首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Young, amphistomatous hybrid poplar (Populus deltoides x trichocarpa) plants were exposed daily to either background (0.025 cm3 m-3) or elevated (0.125 cm3 m-3) concentrations of O3. Levels of abaxial and adaxial leaf conductance were affected interactively by pollutant treatment, leaf age, and photon fluence rate. Consequently, conductance in O3-treated leaves was sometimes higher and sometimes lower than in comparable control leaves, depending on leaf age or level of photon fluence rate. For example, at low photon fluence rate or in the dark, conductance was greater in O3-treated than in control plants, while at high photon fluence rate that relationship was reversed. Exposure to O3 also reduced the water-use efficiency and range of leaf conductance of individual leaves, and altered the relationship between the conductances of the two leaf surfaces (the ratio of abaxial to adaxial leaf conductance was increased). Furthermore, O3 treatment resulted in diminished stomatal control of water loss; excised O3-treated leaves had higher conductances and wilted sooner than excised control leaves of identical ages. Overall, the data indicate that exposure to O3 resulted in impaired stomatal function.  相似文献   

2.
The response of adaxial and abaxial stomatal conductance in Rumex obtusifolius to growth at elevated atmospheric concentrations of CO2 (250 μmol mol?1 above ambient) was investigated over two growing seasons. The conductance of both the adaxial and abaxial leaf surfaces was found to be reduced by elevated concentrations of CO2. Elevated CO2 caused a much greater reduction in conductance for the adaxial surface than for the abaxial surface. The absence of effects upon stomatal density indicated that the reductions were probably the result of changes in stomatal aperture. Partitioning of gas exchange between the leaf surfaces revealed that increased concentrations of CO2 caused increased rates of photosynthesis only via the abaxial surface. Additionally, leaf thickness was found to increase during growth at elevated concentrations of CO2. The tendency for these amphistomatous leaves to develop a distribution of conductance approaching that of hypostomatous leaves clearly reduced their maximum photosynthetic potential. This conclusion was supported by measurements of stomatal limitation, which showed greater values for the adaxial surfaces, and greater values at elevated CO2. This reduction in photosynthesis may in part be caused by higher diffusive limitations imposed because of increased leaf thickness. In an uncoupled canopy, asymmetrical stomatal responses of the kind identified here may appreciably reduce transpiration. Species which show symmetrical responses are less likely to show reduced transpirational rates, and a redistribution of water loss between species may occur. The implications of asymmetrical stomatal responses for photosynthesis and canopy transpiration are discussed.  相似文献   

3.
Stomatal conductances of normally oriented and inverted leaves were measured as light levels (photosynthetic photon flux densities) were increased to determine whether abaxial stomata of Vicia faba leaves were more sensitive to light than adaxial stomata. Light levels were increased over uniform populations of leaves of plants grown in an environmental chamber. Adaxial stomata of inverted leaves reached maximum water vapor conductances at a light level of 60 micromoles per square meter per second, the same light level at which abaxial stomata of normally oriented leaves reached maximum conductances. Abaxial stomata of inverted leaves reached maximum conductances at a light level of 500 micromoles per square meter per second, the same light level at which adaxial stomata of normally oriented leaves reached maximum conductances. Maximum conductances in both normally oriented and inverted leaves were about 200 millimoles per square meter per second for adaxial stomata and 330 millimoles per square meter per second for abaxial stomata. Regardless of whether leaves were normally oriented or inverted, when light levels were increased to values high enough that upper leaf surfaces reached maximum conductances (about 500 micromoles per square meter per second), light levels incident on lower, shaded leaf surfaces were just sufficient (about 60 micromoles per square meter per second) for stomata of those surfaces to reach maximum conductances. This `coordinated' stomatal opening on the separate epidermes resulted in total leaf conductances for normally oriented and inverted leaves that were the same at any given light level. We conclude that stomata in abaxial epidermes of intact Vicia leaves are not more sensitive to light than those in adaxial epidermes, and that stomata in leaves of this plant do not respond to light alone. Additional factors in bulk leaf tissue probably produce coordinated stomatal opening on upper and lower leaf epidermes to optimally meet photosynthetic requirements of the whole leaf for CO2.  相似文献   

4.
The ontogenetic changes in stomatal size, frequency and conductance (gs) on abaxial and adaxial leaf surfaces of sunflower plants (Helianthus annuus L. Russian Mammoth) were examined under controlled environmental conditions. The stomatal frequency on the adaxial and abaxial leaf surfaces decreased with leaf ontogeny and insertion level. The ratio of adaxial to abaxial stomatal frequency did not change with leaf ontogeny and insertion level, and 42–44% of total stomata was apportioned to the adaxial surface. Ontogenetic changes in stomatal pore length were detected and increased with ontogenesis. The stomatal length of both leaf surfaces had linear relationships with leaf area. Ontogenetic changes in gs were similar between the two surfaces. However the adaxial gs was lower than abaxial gs in leaves of higher insertion levels. Conductance had a linear relationship with width x frequency but not with pore area.  相似文献   

5.
Ozone, leaf age and water stress each affected leaf conductance in soybean [ Glycine max (L.) Merr. Hodgson], but there were no interactions among these factors. Exposure to increased concentrations of O3 (0.01, 0.05, 0.09. and 0.13 μl l−1) resulted in linear declines in abaxial and adaxial conductances in leaves of all ages. There were no differences in relative response to O3 between the two leaf surfaces. For well-watered plants, water use efficiency also decreased with exposure to increased O3 concentrations (water-stressed plants were not tested). Abaxial conductance increased as leaves aged from 4 to 10 days and then declined with further aging. Adaxial conductance decreased with all increases in leaf age beyond 4 days, and the ratio of abaxial/adaxial conductance increased continuously throughout the leaf lifespan. During water-stress cycles (water withheld for 2–3 days) leaves of water-stressed plants had lower conductances than those from well-watered plants, and there was no difference in relative response between abaxial and adaxial stomata.  相似文献   

6.
Leaf stomatal conductance measured and analysed in the canopies of two winter wheat varieties in the field revealed that the probability of adaxial to abaxial conductance ratio followed an approximately normal distribution with a peake value of about 1.5. The ratio changed with the developmental stages being maximium at the heading stage. Leaf stomata in wheat of the upper part of the canopy were more active and showed more pronounced diurnal change of conductance than those of the lower part. Stomatal conductance decreased from top to bottom in canopy as a negative exponential function. By comparing adaxial and abaxial conductances in the apical, middle and basal parts of a leaf, the distribution of the stomatal conductances of a wheat leaf was as follows: a steady decrease from the basal part of adaxial, through the middle and apical parts of the adaxial surface turning to the apical part of abaxial, and then the middle and lastly, the basal part of abaxial. Based on values of the correlation coefficients among the various stomatal conductance and average stomatal conductance, the authors suggested that optimal apical measurement of stomatal conductance would be at the middle and apical parts and that of abaxial would be at middle and basal parts.  相似文献   

7.
CCC (2-chloroethyltrimethyl ammonium chloride) at a concentration of 6.3 mM was applied to tomato plants (cv. Grosse Lisse) grown in a controlled environment. There was an increase in adaxial leaf diffusive resistance but not in abaxial resistance, the effect being apparent before any growth retardation was measurable. The partial closure of adaxial stomata in response to CCC reduced transpiration from that leaf surface. In plants deprived of water, leaf water potential was higher when CCC was applied and both adaxial and abaxial stomatal closure was delayed. The data do not suggest that CCC influenced the relationship between leaf water potential and conductance for either abaxial or adaxial stomata.  相似文献   

8.
Sensitivity to light quality and pigment composition were analysed and compared in abaxial and adaxial stomata of Gossypium barbadense L. (Pima cotton). In most plants, abaxial (lower) stomatal conductances are higher than adaxial (upper) ones, and stomatal opening is more sensitive to blue light than to red. In greenhouse-grown Pima cotton, abaxial stomatal conductances were two to three times higher than adaxial ones. In contrast, adaxial stomatal conductances were 1·5 to two times higher than abaxial ones in leaves from growth chamber-grown plants. To establish whether light quality was a factor in the regulation of the relationship between abaxial and adaxial stomatal conductances, growth-chamber-grown plants were exposed to solar radiation outdoors and to increased red light in the growth chamber. In both cases, the ratios of adaxial to abaxial stomatal conductance reverted to those typical of greenhouse plants. We investigated the hypothesis that adaxial stomata are more sensitive to blue light and abaxial stomata are more sensitive to red light. Measurements of stomatal apertures in mechanically isolated epidermal peels from growth chamber and greenhouse plants showed that adaxial stomata opened more under blue light than under red light, while abaxial stomata had the opposite response. Using HPLC, we quantified the chlorophylls and carotenoids extracted from isolated adaxial and abaxial guard cells. All pigments analysed were more abundant in the adaxial than in the abaxial guard cells. Antheraxanthin and β-carotene contents were 2·3 times higher in adaxial than in abaxial guard cells, comparing with ad/ab ratios of 1·5–1·9 for the other pigments. We conclude that adaxial and abaxial stomata from Pima cotton have a differential sensitivity to light quality and their distinct responses are correlated with different pigment content.  相似文献   

9.
W. K. Smith 《Oecologia》1981,48(3):353-359
Summary The daily temperature and water relations of 7 perennial subalpine, understory species (1 shrub, 1 subshrub, 5 herbs) were compared in the Rocky Mountains of southeastern Wyoming with an emphasis on the effects of natural sun and shade exposure. Field measurements of rainfall; leaf, air, and soil temperatures; stomatal conductance to water vapor diffusion; and plant and soil water potentials were supplemented with leaf and root morphological measurements to evaluate potential adaptive patterns in understory species.Morphologically, all 7 species had relatively broad leaves that were hypostomous and bicolored with the abaxial leaf surface lighter than the abaxial surface. Root systems tended to be shallow (<20 cm), especially for the herbaceous species. Although soil water potentials from 4 to 40 cm depths remained relatively high throughout the summer (>-1.0 MPa), plant xylem water potentials for sunlit plants decreased to below-2.0 MPa during midday. During these sunlit periods, leaf temperatures and conductances increased substantially, leading to severe wilting for 4 of the 5 herbaceous species. Stomatal conductance and density for 6 of the 7 species monitored were much greater on abaxial compared to adaxial leaf sides and substantial stomatal closure occurred when either leaf side was oriented to receive direct sunlight. Moreover, stomatal opening on abaxial leaf sides corresponded to the amount of sunlight incident upon the adaxial rather than abaxial leaf surfaces. The 2 shrubby species did not wilt during these periods and were characterized by the highest leaf temperatures (>30°C). These 2 species also had consistantly lower xylem water potentials throughout the summer growth period. These results are discussed in terms of the possible adaptive significance of midday wilting, leaf hypostomy and bicoloration and stomatal behavior to the water and photosynthetic relations of understory species.  相似文献   

10.
Seventeen greenhouse-grown grasses from the Nebraska Sandhills region were surveyed for foliar stomatal density and distribution, closed guard cell lengths, open stomatal apertures, and surface characteristics (using scanning electron microscopy), surface conductance (using a steady-state porometer), and drought-induced leaf modifications. Leaves of C3 species exhibited a proclivity toward being amphistomatic or hyperstomatic, while C4 species tended to be more hypostomatic. Leaf modification, when it occurred, resulted in the enshrouding of the adaxial surface. Conductance data showed functional amphistomaty in most species, revealing differential functioning of adaxial and abaxial stomata. Conductance patterns were not closely related to stomatal aperture per unit area leaf surface or to stomatal distribution patterns. Lowered adaxial: abaxial conductance ratios, increased stomatal density, reduced stomatal size, and less drought-induced leaf modification were seen in C4 grasses as compared with C3 grasses. C3 range and C3 meadow species did not differ in conductance ratios, density ratios, or stomatal size, although meadow species exhibited much greater drought-induced leaf modification. Postulations involving correlation of adaxial: abaxial conductance ratios to stomatal distribution patterns, and assumptions of stomatal distribution based upon habitat and/or photosynthetic pathway may be erroneous. These characteristics may be of limited usefulness as morphological indicators in the search for drought-tolerant ecotypes of prairie grasses.  相似文献   

11.
An apparent anomaly in peanut leaf conductance   总被引:3,自引:2,他引:1       下载免费PDF全文
Pallas JE 《Plant physiology》1980,65(5):848-851
Conductance to gaseous transfer is normally considered to be greater from the abaxial than from the adaxial side of a leaf. Measurements of the conductance to water vapor of peanut leaves (Arachis hypogaea L.) under well watered and stress conditions in a controlled environment, however, indicated a 2-fold higher conductance from the adaxial side of the leaf than from the abaxial. Studies of conductance as light level was varied showed an increase in conductance from either surface with increasing light level, but conductance was always greater from the adaxial surface at any given light level. In contrast, measurements of soybean (Glycine max [L.] Merr.) and snapbean (Phaseolus vulgaris L.) leaf conductance showed an approximate 2-fold greater conductance from the abaxial surface than from the adaxial. Approximately the same number of stomata were present on both peanut leaf surfaces and stomatal size was similar. Electron microscopic examination of peanut leaves did not reveal any major structural differences between stomata on the two surfaces that would account for the differences in conductance. Light microscope studies of leaf sections revealed an extensive network of bundle sheaths with achloraplastic bundle sheath extensions; the lower epidermis was lined with a single layer of large achloraplastic parenchyma cells. Measurements of net photosynthesis made on upper and lower leaf surfaces collectively and individually indicated that two-thirds of the peanut leaf's total net photosynthesis can be attributed to diffusion of CO2 through the adaxial leaf surface. Possibly the high photosynthetic efficiency of peanut cultivars as compared with certain other C3 species is associated with the greater conductance of CO2 through their upper leaf surfaces.  相似文献   

12.
Salix is a pioneer woody plant genus characterized by a strong plasticity in leaf morphology. The aims of this paper were to determine stomatal distribution (1) in mature leaves in response to environmental conditions, and (2) during leaf development. Stomata of abaxial and adaxial faces of mature leaves of Salix miyabeana SX67 (cultivated in short rotation coppice) were analyzed at the end of summer 2012 and 2013 at six locations in Quebec, Canada. Within each site and across the two growing seasons, stomatal density of abaxial faces was diluted by an increase in area of mature leaves due to higher rainfall. For shrubs with more than one growing season, stomatal density of abaxial faces was affected by annual rainfall, independently of site, whereas leaf area was predominantly influenced by site but was also modulated in part by rainfall. The number of stomata per leaf was site-specific, independently of rainfall. These leaves were mainly hypostomatic, although those collected on shrubs during their first growing season after coppicing (i.e. with a high root:shoot ratio) were amphistomatic. Similarly, at early development stages (surface area <2.8 cm2), leaves were amphistomatic, whereas stomata on adaxial faces of larger leaves were occluded. Nevertheless, stomatal conductance of abaxial faces increased with leaf area, whereas stomatal density was best described by a quadratic relationship. This strategy allows for a maximum uptake of carbon while limiting water loss during leaf development and to adapt the morphology of mature leaves depending on moisture and site conditions.  相似文献   

13.
In an attempt to determine whether low epidermal conductances to water vapor diffusion of senescing leaves were caused by internal changes in guard cells or by factors external to guard cells, stomatal behavior was examined in intact senescing and nonsenescing leaves of Nicotiana glauca (Graham), tree tobacco, grown in the field or in an environmental chamber. Conductances of senescing leaves were 5 to 10% of the maximum conductances of nonsenescing leaves of the same plant, yet guard cell duplexes isolated from epidermal peels of senescing leaves developed full turgor in the light in solutions containing KCl, and sodium cobaltinitrite staining showed that K+ accumulated as turgor developed. Ninety-five per cent of the guard cells isolated from senescing leaves concentrated neutral red and excluded trypan blue. Intercellular leaf CO2 concentrations of senescing and nonsenescing leaves of chamber-grown plants were not significantly different (about 240 microliters per liter), but the potassium contents of adaxial and abaxial epidermes of senescing leaves taken from plants grown in the field were less than half those of nonsenescing leaves. We conclude that guard cells do not undergo the orderly senescence process that characteristically takes place in mesophyll tissue during whole-leaf senescence and that the reduced conductances of senescing leaves are produced by factors external to guard cells.  相似文献   

14.
Epidermal conductances for water vapour transfer(gep), water vapour efflux(E), and net photosynthetic CO2 uptake (P N ) through adaxial and abaxial leaf surfaces were estimated, simultaneously during the development of water stress in primary leaves ofPhaseolus vulgaris L. Hydration level was characterized by water saturation deficit (ΔW sat ), water potential (Τ w ), osmotic potential (Τ8) and pressure potential (Τp). The conductance of the abaxial epidermis was consistently greater than that of the adaxial epidermis, but the response of both surfaces to the increase in water stress corresponded: with increasing water stress epidermal conductances slightly increased, reached a plateau and then sharply decreased (at a rate of about 1.10x10-6 cm s-1 Pa-1 and 1.55x10-6 cm s-1 Pa-1 of Τw for adaxial and abaxial epidemics, respectively) to very low value. The curves expressing relationship between epidermal conductances and Δ Wsat, Τw, Τs, as well as Τp were of a similar character. E and PN through adaxial and abaxial surfaces were practically not affected until water stress reached the “critical” value (Τw from — 8.2 to — 9.2 x 105 Pa). With further increase in water deficit, however, they sharply decreased. The “critical” value of Τw was the same for both leaf surfaces.  相似文献   

15.
Maximum diffusive conductance of abaxial epidermis of primary bean leaves was considerably higher than that of adaxial epidermis. While conductances of both epidermes responded parallel to a decrease in leaf water potential (they increased slightly, reached maxima and decreased to very low values), differences in their response to photon flux density were found. The conductance of abaxial epidermis increased rapidly over lower photon flux densities and gradually over higher photon flux densities, on the other hand the conductance of adaxial epidermis increased only gradually over the whole range. The observed parallel or different response of adaxial and abaxial epidermes to leaf water potential or photon flux density did not change with changes in experimental conditions.  相似文献   

16.
Groups of Lolium perenne plants selected for either deep or shallow adaxial epidermal ridging were grown in a 16 h day of 70 W m-2 at 25°C, and either watered daily to 33% or allowed to dry to and then watered daily to 21% or to 16% soil moisture. During a 9 day experimental period, adaxial leaf resistances (r1) were measured with a diffusion porometer four times daily, transpiration was estimated gravimetrically, and daily rates of leaf extension were recorded. Measurements were also made of minimum abaxial resistances, stomatal frequencies and lengths, and relative leaf water content (RLWC). At 33%, 21% or 16% soil moisture, leaf extension rates of deep ridged leaves were, respectively, slower, the same, and more rapid than those with shallow ridges. At 21% or 16% soil moisture, the adaxial rl of deep-ridged was much lower than that of shallow-ridged leaves at all four sampling times. This difference was most marked on leaves below the youngest fully expanded, and was observed among older leaves even when plants were well watered. At low RLWC (< 85%), leaf resistance was greatest in leaves with shallow ridges. There was no significant difference between the leaf types in the calculated contributions of stomatal frequency or of morphology at any one pore opening, to rl but deep-ridged leaves had more stomataonthe abaxial surface. Daily rate of plant water loss was directly correlated (r=+ 0.86, P < 0.01) with mean daily maximum stomatal conductance (1/rl), and rate of leaf extension negatively with maximum rl. It is suggested that stomata operating in the concavity formed by deep ridges open wider and are less responsive to internal changes in, for example, leaf water status, than those on shallow-ridged leaves because of a more humid microenvironment at the epidermal surface. The results are discussed in relation to the concept of ‘water-savers’ and ‘water-spenders’ and its application to breeding for dry conditions.  相似文献   

17.
Fifty-day-oldCichorium intybus Linn, plants were exposed to 1 ppm sulfur dioxide gas, 2 h per day for 7 consecutive days. Their leaves as well as those from the control plants were sampled at pre-flowering, flowering, and post-flowering stages to study their morphological, physiological, and biochemical responses to SO2 stress. The number, dimensions, area, and biomass of leaves were less in the treated plants. Length and width of stomatal apertures on both epidermises were greater for leaves exposed to SO2. The Stomata were longer on the adaxial epidermis, but shorter on the abaxial epidermis, except at the pre-flowering stage. Stomatal widths varied widely. Compared with the controls, the abaxial epidermis on treated leaves showed consistently lower stomatal densities as well as stomatal indices. This was also true for the adaxial epidermis during the post-flowering stage. The photosynthetic rate and stomatal conductance were reduced in the SO2-exposed plants, but intercellular CO2 concentrations increased at the pre-flowering stage and, subsequently, declined. Chlorophyll a, carotenoid, and total chlorophyll contents increased at the pre-flowering stage, and then decreased. The level of chlorophyllb was reduced throughout plant development compared with the untreated controls.  相似文献   

18.
GAY  A. P. 《Annals of botany》1986,57(3):361-369
A simple, rapid technique for direct selection for leaf waterconductance (LWC) in two populations of Lolium perenne L. isdescribed. Measurements were made with a diffusion porometerin growth rooms on the youngest fully expanded leaf of eachtiller. Considerable variation in LWC was found between 100genotypes of each population. Most of the variation in totalLWC was attributed to variation in adaxial LWC and it was shownthat ignoring abaxial LWC gave very similar ranking of genotypesto those using total LWC. Selection criteria were then establishedwhich maximised the repeatability of LWC measurements and allowedselection of groups of plants significantly different from oneanother in LWC. The variation in LWC was not related eitherto stomatal length or number, or to growth rate. Lolium perenne L., perennial ryegrass, abaxial and adaxial, leaf water conductance, selection, diurnal rhythms, ontogenetic changes, growth, stomatal dimensions  相似文献   

19.
Leaf age effects on the leaf conductance to water vapour diffusionof the adaxial and abaxial leaf surfaces were measured in themorning and in the afternoon on 17 different plantain and banana(Musa spp.) genotypes. The irradiance levels increased three-foldwhile leaf to air vapour pressure deficit levels increased two-to four-fold from morning to afternoon during the sampling periodin a field site located in the humid forest-moist savanna transitionzone of Nigeria. Conductance values were reduced in older, andsenescing leaves relative to the young and mature leaves bothin the morning and in the afternoon. Conductances were higherfor the abaxial leaf surfaces than the adaxial surface and higherin the afternoon than in the morning, with some genotypic differences.Lower values of leaf conductance to water vapour in the afternoonunder a short dry spell was sufficiently variable (P 0·05)among the test genotypes to indicate potential adaptation totransient dry conditions. Differential and relative leaf conductanceadjustments were noted among genotypes experiencing a shortdry spell versus non-limiting soil moisture conditions. Significantgenotypic differences were observed for leaf conductance amongthe 17 genotypes during the afternoon on the lower leaf surfaceof younger leaves. ABB cooking banana cultivars 'Fougamou' and'Bluggoe' might be potentially promising cultivars for transientdry conditions while AAB plantain 'Bobby Tannap' and one ofits hybrids TMPx 582-4 could be very sensitive to short dryspells according to this evaluation.Copyright 1994, 1999 AcademicPress Musa spp., Musa hybrids, adaxial leaf surface, abaxial leaf surface, stomatal response  相似文献   

20.
The gas exchange of the upper fully expanded leaf of the root parasite Striga hermonthica and of its host Sorghum bicolor was measured under wet and dry conditions to identify the mechanisms of the devastating effects of the parasite on its hosts under drought. The short-term water stress severely reduced photosynthetic rate in infected sorghum, but less in S. hermonthica. Soil water stress did not affect leaf respiration rate in either S. hermonthica or infected sorghum. This suggests that under dry conditions both infected sorghum and S. hermonthica decreased autotrophic carbon gain. The transpiration rate of S. hermonthica, a major driving force for assimilate uptake from the host, was higher and less affected by water stress than that of infected sorghum. Stomatal density on the abaxial surfaces of the leaves was higher in S. hermonthica than in sorghum. Both S. hermonthica infection and water stress decreased stomatal conductance of the sorghum leaves. S. hermonthica, irrespective of soil water status, had greater stomatal aperture on the adaxial and abaxial surfaces of its leaves than infected sorghum. These results indicate that the higher transpiration rate of S. hermonthica even under water stress, achieved through higher stomatal density on the abaxial surfaces of the leaves and greater stomatal aperture on both surfaces of the leaves, may induce the maintenance of water and solute transfers from the host to the parasite leading to severe damage to the host under drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号