used during storage than with monocular occlusion. The first prediction, which arises from the fact that memory is transferred from the left to the right eye system at about 7 h and is inaccessible during the transfer, was supported by the data. The second prediction, however, was not supported. Previous work has shown that in marsh tits the two eye systems remember preferentially different aspects of the stimulus: the left eye system responds to spatial position and the right eye system to object-specific cues. It is possible that the failure to find superior performance in binocular tests was because the task could be solved by either spatial or object-specific memory.  相似文献   

8.
How do signals from the 2 eyes combine and interact? Our recent work has challenged earlier schemes in which monocular contrast signals are subject to square-law transduction followed by summation across eyes and binocular gain control. Much more successful was a new 'two-stage' model in which the initial transducer was almost linear and contrast gain control occurred both pre- and post-binocular summation. Here we extend that work by: (i) exploring the two-dimensional stimulus space (defined by left- and right-eye contrasts) more thoroughly, and (ii) performing contrast discrimination and contrast matching tasks for the same stimuli. Twenty-five base-stimuli made from 1 c/deg patches of horizontal grating, were defined by the factorial combination of 5 contrasts for the left eye (0.3-32%) with five contrasts for the right eye (0.3-32%). Other than in contrast, the gratings in the two eyes were identical. In a 2IFC discrimination task, the base-stimuli were masks (pedestals), where the contrast increment was presented to one eye only. In a matching task, the base-stimuli were standards to which observers matched the contrast of either a monocular or binocular test grating. In the model, discrimination depends on the local gradient of the observer's internal contrast-response function, while matching equates the magnitude (rather than gradient) of response to the test and standard. With all model parameters fixed by previous work, the two-stage model successfully predicted both the discrimination and the matching data and was much more successful than linear or quadratic binocular summation models. These results show that performance measures and perception (contrast discrimination and contrast matching) can be understood in the same theoretical framework for binocular contrast vision.  相似文献   

9.
Vertebrate sensory systems are generally based on bilaterally symmetrical sense organs. It is evident, nevertheless, that birds preferentially use either their left or right eye for viewing novel or familiar stimuli [1], and perform visual discrimination tasks under monocular viewing conditions better with one eye than with the other [2] [3]. Because of the nearly complete contralateral decussation of the optic nerves in birds [4], it has been assumed that this division of labour is due solely to cerebral hemispheric specialisation, generated as a result of uneven photostimulation of the eyes of the developing embryo during the last three or four days before hatching [5] [6]. Here, however, we present evidence that in the European starling, Sturnus vulgaris, even the retinae are morphologically asymmetrical in terms of photoreceptor distribution. This is the first evidence for such asymmetry in any bird and suggests that retinal photoreceptor composition should be assessed during studies involving the lateralisation of visually mediated behaviours.  相似文献   

10.
In mammals, species with more frontally oriented orbits have broader binocular visual fields and relatively larger visual regions in the brain. Here, we test whether a similar pattern of correlated evolution is present in birds. Using both conventional statistics and modern comparative methods, we tested whether the relative size of the Wulst and optic tectum (TeO) were significantly correlated with orbit orientation, binocular visual field width and eye size in birds using a large, multi-species data set. In addition, we tested whether relative Wulst and TeO volumes were correlated with axial length of the eye. The relative size of the Wulst was significantly correlated with orbit orientation and the width of the binocular field such that species with more frontal orbits and broader binocular fields have relatively large Wulst volumes. Relative TeO volume, however, was not significant correlated with either variable. In addition, both relative Wulst and TeO volume were weakly correlated with relative axial length of the eye, but these were not corroborated by independent contrasts. Overall, our results indicate that relative Wulst volume reflects orbit orientation and possibly binocular visual field, but not eye size.  相似文献   

11.
Neurophysiological and behavioral reports converge to suggest that monocular neurons in the primary visual cortex are biased toward low spatial frequencies, while binocular neurons favor high spatial frequencies. Here we tested this hypothesis with functional magnetic resonance imaging (fMRI). Human participants viewed flickering gratings at one of two spatial frequencies presented to either the left or the right eye, and judged which of the two eyes was being stimulated (utrocular discrimination). Using multivoxel pattern analysis we found that local spatial patterns of signals in primary visual cortex (V1) allowed successful decoding of the eye-of-origin. Decoding was above chance for low but not high spatial frequencies, confirming the presence of a bias reported by animal studies in human visual cortex. Behaviorally, we found that reliable judgment of the eye-of-origin did not depend on spatial frequency. We further analyzed the mean response in visual cortex to our stimuli and revealed a weak difference between left and right eye stimulation. Our results are thus consistent with the interpretation that participants use overall levels of neural activity in visual cortex, perhaps arising due to local luminance differences, to judge the eye-of-origin. Taken together, we show that it is possible to decode eye-specific voxel pattern information in visual cortex but, at least in healthy participants with normal binocular vision, these patterns are unrelated to awareness of which eye is being stimulated.  相似文献   

12.
Functional cerebral asymmetries, once thought to be exclusively human, are now accepted to be a widespread principle of brain organization in vertebrates [1]. The prevalence of lateralization makes it likely that it has some major advantage. Until now, however, conclusive evidence has been lacking. To analyze the relation between the extent of cerebral asymmetry and the degree of performance in visual foraging, we studied grain-grit discrimination success in pigeons, a species with a left hemisphere dominance for visual object processing [2,3]. The birds performed the task under left-eye, right-eye or binocular seeing conditions. In most animals, right-eye seeing was superior to left-eye seeing performance, and binocular performance was higher than each monocular level. The absolute difference between left- and right-eye levels was defined as a measure for the degree of visual asymmetry. Animals with higher asymmetries were more successful in discriminating grain from grit under binocular conditions. This shows that an increase in visual asymmetry enhances success in visually guided foraging. Possibly, asymmetries of the pigeon's visual system increase the computational speed of object recognition processes by concentrating them into one hemisphere while preventing the other side of the brain from initiating conflicting search sequences of its own.  相似文献   

13.
Studies dealing with developmental aspects of binocular eye movement behaviour during reading are scarce. In this study we have explored binocular strategies during reading and during visual search tasks in a large population of normal young readers. Binocular eye movements were recorded using an infrared video-oculography system in sixty-nine children (aged 6 to 15) and in a group of 10 adults (aged 24 to 39). The main findings are (i) in both tasks the number of progressive saccades (to the right) and regressive saccades (to the left) decreases with age; (ii) the amplitude of progressive saccades increases with age in the reading task only; (iii) in both tasks, the duration of fixations as well as the total duration of the task decreases with age; (iv) in both tasks, the amplitude of disconjugacy recorded during and after the saccades decreases with age; (v) children are significantly more accurate in reading than in visual search after 10 years of age. Data reported here confirms and expands previous studies on children''s reading. The new finding is that younger children show poorer coordination than adults, both while reading and while performing a visual search task. Both reading skills and binocular saccades coordination improve with age and children reach a similar level to adults after the age of 10. This finding is most likely related to the fact that learning mechanisms responsible for saccade yoking develop during childhood until adolescence.  相似文献   

14.
Amblyopia is a visual disorder caused by an anomalous early visual experience. It has been suggested that suppression of the visual input from the weaker eye might be a primary underlying mechanism of the amblyopic syndrome. However, it is still an unresolved question to what extent neural responses to the visual information coming from the amblyopic eye are suppressed during binocular viewing. To address this question we measured event-related potentials (ERP) to foveal face stimuli in amblyopic patients, both in monocular and binocular viewing conditions. The results revealed no difference in the amplitude and latency of early components of the ERP responses between the binocular and fellow eye stimulation. On the other hand, early ERP components were reduced and delayed in the case of monocular stimulation of the amblyopic eye as compared to the fellow eye stimulation or to binocular viewing. The magnitude of the amblyopic effect measured on the ERP amplitudes was comparable to that found on the fMRI responses in the fusiform face area using the same face stimuli and task conditions. Our findings showing that the amblyopic effects present on the early ERP components in the case of monocular stimulation are not manifested in the ERP responses during binocular viewing suggest that input from the amblyopic eye is completely suppressed already at the earliest stages of visual cortical processing when stimuli are viewed by both eyes.  相似文献   

15.
The neural correlates of binocular rivalry have been actively debated in recent years, and are of considerable interest as they may shed light on mechanisms of conscious awareness. In a related phenomenon, monocular rivalry, a composite image is shown to both eyes. The subject experiences perceptual alternations in which the two stimulus components alternate in clarity or salience. The experience is similar to perceptual alternations in binocular rivalry, although the reduction in visibility of the suppressed component is greater for binocular rivalry, especially at higher stimulus contrasts. We used fMRI at 3T to image activity in visual cortex while subjects perceived either monocular or binocular rivalry, or a matched non-rivalrous control condition. The stimulus patterns were left/right oblique gratings with the luminance contrast set at 9%, 18% or 36%. Compared to a blank screen, both binocular and monocular rivalry showed a U-shaped function of activation as a function of stimulus contrast, i.e. higher activity for most areas at 9% and 36%. The sites of cortical activation for monocular rivalry included occipital pole (V1, V2, V3), ventral temporal, and superior parietal cortex. The additional areas for binocular rivalry included lateral occipital regions, as well as inferior parietal cortex close to the temporoparietal junction (TPJ). In particular, higher-tier areas MT+ and V3A were more active for binocular than monocular rivalry for all contrasts. In comparison, activation in V2 and V3 was reduced for binocular compared to monocular rivalry at the higher contrasts that evoked stronger binocular perceptual suppression, indicating that the effects of suppression are not limited to interocular suppression in V1.  相似文献   

16.
Minnows Phoxinus phoxinus did not show any difference in the average distance from a predator associated with the left or right position of a shoal-mate. While inspection behaviour of fish tested with a mirror on their left side was indistinguishable from the behaviour of controls tested without a mirror, inspection behaviour of fish tested with the mirror on their right side appeared to be changed and incoherent in both temporal and spatial parameters. These results suggest that, as in mosquitofish Gambusia holbrooki , the condition with the mirror on the left provided the best arrangement of monocular lateral stimulation in which each stimulus fell into the correct lateral visual field. Minnows showed a significant left eye preference during scrutiny of their mirror image when tested in the absence of any predator and a significant right eye preference while monitoring a live predator in the absence of a social partner.  相似文献   

17.
Summary The results reported in this paper demonstrate lateralization and transfer of spatial memory processing in an adult, food-storig bird. The technique of monocular occlusion was used to investigate lateralization and memory transfer in food-storing marsh tits (Parus palustris) for two tasks, food-storing and one-trial associative learning, which rely on one-trial learning for the spatial location of hidden food items. In the food-storing task, marsh tits had to return to the sites where they had previously stored a seed; in the one-trial associative learning task, the birds had to return to sites where they had been allowed to eat some, but not all, of a piece of peanut. For both spatial memory tasks, it was demonstrated that although the visual systems fed by both eyes are involved in short-term storage, the right eye system is associated with long-term storage, and that memories are transferred from the left to the right eye system between 3 and 24 h after memory formation.  相似文献   

18.
The lateralization of sensory and motor functions has been recently demonstrated in various groups of vertebrates. We examined lateral asymmetry of eye use in Octopus vulgaris by behavioural methods. Octopus vulgaris uses monocular vision almost exclusively and can move its eyes independently. The amount of binocular vision is small because the eyes are on the sides of the head. We tested eight octopuses in two conditions (one with and one without moving stimuli) where the use of the eye for frontal vision could be determined unequivocally. Data were recorded on videotape. All animals showed a preference for one eye (five left, three right). There was no correlation between eye use and the animal's direction of movement. Pigmentation of the ventral side of the arms tended to be most intense on the side of the preferred eye and the body was most pigmented on the side of the eye currently in use. We found no sex differences for visual lateralization. Pigmentation of the ventral side of the arms was lighter in females than in males. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

19.
20.
The visually guided behaviour in the Morris water maze (using distal extramaze cues for navigation to a small invisible platform in a large pool of opaque water) was analyzed by comparing monocular and binocular performance of hooded rats in various versions of this task. A dish-shaped metal foil occluder connected to a carrier fixed to the frontal bones was used to restrict vision to one eye. Acquisition of the water maze task with one eye occluded proceeded at the same rate as with both eyes open. There was no difference in the transfer from binocular to monocular and from monocular to binocular viewing. Retrieval of the monocularly acquired habit was equally efficient with the same as with the contralateral eye. Similar results were obtained in naive and overtrained rats. In the working memory version of the task, rats received a single acquisition trial with a new position of the escape platform followed after a delay of 2, 5, 20 or 40 min by a single retrieval trial. Performance deteriorated with increasing delay faster under interocular transfer conditions then when the same eye was used in both trials. No signs of ocular dominance were found in this task. It is concluded that successful place learning is little affected by monocular or binocular viewing conditions, but that monocular impairment becomes apparent when the difficulty of the task is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号