首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We tested the importance of ectoparasites as the proximate cause of cleaning interactions by comparing the activity of Caribbean cleaning gobies (Elacatinus evelynae) and of their clients during three daily periods (early morning, midday, and late afternoon) in which ectoparasite availability varied naturally. Emergence from the benthos of gnathiid isopod larvae, the main target of cleaning goby predation, was higher at night, when cleaners were inactive, than during the day. As a result, overall ectoparasite loads on client fish tended to be higher in the morning. Inspection bouts by cleaning gobies were longest in the morning, but also at midday when ectoparasite availability on clients was lower. Client fish were observed at cleaning stations most often in the afternoon, when they harboured few ectoparasites, but they were more likely to adopt incitation poses, which increase the likelihood of being cleaned, in the morning than later in the day. Most cleaner and client behaviours therefore did not change predictably in response to natural diurnal variation in ectoparasite availability. Our study suggests that the ultimate and proximate causes of cleaning behaviour need not necessarily coincide.  相似文献   

2.
We tested the importance of ectoparasites in cleaning symbioses by comparing the activity of Caribbean cleaning gobies ( Elacatinus evelynae ) and of their clients during three daily periods (early morning, midday and late afternoon) in which ectoparasite availability varied naturally. Emergence from the benthos of gnathiid isopod larvae, the main target of cleaning goby predation, was higher at night, when cleaners are inactive, than during the day. Overall ectoparasite loads also tended to be higher on clients in the morning. This coincided with higher rates of visits to cleaning stations by client fish in the morning than at midday, but high rates of client visits were also recorded in the late afternoon. Clients were more likely to adopt stereotypical incitation poses, which increase the likelihood of being cleaned, in the morning than later in the day. Inspection bouts by cleaning gobies were longest in the morning. Cleaner and client behaviours therefore change predictably in response to natural diurnal variation in ectoparasite availability. These results add to a growing number of studies supporting the idea that cleaning symbioses are mutualisms dependent on ectoparasite removal.  相似文献   

3.
The exact nature of many interspecific interactions remains unclear, with some evidence suggesting mutualism and other evidence pointing to parasitism for the same pair of interacting species. Here, we show spatial variation in the outcome of the cleaning relationship between Caribbean cleaning gobies (Elacatinus evelynae) and longfin damselfish (Stegastes diencaeus) over the distribution range of these species, and link this variation to the availability of ectoparasites. Cleaning interactions at sites with more ectoparasites were characterized by greater reductions in ectoparasite loads on damselfish clients and lower rates of removal of scales and mucus (i.e. cheating) by cleaning gobies, whereas the opposite was observed at sites where ectoparasite abundance was lower. For damselfish clients, cleaning was therefore clearly mutualistic in some locations, but sometimes neutral or even parasitic in others. Seasonal variability in ectoparasite abundance may ensure that locally low parasite availability, which promotes cleanerfish cheating, may be a transient condition at any given site. Conflicting conclusions about the nature of cleaning symbioses may, therefore, be explained by variation in ectoparasite abundance.  相似文献   

4.
Cooperative interactions offer the inherent possibility of cheating by each of the interacting partners. A key challenge to behavioural observers is to recognize these conflicts, and find means to measure reliably cheating in natural interactions. Cleanerfish Labroides dimidiatus cheat by taking scales and mucus from their fish clients and such dishonest cleaning has been previously recognized in the form of whole‐body jolts by clients in response to cleaner mouth contact. In this study, we test whether jolts may be a general client response to cheating by cleaners. We experimentally varied the ectoparasite loads of yellowtail damselfish (Microspathodon chrysurus), a common client of the cleaning goby Elacantinus evelynae, and compared the rates of jolts on parasitized and deparasitized clients. As predicted if jolts represent cleaner cheating, deparasitized clients jolted more often than parasitized clients, and overall jolt rates increased over time as client parasite load was presumably reduced by cleaning activity. Yellowtail damselfish in the wild jolted significantly less frequently than those in captivity, which is consistent with a loss of ectoparasites during capture. Our results suggest that jolts by clients of cleaning gobies are not related to the removal of ectoparasites. Client jolts may therefore be a generally accurate measure of cheating by cleanerfish.  相似文献   

5.
In this study, we used cleaning symbioses among coral reef fishes as a model system to investigate the form and function of signalling in interspecific mutualisms. More specifically, we examined the causes and significance of inter‐specific and inter‐individual variation in the design of client solicitation poses in cleaning interactions with Caribbean cleaning gobies ( Elacatinus spp). Using empirical data collected during field observations at cleaning stations, we tested three hypotheses: (1) The form of client incitation poses depends on species‐specific features; (2) Intraspecific variability in the form of client poses reflects the strength of each cleaner‐client relationship; and (3) Client individuals that deviate from a clear species‐specific form of pose will receive a different cleaning service. As predicted by (1), we found that the type of incitation pose was related to client body size, with small species performing mainly head‐down displays which may facilitate retreat into coral cavities upon predator approach. There was nevertheless some intraspecific variation in the type of display performed by clients, which was negatively related to client ectoparasite load, as predicted by (2). Hence, species with higher ectoparasite loads, and thus with a greater need to be cleaned, were less variable in display form than clients with fewer ectoparasites. Finally, cleaning gobies inspected for longer those individual clients that performed the species‐specific solicitation poses (3). We conclude that solicitation poses function to minimize uncertainty about a client's need to be cleaned and that their design has been partly determined by the risk of predation on posing clients.  相似文献   

6.
The mutualistic nature of cleaning symbioses has long remainedunconfirmed because of the difficulty in showing net benefitsfor clients. We have previously shown that cleaning gobies (Elacatinusspp.) within territories of Caribbean longfin damselfish (Stegastesdiencaeus) reduce the number of gnathiid isopod ectoparasiteson territory owners. We now investigate whether this benefitof being cleaned has reproductive consequences for male longfindamselfish. The mating success, rate of egg loss, and parentalaggression of 40 nest-guarding males were assessed during sixconsecutive monthly reproductive periods. Ten males had cleaningstations within their territory, 10 males were without cleaningstations, and 20 males initially with a cleaning station hadtheir cleaners removed half-way through the study. Ectoparasiteloads on our focal fish were very low; however, damselfish withcleaning stations still had significantly fewer ectoparasitesthan did fish without cleaning stations. There was, however,no significant difference in the number of eggs, clutches, orarea of clutches received, or in the number of eggs lost beforehatching between damselfish with and without cleaners. We alsofound no difference in parental male aggression between damselfishwith and without cleaners. We conclude that although ectoparasiteremoval appears to have no direct consequence for reproduction,at least for the levels of infestations observed on our studysite, it may still affect other aspects of damselfish fitnesssuch as survival.  相似文献   

7.
We investigated the role of cleaning stations in determining the distribution of territorial reef species. Cleaner fish reduce their clients' ectoparasite loads and, therefore, proximity to cleaning stations should be advantageous for territorial fish. We focused on five damselfish species which hold permanent territories and cleaning stations occupied by cleaning gobies (Elacatinus spp.) on a Caribbean reef. Contrary to our predictions of higher densities near cleaning stations, we found that bicolor damselfish were less abundant near cleaning stations than at ecologically similar points without cleaning gobies whereas no effects were seen for longfin, dusky, yellowtail, and threespot damselfish. In addition, although damselfish densities were higher in the immediate vicinity of cleaning stations than 1.5-3 m away for most species, this was also the case at points without cleaners. Because cleaning stations are usually located on prominent coral heads or sponges, the overall significant attraction of damselfish to such structures, whether occupied by cleaning gobies or not, could reflect attraction to past or potential cleaning stations. However, it is more likely that interspecific competition and/or the low benefits of being cleaned at our study site prevent aggregation around cleaners. Cleaning stations may play only a minor role in determining the distribution of territorial reef fishes.  相似文献   

8.
Recent studies on cleaning behaviour suggest that there are conflicts between cleaners and their clients over what cleaners eat. The diet of cleaners usually contains ectoparasites and some client tissue. It is unclear, however, whether cleaners prefer client tissue over ectoparasites or whether they include client tissue in their diet only when searching for parasites alone is not profitable. To distinguish between these two hypotheses, we trained cleaner fish Labroides dimidiatus to feed from plates and offered them client mucus from the parrotfish Chlorurus sordidus, parasitic monogenean flatworms, parasitic gnathiid isopods and boiled flour glue as a control. We found that cleaners ate more mucus and monogeneans than gnathiids, with gnathiids eaten slightly more often than the control substance. Because gnathiids are the most abundant ectoparasites, our results suggest a potential for conflict between cleaners and clients over what the cleaner should eat, and support studies emphasizing the importance of partner control in keeping cleaning interactions mutualistic.  相似文献   

9.
Geographical variation in the outcome of interspecific interactions has a range of proximate ecological causes. For instance, cleaning interactions between coral reef fishes can result in benefits for both the cleaner and its clients. However, because both parties can cheat and because the rewards of cheating may depend on the local abundance of ectoparasites on clients, the interaction might range from exploitative to mutualistic. In a comparative analysis of behavioural measures of the association between the cleaner fish Labroides dimidiatus and all its client species, we compared cleaning interactions between two sites on the Great Barrier Reef that differ with respect to mean ectoparasite abundance. At Heron Island, where client fish consistently harbour fewer ectoparasites, client species that tended to pose for cleaners were more likely to receive feeding bites by cleaners than client species that did not pose for cleaners. This was not the case at Lizard Island, where ectoparasites are significantly more abundant. Client fish generally spent more time posing for cleaners at Lizard Island than their conspecifics at Heron Island. However, fish at Heron Island were inspected longer on average by cleaners than conspecifics at Lizard Island, and they incurred more bites and swipes at their sides per unit time from cleaners. These and other differences between the two sites suggest that the local availability of ectoparasites as a food source for cleaners may determine whether clients will seek cleaning, and whether cleaners will feed on parasites or attempt to feed on client mucus. The results suggest that cleaning symbiosis is a mosaic of different outcomes driven by geographical differences in the benefits for both participants.  相似文献   

10.
If cooperation often involves investment, then what specific conditions prevent selection from acting on cheaters that do not invest? The mutualism between the Indo‐Pacific cleaner wrasse Labroides dimidiatus and its reef fish clients has been a model system to study conflicts of interest and their resolution. These cleaners prefer client mucus over ectoparasites – that is, they prefer to cheat – but punishment and partner switching by clients enforce cooperative behaviour by cleaners. By contrast, clients of Caribbean cleaning gobies (Elacatinus spp.) do not to use punishment or partner switching. Here, we test the hypothesis that the behavioural differences between these two cleaner fish systems are caused by differences in cleaner foraging preferences. In foraging choice experiments, we offered broadstripe cleaning gobies Elacatinus prochilos client‐derived parasitic isopods, client mucus and a control food item. The cleaning gobies significantly preferred ectoparasites over mucus or the control item, which contrasts with cleaner wrasses. We propose that the low level of cleaner–client conflict arising from cleaning goby foraging preferences explains the observed lack of strategic partner control behaviour in the clients of cleaning gobies.  相似文献   

11.
Infestation dynamics of parasitic gnathiid isopods on Caribbean reefs were studied throughout the 24-h diel cycle. Gnathiid infestation on caged longfin damselfish (Stegastes diencaeus) peaked strongly at dawn, remained low during the remainder of the day, and increased again at night until about midnight. Gnathiids were less abundant during the pre-dawn period. Peak loads on fish retrieved at dawn were the highest reported in any study thus far. The dawn peak consisted almost exclusively of individuals from the smallest size class, whereas nocturnal activity consisted almost exclusively of individuals of the largest size class. Because of the high rates of infestation at night and dawn, and the high variation in parasite loads on fish collected during that time, reduction of parasite infestation may play an important role in the selection of nocturnal and crepuscular shelter holes and settlement sites by reef fishes.  相似文献   

12.
Cleaning behaviour is a popular example of non-kin cooperation. However, quantitative support for this is generally sparse and the alternative, that cleaners are parasitic, has also been proposed. Although the behaviour involves some of the most complex and highly developed interspecific communication signals known, the proximate causal factors for why clients seek cleaners are controversial. However, this information is essential to understanding the evolution of cleaning. I tested whether clients seek cleaners in response to parasite infection or whether clients seek cleaners for tactile stimulation regardless of parasite load. Parasite loads on client fish were manipulated and clients exposed to cleaner fish and control fish behind glass. I found that parasitized client fish spent more time than unparasitized fish next to a cleaner fish. In addition, parasitized clients spent more time next to cleaners than next to control fish, whereas unparasitized fish were not attracted to cleaners. This study shows, I believe for the first time, which is somewhat surprising, that parasite infection alone causes clients to seek cleaning by cleaners and provides insight into how this behaviour evolved.  相似文献   

13.
Cleaner fish, Labroides dimidiatus, prefer the mucus of the parrotfish, Chlorurus sordidus, to parasitic gnathiid isopods, the main items in their diet, indicating a major conflict between clients and cleaners over what the latter should eat during interactions. We tested whether the conflict varied with client species (and the quality of its mucus) and with the presence of blood in the gnathiids. First, we offered cleaners the choice between mucus of the parrotfish and that of the snapper, Lutjanus fulviflamma. When offered equal amounts of mucus on Plexiglas plates, cleaners readily developed a significant preference for the parrotfish mucus. Reducing the amount of parrotfish mucus by 75% made the preference disappear. In a second test, we offered the cleaners gnathiids that were or were not engorged with client fish blood. Cleaners showed no significant preference for either food item. Our results suggest that the degree of conflict between cleaners and clients may vary between species, depending on whether the latter have a preferred mucus. In contrast, the cleaners' lack of preference for engorged gnathiids benefits clients because it means that cleaners do not hesitate to eat unengorged gnathiids before the gnathiids harm the fish by removing blood or by transmitting blood parasites.  相似文献   

14.
Cleaning interactions are known among several groups of fishes, with a higher number of records for marine fish species. These temporary associations occur between one species that acts as the cleaner and the other species as the client. The interaction usually takes place within the boundaries defined by the cleaner. This site, known as the cleaning station, allows the client fish to strike a typical pose allowing the cleaner to approach, such as wide-open fins and inclined, motionless body. Few studies have reported on the cleaning behaviour of freshwater fish species, and none has reported on behaviour that could be interpreted as establishing a cleaning station. Herein we present a new record of the cleaning interaction in the Neotropics, between the cichlid Mesonauta festivus as the cleaner and three species of anostomid (Leporinus macrocephalus, Leporinus friderici and Schizodon borellii) as clients on Pantanal wetlands, as well as the establishment of a defined cleaning station.  相似文献   

15.
There is a wealth of game theoretical approaches to the evolution and maintenance of cooperation between unrelated individuals and accumulating empirical tests of these models. This contrasts strongly with our lack of knowledge on proximate causes of cooperative behaviour. Marine cleaning mutualism has been used as a model system to address functional aspects of conflict resolution: client reef fish benefit from cleaning interactions through parasite removal, but cleaner fish Labroides dimidiatus prefer client mucus. Hence, feeding against their preference represents cooperative behaviour in cleaners. Cleaners regularly cheat non‐predatory clients while they rarely cheat predatory clients. Here, we asked how precisely cleaners can adjust service quality from one interaction to the next. We found that non‐predatory clients receive a better service if the previous client was a predator than if the previous client was a non‐predator. In a related laboratory experiment, a hand‐net used as a stressor resulted in cleaners feeding more against their preference in subsequent interactions. The combination of the cleaners’ behaviour in the two studies shows that the cleaners’ service quality for a given client species is not fixed, but it can be manipulated. The results suggest that short‐term stress is one factor that causes cleaners to increase their levels of cooperation, a hypothesis that is amenable to further experiments manipulating the endocrine system.  相似文献   

16.
Ectoparasites,Fitness, and Social Behaviour of Yellow-Bellied Marmots   总被引:1,自引:0,他引:1  
Parasites can cause a loss of fitness for their hosts, potentially influencing social behaviour patterns of the host that promote or hinder parasite transmission. I studied yellow-bellied marmots (Marmota flaviventris) and their ectoparasites to determine if ectoparasites reduce the fitness of marmots and to test whether ectoparasite loads differ according to social behaviour. Three taxa of ectoparasites were identified, fleas (Oropsylla Stanfordi), lice (Linognathoides marmotae), and mites (family Dermanyssidae). High ectoparasite loads were related to slower growth, lower overwinter survival, and reduced reproduction, suggesting that ectoparasites are a fitness cost for marmots. Ectoparasite loads were not higher in colonial than in noncolonial marmots, nor in polygynous than in monogamous adult males. There was a trend, however, toward higher ectoparasite loads in marmots that were dispersing rather than philopatric. Further, ectoparasite loads differed among groups of marmots that nested or hibernated communally, indicating that spatial scale is important in understanding the relationships between parasites and social behaviour.  相似文献   

17.
Cleaning symbioses on tropical coral reefs are typically documented between two species: a single client fish and one or more conspecific cleaners. However, multiple cleaner species living sympatrically in the Caribbean have been anecdotally reported to simultaneously clean the same client. Nothing is known about the patterns and processes driving these interactions, which may differ from those involving a single cleaner species. Here, we used remote underwater videography on three reefs in Honduras to record simultaneous cleaning interactions involving Pederson''s cleaner shrimp (Ancylomenes pedersoni) and cleaner gobies (Elacatinus spp.). A pilot study on adjacent shrimp and goby stations found interactions were always initiated by shrimp. A larger, multi-year dataset shows cleaner gobies joined 28% of all interactions initiated at A. pedersoni cleaning stations with cleaner gobies residing nearby. Client body size significantly predicted simultaneous cleaning interactions, with 45% of interactions simultaneous for clients greater than 20 cm total body length compared with only 8% for clients less than 20 cm. We also found that simultaneous cleaning interactions lasted over twice as long as shrimp-only interactions. We propose these novel multi-species interactions to be an ideal model system to explore broader questions about coexistence, niche overlap and functional redundancy among sympatric cleaner species.  相似文献   

18.
How can cooperation persist if, for one partner, cheating is more profitable than cooperation in each round, while the other partner has no option to cheat? Our laboratory experiments suggest that such a situation exists between the cleaner fish Labroides dimidiatus and its nonpredatory client reef fish species, which actively seek cleaners to have their ectoparasites removed. Clients Ctenochaetus striatus regularly jolted in response to cleaner mouth contact, and these jolts were not linked to the removal of parasites. In addition, cleaners did not search for parasites but fed on mucus when exposed to anaesthetized clients, which could not control the cleaners' behaviour. Field data showed that clients often terminated an interaction immediately after a jolt. Client species with access to only one cleaning station, owing to their small territories or home ranges, terminated interactions mainly by chasing cleaners while clients with access to two or more cleaning stations mainly swam away. Thus, the chasing of cleaners appeared to be a form of punishment, imposing costs on the cleaner at the client's (momentary) expense. Chasing yields future benefits, as jolts were on average less frequent during interactions between cleaners and individuals that had terminated their previous interaction by aggressive chasing.  相似文献   

19.

Cleaning symbioses among coral reef fishes are highly variable. Cleanerfishes vary in how much they cooperate with (i.e. remove only ectoparasites) or cheat (i.e. bite healthy tissue, scales or mucus) on their fish clients. As a result, clients use various strategies to enforce cooperation by cleaners (e.g. punishment or partner choice), and cleaners use tactile stimulation to manipulate cheated client behaviour. We provide the first detailed observations of cleaning behaviour of the redlip cleaner wrasse Labroides rubrolabiatus and ask where interactions with this cleanerfish lie on the continuum of cleanerfish honesty, client control, and cleanerfish manipulation. Ninety per cent of redlip cleaner wrasses took jolt-inducing cheating bites from their clients, but they did so at a very low rate (~ 2 jolts per 100 s inspection). Retaliatory chases by clients were uncommon. Three-quarters (30 of 40) of cleaner wrasses used tactile stimulation on their clients, but rarely did so to reconcile with cheated clients. Instead, the majority (70%) of tactile stimulation events targeted a passing client that then stopped for inspection. The relationship between redlip cleaner wrasses and their clients appears to be less conflictual than those documented in other Labroides cleanerfishes. Future studies should test whether this low level of conflict is consistent across space and time and is underpinned by a preference for ectoparasites over other client-gleaned items. As an active cleaner that appears to take few cheating bites from their clients, L. rubrolabiatus has the potential to be as important a driver of fish health and community structure on coral reefs as its better-known relatives.

  相似文献   

20.
The present study describes the cleaning interactions among species of cleaner gobies Tigrigobius spp. and Elacatinus puncticulatus (family Gobiidae) and the client fish species they clean in a coral reef of Gorgona Island, Colombia. In 419 cleaning events, we observed 27 species acting as clients of Tigrigobius spp., whereas only nine were clients of E. puncticulatus. Paranthias colonus and Cephalopholis panamensis were the species most commonly cleaned by Tigrigobius spp., while Ophioblennius steindachneri and Stegastes acalpulcoensis were the clients most commonly cleaned by E. puncticulatus. The abundance (but not the body size) of clients was an important variable predicting the cleaning frequency observed for clients of Tigrigobius spp., but this was not the case for clients of E. puncticulatus. Additionally, Tigrigobius spp. preferred cleaning planktivores, sessile invertebrate feeders and territorial herbivores (Ivlev's index >0·15), whereas E. puncticulatus did not exhibit any preference. We observed two major peaks of cleaning activity for Tigrigobius spp., one in the early morning and another one in the late afternoon. These results suggest that Tigrigobius spp. is a specialized cleaner goby, whereas E. puncticulatus is a facultative cleaner that cleans sporadically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号