首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
橙腹田鼠(Microtus ochrogaster)和草原田鼠(M. pennsylvanicus)是两种亲缘关系很近,但有着完全不同交配体制的田鼠。本文试图通过他们头骨的形态学比较来验证幼体生长发育(paedomorphosis)可以印证单配制交配体制进化的假说。通过几种头骨的测量,我们发现草原田鼠头骨的长与宽比例大于橙腹田鼠,说明前者具有相对狭长的头骨。进一步的测量发现,这种不同是由于草原田鼠具有相对较长的鼻骨造成的。最后,我们对同种内成年和幼年的头骨进行了比较,发现单配制的橙腹田鼠相对于多配制的草原田鼠,其成年的头骨与幼年的头骨更相似。这些测量结果说明与多配制的田鼠相比,单配制的田鼠在形态及行为上保留更多的幼年状态,而这种行为很可能与其交配体制有关。  相似文献   

2.
The ideal free distribution assumes that habitat selection is without cost and predicts that fitness should be equal in different habitats. If habitat selection has a cost, then individuals should only move to another habitat when potential fitness in the new habitat exceeds that in the source habitat by an amount greater than the cost of habitat selection. We used isodar techniques to assess the cost of habitat selection. In an experimental landscape, we monitored density, movement, and reproductive success of adult female prairie voles, Microtus ochrogaster, in adjacent paired habitats with low and high cover. We tested the following hypotheses: (1) adult female prairie voles exhibited density-dependent habitat selection; (2) the cost of habitat selection was density-independent. Habitat quality based on population density and fitness of adult females was higher in high cover habitats. Net movement was from low cover to high cover habitats. The results indicated that adult female prairie voles exhibited density-dependent habitat selection. Furthermore, there was a significant cost of habitat selection, and the cost was density-independent.  相似文献   

3.
We conducted a field experiment that manipulated landscapes by mowing so that the amount of unfavorable habitat (low cover) for prairie voles ( Microtus ochrogaster ) increased while the number and size of favorable patches (high cover) remained constant. Distance between favorable patches increased as the amount of unfavorable habitat increased, so we could test two current hypotheses concerning the effect of habitat fragmentation on local populations: 1) increased distance between favorable habitat patches reduces successful per capita dispersal (emigration and immigration) because dispersers suffer greater exposure to predators (the predation hypothesis); and 2) per capita dispersal is inversely density dependent in voles because increased aggression at higher density inhibits movements (the social fence hypothesis). As predicted by the predation hypothesis, increased distance between favorable habitat patches led to decreased successful dispersal among patches and increased per capita mortality, particularly among subadult and adult males (the categories of voles most likely to emigrate). As predicted by the social fence hypothesis, dispersal was inversely density dependent, and dispersing voles displayed a greater frequency of wounding (an indication of increased aggressive interactions) than did residents. The amount of wounding in general did not increase with density, however, and, as distance between patches increased to 60 m, successful dispersal became rare and erratic. Nevertheless, our overall results supported current hypotheses regarding the effects of increased habitat fragmentation on patterns of dispersal and mortality. Examining the impact of these effects on local population dynamics within different landscapes will require longer periods of observation.  相似文献   

4.
Social behavior of small mammals living under natural conditions often is inferred from live-trapping data, particularly from incidents in which two or more individuals are captured together in a trap. We examined whether multiple-capture data from a long-term study of prairie voles (Microtus ochrogaster) and meadow voles (Microtus pennsylvanicus) were consistent with well-known species differences in social behavior (whereas prairie voles are highly social and display monogamy, meadow voles are less social and promiscuous). When possible, we also examined multiple captures of two nontarget species, northern short-tailed shrews (Blarina brevicauda) and western harvest mice (Reithrodontomys megalotis). Percent of total captures that were multiple captures and percent of total adult captures that were male–female captures were highest for prairie voles and lowest for meadow voles; values for harvest mice and shrews were in between those of the vole species, but more similar to values for meadow voles. Repeat captures of the same male–female pair occurred most commonly in prairie voles, and multiple captures of this species typically involved individuals from the same social group. Multiple captures of adults and juveniles were more common in prairie voles than meadow voles, except for captures of at least one adult male and at least one juvenile, which did not differ between the two vole species. Multiple capture data for prairie voles and meadow voles were largely consistent with established species differences in social behavior, suggesting that such data can provide an accurate indication of social and mating systems of small mammals.  相似文献   

5.
1. Two species of voles were fed high fibre (barnyard grass) and low fibre (alfalfa) diets to test the integrated processing response (IPR) hypothesis. This hypothesis states that many herbivores are able to maintain their required intake of digestible nutrients and energy on diets with very different fibre content because of compensatory changes in intake of food, size of gastro-intestinal (GI) tract, passage rates of fibre and absorptive capacity of the GI tract.
2. As predicted by the IPR hypothesis, each species of vole maintained a similar intake of digestible dry matter on the two different diets. Both species also had greater intake, larger GI size, shorter mean retention times and greater GI mass (an indicator of epithelial mass and absorptive capacity) when fed grass than when fed alfalfa.
3. The two species differed in that meadow voles, the more active species, had greater total intake and obtained a greater amount of digestible dry matter from either diet than did prairie voles. Meadow voles also consume more grass in the field than do prairie voles, and they digested grass better than did prairie voles. Prairie voles, which consume more dicots in the field, digested alfalfa better than did meadow voles.
4. Meadow voles had longer GI tracts, particularly small intestines, than did prairie voles, which may be linked to their greater ability to digest grass. However, meadow voles did not have larger caeca than prairie voles, even though caecal size increased on grass diets for both species. The GI size of prairie voles fed grass increased more than did the GI size of meadow voles, and this may have enabled prairie voles to utilize a grass diet, though they prefer to eat dicots. Greater selection of leaves, which have less fibre than stems, and longer mean retention times of food may account for better digestion of alfalfa by prairie voles.  相似文献   

6.
Animal dispersal and subsequent settlement is a key process in the life history of many organisms, when individuals use demographic and environmental cues to target post-dispersal habitats where fitness will be highest. To investigate the hypothesis that environmental disturbance (habitat fragmentation) may alter these cues, we compared dispersal patterns of 60 red squirrels (Sciurus vulgaris) in three study sites that differ in habitat composition and fragmentation. We determined dispersal distances, pre- and post-dispersal habitat types and survival using a combination of capture–mark–recapture, radio-tracking and genetic parentage assignment. Most (75%) squirrels emigrated from the natal home range with mean dispersal distance of 1,014 ± 925 m (range 51–4,118 m). There were no sex-related differences in dispersal patterns and no differences in average dispersal distance, and the proportion of dispersers did not differ between sites. In one of the sites, dispersers settled in patches where density was lower than in the natal patch. In the least fragmented site, 90% of animals settled in the natal habitat type (habitat cuing) against 44–54% in the more strongly fragmented sites. Overall, more squirrels settled in the natal habitat type than expected based on habitat availability, but this was mainly due to individuals remaining within the natal wood. In the highly fragmented landscape, habitat cuing among emigrants did not occur more frequently than expected. We concluded that increased habitat fragmentation seemed to reduce reliable cues for habitat choice, but that dispersing squirrels settled in patches with lower densities of same-sex animals than at the natal home range or patch, independent of degree of fragmentation.  相似文献   

7.
Root vole movement patterns: do ditches function as habitat corridors?   总被引:1,自引:1,他引:0  
1. Ditches are often connected to root vole habitat patches (i.e. moist reed patches) in the Netherlands. Due to the linear structure of ditches and because ditch habitat is qualitatively similar to root vole habitat patches, we hypothesized that ditches could function as habitat corridors facilitating dispersal movement of root voles. In order to test this hypothesis, we radiotracked root voles released in a landscape novel to them, consisting of ditches and agricultural meadows.
2. Agricultural meadows often surround the marsh patches inhabited by root voles. As the meadows are mowed regularly, we included the length of the meadow vegetation as an experimental factor in the study.
3. Assuming that ditches function as habitat corridors, we expected root voles in the ditches to move faster and more unidirectionally than root voles in the meadows, and to prefer the ditches to meadows.
4. We found that the ditches did not facilitate faster movements than the meadows. Although the root voles moved back and forth within the ditches, they showed a more directional movement pattern than the root voles in the meadows. Furthermore, the root voles preferred the ditch habitat irrespective of the vegetative cover in the meadow.
5. We conclude that ditches could function as habitat corridors for root voles, as they preferred to move in ditches when in unfamiliar areas.  相似文献   

8.
Over‐marking occurs when one individual deposits its scent mark on the scent mark of a conspecific. Previous studies have shown that meadow voles (Microtus pennsylvanicus) and prairie voles (M. ochrogaster) that were exposed to an over‐mark of two same‐sex conspecifics, later responded similarly to the top‐scent mark but differed in their response to the bottom‐scent mark. In the present study, we examined the responses of meadow voles and prairie voles to same‐sex and mixed‐sex over‐marks to ascertain whether their responses reflect the different tactics which males and females in promiscuous (meadow voles) and monogamous (prairie voles) species use to attract opposite‐sex conspecifics and to compete with same‐sex conspecifics. Males and females of both species spent more time investigating the mark of the top‐scent donor than that of the bottom‐scent donor of an over‐mark. Meadow voles exposed to a mixed‐sex over‐mark spent more time investigating the mark of the opposite‐sex conspecific independently of whether it was from the top‐ or bottom‐scent donor. In contrast, prairie voles spent more time investigating the mark of the opposite‐sex donor if it was from the top‐scent donor. These results suggest that: (i) over‐marking serves a competitive function; (ii) the scent marks of individuals attract multiple mates in promiscuous species such as the meadow vole; and (iii) the scent marks of individuals establish and maintain pair bonds between familiar opposite‐sex conspecifics in monogamous species such as the prairie vole.  相似文献   

9.
Individuals, free to choose between different habitat patches, should settle among them such that fitness is equalized. Alternatives to this ideal free distribution result into fitness differences among the patches. The concordance between fitnesses and foraging costs among inhabitants of different quality patches, demonstrated in recent studies, suggests that the mode of habitat selection and the resulting fitness patterns may have important implications to the resource use of a forager and to the survival of its prey. We studied how coarse scale selection between habitat patches of different quality and quitting harvest rate in these patches are related to each other and to fine scale patch use in meadow voles (Microtus pennsylvanicus). To demonstrate these relationships, we manipulated habitat patches within large field enclosures by mowing vegetative cover and adding supplemental food according to a 2×2 factorial design. We tracked vole population densities, collected giving‐up densities (GUDs, a measure of patch quitting harvest rate), and monitored the removal of seeds from lattice grids with 1.5 m intervals (an index of fine‐scale space use) in the manipulated habitat patches. Changes in habitat quality induced changes in habitat use at different spatial scales. In preferred habitats with intact cover, voles were despotic and GUDs were low, but increased with the addition of food. In contrast, voles in less‐preferred mowed habitats settled into an ideal free distribution, GUDs were high and uninfluenced by the addition of food. Seed removal was enhanced by the presence of cover but inhibited by supplemental food. Across all treatments, vole densities and GUDs were strongly correlated making it impossible to separate their effects on seed removal rates. However, this relationship broke down in unmowed habitats, where GUDs rather than vole density primarily influenced seed removal by voles. GUDs and seed removal correlated with predation on tree seedlings formerly planted into the enclosures, demonstrating the mechanisms between coarse‐scale habitat manipulations and community level consequences on a forager's prey.  相似文献   

10.
1. Many studies investigating fitness correlates of dispersal in vertebrates report dispersers to have lower fitness than philopatric individuals. However, if dispersers are more likely to produce dispersing young or are more likely to disperse again in the next year(s) than philopatric individuals, there is a risk that fitness estimates based on local adult survival and local recruitment will be underestimated for dispersers. 2. We review the available empirical evidence on parent-offspring resemblance and individual lifelong consistency in dispersal behaviour, and relate these studies to recent studies of fitness correlates of dispersal in vertebrates. 3. Of the 12 studies testing directly for parent-offspring resemblance in dispersal propensity, five report a significant resemblance. The average effect size (r) of parent-offspring resemblance in dispersal was 0.15 [95% confidence interval (CI) = 0.07-0.22], with no difference between the sexes (average weighted effect size of 0.12 (0.08-0.16) and 0.16 (0.11-0.20) for females and males, respectively). Only three studies report data on within-individual consistency in dispersal propensity, of which two suggest dispersers to be more likely to disperse again. 4. To assess the magnitude of fitness underestimation expected for dispersing individuals depending on the heritability of dispersal distance and study area size, we used a simulation approach. Even when study area size is 10 times the mean dispersal distance, local recruitment per breeding event may be underestimated by 4-10%, generating a potential difference of 4-60% in average lifetime production of recruits between dispersing and philopatric individuals, with larger differences in long-lived species. 5. Estimates of both fitness correlates of dispersal and parent-offspring resemblance or within-individual consistency in dispersal behaviour have been reported for 11 species. Although some comparisons suggest genuine differences in fitness components between philopatric and dispersing individuals, others, based on adult and juvenile survival, are open to the alternative explanation of biased fitness estimates. 6. We list three potential ways of reducing the risk of making wrong inferences on biased fitness estimates due to such non-random dispersal behaviour between dispersing and philopatric individuals: (a) diagnosing effects of non-random dispersal, (b) reducing the effects of spatially limited study area and (c) performing controlled experiments.  相似文献   

11.
Current evolutionary models of dispersal set the ends of a continuum where the number of individuals emigrating from a habitat either equals the number of individuals immigrating (balanced dispersal) or where emigrants flow from a source habitat to a corresponding sink. Theories of habitat selection suggest a more sophisticated conditional strategy where individuals disperse from habitats where they have the greatest impact on fitness to habitats where their per capita impact is lower. Asymmetries between periods of population growth and decline result in a reciprocating dispersal strategy where the direction of migration is reversed as populations wax and wane. Thus, for example, if net migration of individuals flows from high- to low-density habitats during periods of population growth, net migration will flow in the opposite direction during population decline. Stochastic simulations and analytical models of reciprocating dispersal demonstrate that fitness, carrying capacity, stochastic dynamics, and interference from dominants interact to determine whether dispersal is balanced between habitats, or whether one habitat or the other acts as a net donor of dispersing individuals. While the pattern of dispersal may vary, each is consistent with an underlying strategy of density-dependent habitat selection.  相似文献   

12.
Dispersal is one of the most important, yet least understood phenomena of evolutionary ecology. Triggers and consequences of dispersal are difficult to study in natural populations since dispersers can typically only be identified a posteriori. Therefore, a lot of work on dispersal is either of a theoretical nature or based on anecdotal observation. This is especially true for cryptic species such as small mammals. We conducted an experiment on the common vole, Microtus arvalis, in semi‐natural enclosures and investigated the spatial and genetic establishment success of residents and dispersers in their natal and new populations. Our study uses genetic data on the reproductive success of 1255 individuals to measure the fitness trajectories of the residents and dispersing individuals. In agreement with past studies, we found that dispersal was highly male‐biased, and was most probably induced by the agonistic encounters with conspecifics, suggesting it could act as an inbreeding avoidance mechanism. There was low breeding success of dispersers into new populations. Although nearly 26% of identified dispersers reproduced in their natal populations, only seven percent reproduced in the new populations. Settlement appeared to be a pre‐requisite for reproduction in both sexes, and animals that did not spatially settle into a new population dispersed again, usually on the same day of immigration. In the event that dispersers reproduced in the new population, they did so at relatively low population densities. We also found age‐related differences between the sexes in breeding success, and male dispersers that subsequently established in the new population were young individuals that had not reproduced in their natal population, whereas successful females had already reproduced in their natal population. In conclusion, with our detailed field data on establishment and substantial parentage assignments to understand breeding success, we were able to gain an insight into the fitness of dispersers, and how the two sexes optimise their fitness. Taken together, our results help to further understand the relative advantages and costs of dispersal in the common vole.  相似文献   

13.
Two experiments were conducted to investigate species specificity in the neuroendocrine responsiveness of female prairie voles to the copulatory patterns of males. In Experiment 1, prairie vole males mated for one ejaculatory series were not significantly more effective in inducing ovulation in prairie vole females than montane voles mated with prairie vole females for one series, two series, or to satiety. Mating with conspecific males did result in significantly more implanted embryos than did heterospecific matings. In Experiment 2, it was found that, when the amount of vaginal stimulation was both low and equated across groups, prairie vole males were significantly more effective in triggering ovulation in female prairie voles than were either meadow voles or montane voles. Although there appears to be some species specificity to the “vaginal codes” of these congeneric species, its biological significance is unclear.  相似文献   

14.
《Animal behaviour》2002,63(2):331-338
Self-grooming in response to the odours of an opposite-sex conspecific may reflect sexual motivation on the part of the actor. We tested the hypothesis that meadow voles, Microtus pennsylvanicus, and prairie voles,M. ochrogaster , both self-groom at different rates when exposed to the odours of their siblings as compared to those of nonsiblings. This prediction was studied under the context of social memory for siblings and the effects of isolation on memory for siblings. The hypothesis explains the self-grooming responses of meadow voles isolated from their siblings for 10 days and of prairie voles isolated from their siblings for 20 days. However, 20 days of isolation for male and female meadow voles, and 30 days of isolation for male prairie voles were sufficient to induce these animals to self-groom at a similar rate to both sibling and nonsibling odours, suggesting that after isolation these animals no longer recognized their opposite-sex siblings. Female prairie voles isolated for 30 days self-groomed more in response to the odours of male nonsiblings than to those of male siblings, suggesting that female prairie voles still recognize their male siblings after isolation. This study is the first to provide empirical evidence that, in the context of sibling recognition, self-grooming behaviour is directed at unfamiliar opposite-sex conspecifics, and that the communicative function of self-grooming (sexual motivation) is associated with social memory for siblings. Differences in the self-grooming behaviour of meadow voles and prairie voles may be associated with several aspects of their life history characteristics.  相似文献   

15.
How, and where, a prey species survives predation by a specialist predator during low phases of population fluctuations or a cycle, and how the increase phase of prey population is initiated, are much-debated questions in population and theoretical ecology. The persistence of the prey species could be due mainly to habitats that act as refuges from predation and/or due to anti-predatory behaviour of individuals. We present models for the former conjecture in two (and three) habitat systems with a specialist predator and its favoured prey. The model is based on dispersal of prey between habitats with high reproductive output but high risk of predation, and less productive habitats with relatively low risk of predation. We illustrate the predictions of our model using parameters from one of the most intriguing vertebrate predator–prey systems, the multi-annual population cycles of boreal voles and their predators. We suggest that cyclic population dynamics could result from a sequence of extinction and re–colonization events. Field voles (Microtus agrestis), a key vole species in the system, can be hunted to extinction in their preferred meadow habitat, but persist in sub-optimal wet habitats where their main predator, the least weasel (Mustela nivalis nivalis) has a low hunting efficiency. Re–colonization of favourable habitats would occur after the predator population crashes. At the local scale, the model suggests that the periodicity and amplitude of population cycles can be strongly influenced by the relative availability of risky and safe habitats for the prey. Furthermore, factors like intra-guild predation may lead to reduced predation pressure on field voles in sub-optimal habitats, which would act as a refuge for voles during the low phase of their population cycles. Elasticity analysis suggested that our model is quite robust to changes in most parameters but sensitive to changes in the population dynamics of field voles in the optimal grassland habitat, and to the maximum predation rate of weasels.  相似文献   

16.
The effects of removing the stud male have not been controlled in many studies relating pregnancy block to the presence of an unfamiliar male. We examined the effects of removing the male on pregnancy success in prairie voles and meadow voles, two species that differ in degree of paternal investment. Whereas prairie vole males provide extensive care to offspring and accelerate pup development, meadow vole males display little or no care and delay development of pups. We predicted that removal of the stud male would decrease pregnancy success in prairie voles and either have no effect or increase success in meadow voles. In experiment 1, females were in male-induced estrus, and their mates were either left with them or were removed 4 h, 1 day, 2 days, or 8 days after mating. In experiment 2, females were in postpartum estrus, and their mates were either left with them or were removed 1 day, 2 days, or 8 days after birth of their first litter. Removal of the male soon after mating in postpartum estrus decreased pregnancy success in prairie voles and increased success in meadow voles. Thus, although removal of the stud male influenced litter production, the direction of the effect varied with species.  相似文献   

17.
Natal dispersal is assumed to be a particularly risky movement behavior as individuals transfer, often long distances, from birth site to site of potential first reproduction. Though, because this behavior persists in populations, it is assumed that dispersal increases the fitness of individuals despite the potential for increased risk of mortality. The extent of dispersal risk, however, has rarely been tested, especially for large mammals. Therefore, we aimed to test the relationship between dispersal and survival for both males and females in a large herbivore. Using a radio‐transmittered sample of 398 juvenile male and 276 juvenile female white‐tailed deer (Odocoileus virginianus), we compared survival rates of dispersers and nondispersers. We predicted that dispersing deer would experience greater overall mortality than philopatric deer due to direct transfer‐related risks (e.g., vehicular collision), indirect immigration‐related mortality attributable to colonization of unfamiliar habitat, and increased overwinter mortality associated with energetic costs of movement and unfamiliarity with recently colonized habitat. For both male and female yearlings, survival rates of dispersers (male = 49.9%, female = 64.0%) did not differ from nondispersers (male = 51.6%, female = 70.7%). Only two individuals (both female) were killed by vehicular collision during transfer, and overwinter survival patterns were similar between the two groups. Although dispersal movement likely incurs energetic costs on dispersers, these costs do not necessarily translate to decreased survival. In many species, including white‐tailed deer, dispersal is likely condition‐dependent, such that larger and healthier individuals are more likely to disperse; therefore, costs associated with dispersal are more likely to be borne successfully by those individuals that do disperse. Whether low‐risk dispersal of large mammals is the rule or the exception will require additional research. Further, future research is needed to evaluate nonsurvival fitness‐related costs and benefits of dispersal (e.g., increased reproductive opportunities for dispersers).  相似文献   

18.
我们在斑块化的景观中实验测定了犬尾田鼠(Microtus canicaudus)的生境喜好,验证下列假说:在一斑块生境中,与边缘区域相比,雌性田鼠喜好内部区域.在低密度和高密度时成年雌性的巢区在生境内部区域分别占100% 和76%.高密度时在边缘区域雌性的捕获率较低,这种差异在低密度时更突出.在高密度时通过选择性去除生境内部和边缘区域的一些雌体,边缘区域13只雌体中8只(占62%)的巢区发生从边缘到内部区域的转移,内部区域20只雌体中只有3只(占15%)的巢区向边缘区域转移.动物的繁殖率、生存和体重在两个区域之间没有差异.但是,边缘区域个体的巢区比内部区域的要小.这些结果支持一些关于其他啮齿动物的研究观察结果(如鼠平类和田鼠类),但与草原田鼠不同.因此在一斑块生境中,与边缘区域相比,长尾田鼠更喜好内部区域,边缘区域与内部区域的比率可潜在影响动物的生境选择,也可能会影响斑块化生境中的种群统计学特征.  相似文献   

19.
In some animal populations, immigrants have lower survival than philopatric individuals. Costs of dispersal or low phenotypic quality of dispersers may explain the pattern. However, apparent adult survival estimates, which describe real survival combined with site fidelity cannot be separated from permanent emigration. Thus, heterogeneity in breeding dispersal propensities of immigrants and philopatrics can bias fitness correlates of dispersal. Differences in breeding dispersal propensities may be caused by different strategies in response to environmental cues inducing dispersal, such as reproductive success. In such cases, the reported differences between immigrants and philopatric individuals may not reflect true variation in survival. We studied whether dispersal status specific apparent adult survival is associated with reproductive success in a Temminck's stint Calidris temminckii population. We analysed two long term capture–recapture datasets characterised by low and high nest predation levels. Philopatric individuals had higher apparent adult survival than immigrants in both datasets and the difference was highlighted during the high nest predation period. By contrasting return rates between successful and unsuccessful breeders as a proxy for dispersal, we found that unsuccessful immigrants breeding for the first time dispersed more likely than successful immigrants, but such a pattern was not found among philopatric individuals. Our results support the hypothesis that immigrant and philopatric individuals have different breeding dispersal strategies following reproductive failure and that their apparent adult survival differences are at least partly explained by different breeding dispersal propensities. Our results also suggest that the recent decline of the study population reflects a multiple response to increased nest predation through decreased local recruitment and increased emigration.  相似文献   

20.
Totally, 294 bank voles (Clethrionomys glareolus) and 18 red-backed voles (Cl. rutilus) from 62 sites of European Russia were studied. Incomplete sequences (967 bp) of the mitochondrial cytochrome b gene were determined for 93 Cl. glareolus individuals from 56 sites and 18 Cl. rutilus individuals from the same habitats. Analysis of the cytochrome b gene variation has demonstrated that practically the entire European part of Russia, Ural, and a considerable part of Western Europe are inhabited by bank voles of the same phylogroup, displaying an extremely low genetic differentiation. Our data suggest that Cl. glareolus very rapidly colonized over the presently occupied territory in the post-Pleistocene period from no more than two (central European and western European) refugia from ancestral populations with a small effective size. PCR typing of the mitochondrial cytochrome b gene allowed us to assess the scale of mtDNA introgression from a closely related species, Cl. rutilus, and to outline the geographical zone of this introgression. Comparison with the red-backed vole haplotypes in the habitats shared by both species favors the hypothesis of an ancient hybridization event (mid-Holocene) and a subsequent introgression. These results suggest that the hybridization took place in the southern and middle Pre-Ural region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号