首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Predators can have positive impacts on their prey through such mechanisms as nutrient mineralization and prey transport. These positive feedbacks have the potential to change predictions based on food web theory, such as the assertion that enrichment is destabilizing. We present a model of a simple food web, consisting of a resource, a consumer, and its predator. We assume that the predator has a direct positive effect on the consumer, by increasing the rate at which the consumer acquires resources. We consider two cases: the feedback strength is a saturating function of predator density, or it is proportional to the encounter rate between predators and prey. In both cases, the positive feedback is stabilizing, delaying or preventing the onset of oscillations due to enrichment. Positive feedback can introduce an Allee effect for the predator population, yielding multiple stable equilibria. Strong positive feedback can yield counterintuitive results such as a transient increase in consumer density following the introduction of predators, and a decrease in the resource pool following enrichment.  相似文献   

2.
Coexistence among unequal conspecific interferers should be unlikely to persist if stronger interferers always experience a relative fitness increment from their higher foraging rates. In this study, we suggest that decreased relative costs to weaker interferers with increasing temporal fluctuations in prey availability may be a mechanism enhancing coexistence of unequal conspecific interferers. Previous work on fluctuation and coexistence has dealt with oscillations over a time-scale measured in generations of competitor species and their resources, while our work shows that fluctuations in prey availability facilitate coexistence of different phenotypic strategies within species and generations, and over short time-scales. With increasing amplitude of temporal fluctuation about an average prey density, cumulative intakes for differently strong interferers are affected differently. Because of the prey-dependent effect of interference, high amplitudes of fluctuation allow for relatively lower foraging-rate costs in weaker interferers, which decreases the difference in foraging success between strong and weaker interferers. This decreased difference in foraging success could thus significantly relax the conditions allowing for unequal interferer coexistence.  相似文献   

3.
That predators attack and prey defend is an oversimplified view. When size changes during development, large prey may be invulnerable to predators, and small juvenile predators vulnerable to attack by prey. This in turn may trigger a defensive response in adult predators to protect their offspring. Indeed, when sizes overlap, one may wonder "who is the predator and who is the prey"! Experiments with "predatory" mites and thrips "prey" showed that young, vulnerable prey counterattack by killing young predators and adult predators respond by protective parental care, killing young prey that attack their offspring. Thus, young individuals form the Achilles' heel of prey and predators alike, creating a cascade of predator attack, prey counterattack and predator defence. Therefore, size structure and relatedness induce multiple ecological role reversals.  相似文献   

4.
5.
Abstract.
  • 1 ELISA (enzyme-linked immunosorbant assay) was used to identify the arthropod predators of two common herbivores of a desert lupine: the aposematic plant bug Lopidea nigridea and the ant-mimetic plant bug Coquillettia insignis.
  • 2 Despite the fact that the prey are closely related, the two antisera were sufficiently specific to distinguish between the antigen against which they were formed and the antigen of the other species: both antisera were 3 times as reactive against their homologous antigen as they were against their heterologous antigen.
  • 3 In tests on gut contents of field-collected predators, ELISA results were generally consistent with laboratory no-choice data for the five most common arthropod species on lupine: there was a strong correlation between attack rates for each predator-prey pair as measured in the laboratory, and per cent positive reactions in ELISA as measured using field-collected predators. In particular, L.nigridea antiserum was shown to be significantly less reactive against the crab spider Xysticus montanensis when compared to C.insignis antiserum, paralleling results of laboratory no-choice experiments.
  • 4 The usefulness of serological analysis as a tool for arthropod trophic link identification is discussed.
  相似文献   

6.
In food webs heavily influenced by multi‐annual population fluctuations of key herbivores, predator species may differ in their functional and numerical responses as well as their competitive ability. Focusing on red and arctic fox in tundra with cyclic populations of rodents as key prey, we develop a model to predict how population dynamics of a dominant and versatile predator (red fox) impacted long‐term growth rate of a subdominant and less versatile predator (arctic fox). We compare three realistic scenarios of red fox performance: (1) a numerical response scenario where red fox acted as a resident rodent specialist exhibiting population cycles lagging one year after the rodent cycle, (2) an aggregative response scenario where red fox shifted between tundra and a nearby ecosystem (i.e. boreal forest) so as to track rodent peaks in tundra without delay, and (3) a constant subsidy scenario in which the red fox population was stabilized at the same mean density as in the other two scenarios. For all three scenarios it is assumed that the arctic fox responded numerically as a rodent specialist and that the mechanisms of competition is of a interference type for space, in which the arctic fox is excluded from the most resource rich patches in tundra. Arctic fox is impacted most by the constant subsidy scenario and least by the numerical response scenario. The differential effects of the scenarios stemmed from cyclic phase‐dependent sensitivity to competition mediated by changes in temporal mean and variance of available prey to the subdominant predator. A general implication from our result is that external resource subsidies (prey or habitats), monopolized by the dominant competitor, can significantly reduce the likelihood for co‐existence within the predator guild. In terms of conservation of vulnerable arctic fox populations this means that the likelihood of extinction increases with increasing amount of subsidies (e.g. carcasses of large herbivores or marine resources) in tundra and nearby forest areas, since it will act to both increase and stabilize populations of red fox.  相似文献   

7.
Mathematical models are proposed to simulate migrations of prey and predators between patches. In the absence of predators, it is shown that the adaptation of prey leads to an ideal spatial distribution in the sense that the maximal capacity of each patch is achieved. With the introduction of co-adaptation of predators, it is proved that both prey and predators achieve ideal spatial distributions when the adaptations are weak. Further, it is shown that the adaptation of prey and predators increases the survival probability of predators from the extinction in both patches to the persistence in one patch. It is also demonstrated that there exists a pattern that prey and predators cooperate well through adaptations such that predators are permanent in every patch in the case that predators become extinct in each patch in the absence of adaptations. For strong adaptations, it is proved that the model admits periodic cycles and multiple stability transitions.  相似文献   

8.
9.
A class of prey–predator models with infected prey is investigated. Predation terms are either of Holling type II or III, infection is either modelled by mass action or standard incidence. It is shown that the key for understanding the model behaviour is the competition of predators versus infection. In the presented models the predator is not susceptible to the infection and the infection of the prey has no influence on the ability of the predator of catching the prey. However, the prey population can be seen as a resource which both the predators and the infection depend on. The competition for this resource is strong—the principle of competitive exclusion holds for biologically meaningful choices of parameters as long as there is no destabilisation by a Hopf bifurcation. The representation of models in competition diagrams which are introduced in this article can be used for a wide range of competition models which seems to be a promising method with many potential applications.  相似文献   

10.
1. The consumption of microcrustacea by two polyphagous predators, larvae of the caddisfly Plectrocnemia conspersa (Curtis) and the alderfly Sialis fuliginosa Pictet, was investigated in an English stream with a well-known macro- and microinvertebrate fauna. Benthic samples were collected in August, November, December and April, and the gut contents of all individuals of both predators were examined. 2. All the microcrustacean groups (Cyclopoida, Harpacticoida, Chydoridae and Ostracoda) were identified in gut contents. Of the ten taxa present in the benthos, all occurred in the diet of P. conspersa; nine were found in S. fuliginosa. 3. Ontogenetic shifts in the diets of both predators were found, and microcrustacea were consumed more frequently by small than large instars. 4. There was little evidence of selective feeding by P. conspersa, whereas ostracods were over-represented in the diet of S. fuliginosa, compared with benthic relative densities. The Chydoridae were under-represented in the diet of both predators. 5. The food web of Broadstone Stream is perhaps the most detailed web available for any running water habitat. Increased taxonomic resolution produced marked changes in values of connectance and predator-prey ratios. Linkage density remained fairly constant at different levels of resolution and were high, indicative of a web of generalist species. Omnivory was pronounced and may be characteristic of donor-controlled systems where organic detritus is the primary energy base.  相似文献   

11.
The vertebrate predators of post-metamorphic anurans were quantified and the predator–prey relationship was investigated by analysing the relative size of invertebrate predators and anurans. More than 100 vertebrate predators were identified (in more than 200 reports) and classified as opportunistic, convenience, temporary specialized and specialized predators. Invertebrate predators were classified as solitary non-venomous, venomous and social foragers according to 333 reviewed reports. Each of these categories of invertebrate predators was compared with the relative size of the anurans, showing an increase in the relative size of the prey when predators used special predatory tactics. The number of species and the number of families of anurans that were preyed upon did not vary with the size of the predator, suggesting that prey selection was not arbitrary and that energetic constraints must be involved in this choice. The relatively low predation pressure upon brachycephalids was related to the presence of some defensive strategies of its species. This compounding review can be used as the foundation for future advances in vertebrate predator–prey interactions.  相似文献   

12.
Prey quality can have large impacts on the survival, growth and behavior of predators. A number of studies have examined how different species of prey vary in quality. However, far less is known about intraspecific variation in the quality of prey for predators and even less about what nutrients are extracted from prey by predators. We examined how the sex, feeding level and developmental status of prey affected the quantities of nutrients present in prey bodies and the quantities of nutrients that could be extracted from prey by spiders. Female and well‐fed prey were larger and had more nutrients than male and food‐limited prey, respectively. After taking into account differences in prey size, spiders extracted relatively more lipid and less protein from female and well‐fed prey than from male and food‐limited prey, respectively. Mealworms were of higher quality than adult mealworm beetles; spiders were able to extract more lipid, protein and other nutrients from larvae than adults. While lipid present in prey was a good predictor of lipid consumed, protein present in prey was not a reliable predictor of protein consumed. The variation in prey quality that we observed within a single species of prey (i.e. well‐fed vs food‐limited crickets) was as large as variation in quality among the three species of prey used in these experiments. Intraspecific variation in prey quality may be an important factor affecting predatory arthropods, especially in habitats or at times of year when one species of prey is abundant. Further studies are needed to examine the consequences of intraspecific variation in prey quality on the life history and behavior of predators.  相似文献   

13.
GD Ruxton 《Current biology : CB》2012,22(13):R531-R533
Transfer of information about predatory attacks between individuals allows schooling or flocking prey to evade predation without disrupting group integrity. But, predators can mitigate this effect by working together themselves.  相似文献   

14.
For biological populations the precise asymptotic behavior of the corresponding dynamic system is probably less important than the question of extinction and survival of species. An ecological differential equation is called permanent if there exists some level k greater than 0 such that if the number xi(0) of species i at time 0 is positive for i = 1,2, ..., n then xi(t) greater than k for all sufficiently large times t Characterizations for permanence in a four-species prey-predator system modeled by the Lotka-Volterra equation are presented. The method used is based on a combination of two well-known approaches to dealing with permanence. An interesting feature is the occurrence of heteroclinic cycles.  相似文献   

15.
Interactions between native diversity and invasive species can be more complex than is currently understood. Invasive ant species often substantially reduce diversity in the native ants diversity that act as natural control agents for pest insects. In Indonesia (on the island of Sulawesi), the third largest cacao producer worldwide, we show that a predatory endemic toad (Ingerophrynus celebensis) controls invasive ant (Anoplolepis gracilipes) abundance, and positively affects native ant diversity. We call this the invasive-naivety effect (an opposite of enemy release), whereby alien species may not harbour anti-predatory defences against a novel native predator. A positive effect of the toads on native ants may facilitate their predation on insect vectors of cacao diseases. Hence, toads may increase crop yield, but further research is needed on this aspect. Ironically, amphibians are globally the most threatened vertebrate class and are strongly impacted by the conversion of rainforest to cacao plantations in Sulawesi. It is, therefore, crucial to manage cacao plantations to maintain these endemic toads, as they may provide critical ecosystem services, such as invasion resistance and preservation of native insect diversity.  相似文献   

16.
An essential key to explaining the mechanistic basis of ecological patterns lies in understanding the consequences of adaptive behavior for distributions and abundances of organisms. We developed a model that simultaneously incorporates (a) ecological dynamics across three trophic levels and (b) evolution of behaviors via the processes of mutation, selection, and drift in populations of variable, unique individuals. Using this model to study adaptive movements of predators and prey in a spatially explicit environment produced a number of unexpected results. First, even though predators and prey had limited information and sometimes moved in the “wrong” direction, evolved movement mechanisms allowed them to achieve average spatial distributions approximating optimal, ideal free distributions. Second, predators’ demographic parameters had marked, nonlinear effects on the evolution of movement mechanisms in the prey: As the predator mortality rate was increased past a critical point, prey abruptly shifted from making very frequent movements away from predators to making infrequent movements mainly in response to resources. Third, time series analyses revealed that adaptive, conditional movements coupled ecological dynamics across species and space. Our results provide general predictions, heretofore lacking, about how predators and prey should respond to one another on both ecological and evolutionary time scales.  相似文献   

17.
Prey size is an important factor in food consumption. In studies of feeding ecology, prey items are usually measured individually using calipers or ocular micrometers. Among amphibians and reptiles, there are species that feed on large numbers of small prey items (e.g. ants, termites). This high intake makes it difficult to estimate prey size consumed by these animals. We addressed this problem by developing and evaluating a procedure for subsampling the stomach contents of such predators in order to estimate prey size. Specifically, we developed a protocol based on a bootstrap procedure to obtain a subsample with a precision error of at the most 5%, with a confidence level of at least 95%. This guideline should reduce the sampling effort and facilitate future studies on the feeding habits of amphibians and reptiles, and also provide a means of obtaining precise estimates of prey size.  相似文献   

18.
19.
《Bio Systems》2008,91(3):808-817
Dynamical behavior of a food web comprising two predators competing over a single prey has been investigated. The analysis of the food web model shows that the persistence is not possible for two competing predators sharing a single prey species in the cases when any one of the boundary prey–predator planes has a stable equilibrium point. The principle of competitive exclusion holds in such cases. However, numerical simulations exhibit persistence in the presence of periodic solutions in the boundary planes. The system exhibits quasi-periodic behavior in the positive octant. The co-existence in the form of a limit cycle is also possible in some cases.  相似文献   

20.
Ecosystem-based management (EBM) of marine resources attempts to conserve interacting species. In contrast to single-species fisheries management, EBM aims to identify and resolve conflicting objectives for different species. Such a conflict may be emerging in the northeastern Pacific for southern resident killer whales (Orcinus orca) and their primary prey, Chinook salmon (Oncorhynchus tshawytscha). Both species have at-risk conservation status and transboundary (Canada-US) ranges. We modeled individual killer whale prey requirements from feeding and growth records of captive killer whales and morphometric data from historic live-capture fishery and whaling records worldwide. The models, combined with caloric value of salmon, and demographic and diet data for wild killer whales, allow us to predict salmon quantities needed to maintain and recover this killer whale population, which numbered 87 individuals in 2009. Our analyses provide new information on cost of lactation and new parameter estimates for other killer whale populations globally. Prey requirements of southern resident killer whales are difficult to reconcile with fisheries and conservation objectives for Chinook salmon, because the number of fish required is large relative to annual returns and fishery catches. For instance, a U.S. recovery goal (2.3% annual population growth of killer whales over 28 years) implies a 75% increase in energetic requirements. Reducing salmon fisheries may serve as a temporary mitigation measure to allow time for management actions to improve salmon productivity to take effect. As ecosystem-based fishery management becomes more prevalent, trade-offs between conservation objectives for predators and prey will become increasingly necessary. Our approach offers scenarios to compare relative influence of various sources of uncertainty on the resulting consumption estimates to prioritise future research efforts, and a general approach for assessing the extent of conflict between conservation objectives for threatened or protected wildlife where the interaction between affected species can be quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号