首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Learning to reciprocate socially valued actions, such as cheating and cooperation, marks evolutionary advances in animal intelligence thought unequalled by even colonial microbes known to secure respective individual or group fitness tradeoffs through genetic and epigenetic processes. However, solitary ciliates, unique among microbes for their emulation of simple Hebbian-like learning contingent upon feedback between behavioral output and vibration-activated mechanosensitive Ca2+ channels, might be the best candidates to learn to reciprocate necessary preconjugant touches perceived during complex ‘courtship rituals’. Testing this hypothesis here with mock social trials involving an ambiguous vibration source, the large heterotrich ciliate Spirostomum ambiguum showed it can indeed learn to modify emitted signals about mating fitness to encourage paired reproduction. Ciliates, improving their signaling expertise with each felt vibration, grouped serial escape strategies gesturing opposite ‘courting’ assurances of playing ‘harder to get’ or ‘easier to get’ into separate, topologically invariant computational networks. Stored strategies formed patterns of action or heuristics with which ciliates performed fast, quantum-like distributed modular searches to guide future replies of specific fitness content. Heuristic-guided searches helped initial inferior repliers, ciliates with high initial reproductive costs, learn to sensitize their behavioral output and opportunistically compete with presumptive mating ‘rivals’ advertising higher quality fitness. Whereas, initial superior repliers, ciliates with low initial reproductive costs, learned with the aid of heuristics to habituate their behavioral output and sacrifice net reproductive payoffs to cooperate with presumptive ‘suitors’, a kind of learned altruism only before attributed to animal social intelligences. The present findings confirm that ciliates are highly competent decision makers capable of achieving paired fitness goals through learning.  相似文献   

2.
P. Hutter 《Genetica》1986,70(1):23-35
The genetic variation in the preference for pupation sites, under conditions of varying white light intensity, was investigated in two Drosophila sibling species. In parallel, an attempt was made to examine the effect on fecundity of the level of light experienced by the flies immediately after their pupation site choice had been made. Larval photopreferences of several selection lines of Drosophila melanogaster and D. simulans were assessed in a gradient of illumination and the genetic architectures influencing this behaviour were investigated from the responses to artificial selection, reciprocal crosses between divergently-selected lines, and a chromosomal analysis. D. simulans responded only to selection for negative larval photopreference, while D. melanogaster responded strongly to selection for positive but weakly to selection for negative photopreferences. Selected lines of flies that repeatedly experienced light conditions grossly at variance with those they preferred (traumatic lines) sometimes diverged in preference from lines that experienced their chosen conditions (rewarded lines). The traumatic lines always diverged from the corresponding rewarded lines in the direction of preferences that were associated with high fitness, as revealed by low response to selection in the rewarded lines. It is suggested that for a given genotype for phototactic behaviour there is a corresponding particular light dependent fitness, as measured by female fecundity.  相似文献   

3.
Inbreeding adversely affects life history traits as well as various other fitness‐related traits, but its effect on cognitive traits remains largely unexplored, despite their importance to fitness of many animals under natural conditions. We studied the effects of inbreeding on aversive learning (avoidance of an odour previously associated with mechanical shock) in multiple inbred lines of Drosophila melanogaster derived from a natural population through up to 12 generations of sib mating. Whereas the strongly inbred lines after 12 generations of inbreeding (0.75 < F < 0.93) consistently showed reduced egg‐to‐adult viability (on average by 28%), the reduction in learning performance varied among assays (average = 18% reduction), being most pronounced for intermediate conditioning intensity. Furthermore, moderately inbred lines (F = 0.38) showed no detectable decline in learning performance, but still had reduced egg‐to‐adult viability, which indicates that overall inbreeding effects on learning are mild. Learning performance varied among strongly inbred lines, indicating the presence of segregating variance for learning in the base population. However, the learning performance of some inbred lines matched that of outbred flies, supporting the dominance rather than the overdominance model of inbreeding depression for this trait. Across the inbred lines, learning performance was positively correlated with the egg‐to‐adult viability. This positive genetic correlation contradicts a trade‐off observed in previous selection experiments and suggests that much of the genetic variation for learning is owing to pleiotropic effects of genes affecting functions related to survival. These results suggest that genetic variation that affects learning specifically (rather than pleiotropically through general physiological condition) is either low or mostly due to alleles with additive (semi‐dominant) effects.  相似文献   

4.
Negatively reinforced olfactory conditioning has been widely employed to identify learning and memory genes, signal transduction pathways and neural circuitry in Drosophila. To delineate the molecular and cellular processes underlying reward-mediated learning and memory, we developed a novel assay system for positively reinforced olfactory conditioning. In this assay, flies were involuntarily exposed to the appetitive unconditioned stimulus sucrose along with a conditioned stimulus odour during training and their preference for the odour previously associated with sucrose was measured to assess learning and memory capacities. After one training session, wild-type Canton S flies displayed reliable performance, which was enhanced after two training cycles with 1-min or 15-min inter-training intervals. Higher performance scores were also obtained with increasing sucrose concentration. Memory in Canton S flies decayed slowly when measured at 30 min, 1 h and 3 h after training; whereas, it had declined significantly at 6 h and 12 h post-training. When learning mutant t beta h flies, which are deficient in octopamine, were challenged, they exhibited poor performance, validating the utility of this assay. As the Drosophila model offers vast genetic and transgenic resources, the new appetitive conditioning described here provides a useful tool with which to elucidate the molecular and cellular underpinnings of reward learning and memory. Similar to negatively reinforced conditioning, this reward conditioning represents classical olfactory conditioning. Thus, comparative analyses of learning and memory mutants in two assays may help identify the molecular and cellular components that are specific to the unconditioned stimulus information used in conditioning.  相似文献   

5.
Fifteen second chromosomes were extracted from Drosophila willistoni flies collected in four natural populations. The adaptedness of populations homozygous for each chromosome was measured by average population size and productivity. Six control populations were established with mixtures of the wild second chromosomes. The Darwinian fitness of flies homozygous for each wild second ehromosome, and of flies carrying random combinations of these chromosomes, was measured relative to the fitness of flies heterozygous for a wild and a marker chromosome. The Darwinian fitness of homozygotes for each second chromosome relative to the fitness of flies carrying random combinations of the natural chromosomes was then inferred. The estimated loss of fitness on making the natural second chromosomes homozygous was substantial, ranging from 39 to 83 pereent, with an average reduction in fitness of 66 percent. These results with D. willistoni are consistent with those from similar experiments with other drosophila species, and they are compatible with a significant role for heterosis in the maintenance of genetic variability.Populations homozygous for wild chromosomes differ in their adaptedness to the experimental environment. Population size and productivity are correlated, although the correlation is far from complete. Some populations have high productivity and low population size, or vice versa. The control populations, with greater genetic variability, were superior in adaptedness to the average of the single-chromosome populations. The Darwinian fitness and the adaptedness of the genotypes in this experiment were not significantly correlated. It follows that certain measures used by population geneticists, such as genetic load and average Darwinian fitness, cannot be taken as general indices of how well adapted a population is to its environment.This work was supported by U.S. Public Health Service Grant RO1-HDO5055, NSF grant GB-20694 (International Biological Program). AEC contract AT-(30-1) 3096, and PHS Career Development Award K3 GM 37265. The collection of the flies was supported by the Fundacão de Amparo a Pesquisa do Estado de São Paulo, Brazil. The senior author's stay in New York, where the experiments were conducted, was financed in part by Research Fellowship 2-12861 from the Panamerican Union.  相似文献   

6.
Wild endangered populations can suffer fromadverse effects on fitness due to inbreedingand environmental stress. Often, both geneticand environmental stress factors may be presentin populations at the same time. Thereforeknowledge on the potential interactions betweenthese factors is important for the conservationof wild populations. When measuring fitness(e.g. survival and reproductive potential) ofindividuals in the laboratory, and in nature,inbreeding by environment interactions are nowbeing reported more often. The increased focuson environmental dependency of inbreedingdepression will therefore enable conservationbiologists to include this knowledge in themanagement of endangered populations in thewild. In this study, the effects ofenvironmental stress and inbreeding on fitnessare estimated in a laboratory population ofDrosophila buzzatii. Random- or full-sibmating were used to generate independentreplicate lines of four different inbreedinglevels (F = 0, F = 0.25, F = 0.50, F = 0.672)in four different environments. Theenvironments were thermal and dimethoate stressseparately and in combination, as well as anon-stressful control environment. Twoexperiments were carried out to measureproductivity (a multiplicative measure offecundity and viability) using a full factorialdesign. In the first experiment, productivitywas estimated for all lines and inbreedinglevels in the environment in which flies wereinbred and reared for several generations. Inthe second experiment, productivity of thelines reared in the control environment wastested in all four environments and for allinbreeding levels. Our results show asignificant effect of inbreeding andenvironmental stress on productivity in bothexperiments and the effect increased when flieswere exposed to novel environmental conditions.Productivity was not affected by theinteraction between inbreeding andenvironmental stress when flies were tested inthe environments in which they were reared,whereas there was a tendency towards a stressby inbreeding interaction when flies wereexposed to novel environments. The variance andthe coefficient of variation in productivitywere each affected by environmental stress andinbreeding, indicating that environmentalconditions as well as genetic background areimportant for variation in productivity.However, the two measures of variation oftenshowed opposite trends. The results obtained inthis study indicate that the environmentalconditions under which inbreeding occurs areimportant. This is relevant for the maintenanceand management of populations in captivity andin relation to reintroduction of endangeredspecies in nature.  相似文献   

7.
Susceptibility to pathogens and genetic variation in disease resistance is assumed to persist in nature because of the high costs of immunity. Within immunity there are different kinds of costs. Costs of immunological deployment, the costs of mounting an immune response, are measured as a change in fitness following immunological challenge. Maintenance costs of immunity are associated with investments of resources into the infrastructure of an immune system and keeping the system at a given level of readiness in the absence of infection. To demonstrate the costs of immunological maintenance in the absence of infection is considered more difficult. In the present study we examined the maintenance costs of the immune system in lines of Drosophila melanogaster that differed in their antibacterial innate immune response under starved and non-starved conditions. Immunodeficient mutant flies that have to invest less in the immunological maintenance were found to live longer under starvation than wild type flies, whereas the opposite was found when food was provided ad libitum. Our study provides evidence for the physiological cost of immunological maintenance and highlights the importance of environmental variation in the study of evolutionary trade-offs.  相似文献   

8.
Among many species of insects, females gain fitness benefits by producing numerous offspring. Yet actions related to producing numerous offspring such as mating with multiple males, producing oocytes and placing offspring in sub-optimal environments incur costs. Females can decrease the magnitude of these costs by retaining gametes when suitable oviposition sites are absent. We used the pomace fly, Drosophila melanogaster, to explore how the availability of fresh feeding/oviposition medium influenced female fitness via changes in offspring survivorship and the modulation of gamete release. Availability of fresh medium affected the absolute number and temporal production of offspring. This outcome was attributable to both decreased larval survival under crowded conditions and to female modulation of gamete release. Direct examination of the number of sperm retained among the different female storage organs revealed that females ‘hold on’ to sperm, retaining more sperm in storage, disproportionately within the spermathecae, when exposed infrequently to fresh medium. Despite this retention, females with lower rates of storage depletion exhibited decreased sperm use efficiency shortly after mating. This study provides direct evidence that females influence the rate of sperm depletion from specific storage sites in a way that can affect both female and male fitness. The possible adaptive significance of selective gamete utilization by female Drosophila includes lowering costs associated with frequent remating and larval overcrowding when oviposition sites are limiting, as well as potentially influencing paternity when females store sperm from multiple males.  相似文献   

9.
Cacopsylla melanoneura is a univoltine psyllid vector of ‘Candidatus Phytoplasma mali’, the etiological agent of apple proliferation (AP), a severe disease in European apple orchards. The influence of ‘Ca. P. mali’ on the fitness of C. melanoneura was studied. In the spring of 2007, male-female pairs of field-collected adults were exposed to ‘Ca. P. mali’-infected or healthy ‘Golden Delicious’ apple shoots. Exposure to these diseased shoots did not affect the life span of the adult psyllids. However, significantly fewer eggs were laid on the diseased shoots. Furthermore, fewer of the eggs that were laid on the infected plants hatched. Data suggest a detrimental effect of AP phytoplasma on the fitness of C. melanoneura.  相似文献   

10.
The outcome of interspecific competition of two closely related species may depend upon genetic variation in the two species and the environment in which the experiment is carried out. Interspecific competition in the two sibling species, Drosophila melanogaster and D. simulans, is usually investigated using longterm laboratory stocks that often have mutant markers that distinguish them. To examine competition in flies that genetically more closely resemble flies in nature, we utilized freshly caught wildtype isofemale lines of the two species collected at the same site in San Carlos, Mexico. Under ordinary laboratory conditions, D. melanogaster always won in competition. However, in hotter and drier conditions, D. simulans competed much more effectively. In these environmental conditions, there were genetic differences in competitive ability among lines with the outcome of competition primarily dependent upon the line of D. melanogaster used but in some cases also influenced by the line of D. simulans used. Differences in the measures of productivity and developmental time did not explain the differences in competitive ability among lines. This suggests that the outcome of competition was not due to differences in major fitness components among the isofemale lines but to some other attribute(s) that influenced competitive ability. When lines of flies were combined, the outcome of competition was generally consistent with competitive outcomes between pairs of lines. In several cases, the combination of lines performed better than the best of the constituent lines, suggesting that competitive ability was combined heterotically and that the total amount of genetic variation was important in the outcome of interspecific competition.  相似文献   

11.
Rapid cold‐hardening (RCH) is a unique form of phenotypic plasticity which confers survival advantages at low temperature. The fitness costs of RCH are generally poorly elucidated and are important to understanding the evolution of plastic physiology. This study examined whether RCH responses, induced by ecologically relevant diel temperature fluctuations, carry metabolic, survival, or fecundity costs. We predicted that potential costs in RCH would be manifested as differences in metabolic rate, fecundity, or survival in flies which have hardened versus those which have not, or flies that have experienced more RCH events would show greater costs than those which have experienced fewer events. One group of flies cooled to 10°C for 2 h for 11 consecutive days experienced daily RCH (Hardened), whereas the other group exposed to 15°C for the same 2‐h period each day formed a Control group. Hardened flies had higher survival at –5°C for 2 h than control flies (69 ± 9% vs. 44 ± 19%, P = 0.04). Hardened flies showed no metabolic or fecundity costs, but had reduced average survival (P = 0.0403). Thus, a major cost to repeated low temperature exposures in Ceratitis capitata is through direct mortality caused by chilling injury, although this appears not to be a direct cost of RCH.  相似文献   

12.
Mushroom bodies (MBs) in Protophormia terraenovae were ablated by hydroxyurea (HU) treatment to larvae just after hatching in order to examine roles of the MBs in olfactory learning and photoperiodism. In all individuals the structures of the alpha, beta, and gamma lobes, the pedunculi, and the calyces of the MB were not found after HU treatment. The other structures of the brain were not obviously damaged. The volumes of both the antennal lobes and the central complex, however, were smaller in the HU-treated flies than those in the control flies. The HU-treated and non-treated flies were tested for their appetitive olfactory learning ability and photoperiodism. In the olfactory learning paradigm, an odor of methylsalicylate or coumarin was paired with a reward of sucrose. The non-treated flies learned to associate both odors with the reward, but the HU-treated flies did not. In the test for photoperiodism, both the HU-treated and non-treated flies responded to photoperiod. Both groups of flies developed ovaries under long-day conditions but entered diapause under short-day conditions. The results imply that the MBs are indispensable for olfactory learning but not for photoperiodism, and that storage of daily cycles of photoperiodic information occurs by a neural system other than the MBs.  相似文献   

13.
1. Many ectothermic species have evolved the ability to invoke a ‘behavioural fever’ when infected with a pathogen. The relative costs and benefits of this response, however, have rarely been quantified. 2. The aim of this study was investigate the nature and consequences of behavioural fever in the house fly, Musca domestica L., in response to infection with a possible biocontrol agent, the fungal entomopathogen, Beauveria bassiana (Balsamo) Vuillemin. 3. It was found that infected flies preferred higher temperatures and allocated more effort to thermoregulation than uninfected flies. Flies could not overcome infection but the altered thermal behaviour allowed infected flies to extend their survival and to lay more eggs relative to infected flies maintained under constant conditions. However, flies allowed to fever had lower egg viability suggesting a possible cost. 4. Under the present experimental conditions, the putative costs and benefits fever balanced one another resulting in no net change in fitness. Fever did not, therefore, limit the control potential of the fungus. We discuss whether the costs and benefits of behavioural fever might differ in other ecological contexts.  相似文献   

14.
The oriental fruit fly, Bactrocera dorsalis, is a serious pest of fruits and vegetables. Methyl eugenol (ME), a male attractant, is used to against this fly by mass trapping. Control effect may be influenced by learning, which could modify the olfactory response of the fly to this attractant. To collect the behavioral evidence, studies on the capability of this fly for olfactory learning are necessary. We investigated olfactory learning in male flies with a classical olfactory conditioning procedure using restrained individuals under laboratory conditions. The acquisition of the proboscis extension reflex was used as the criterion for conditioning. A high conditioned response level was found in oriental fruit flies when an odor was presented in paired association with a sucrose reward but not when the odor and sucrose were presented unpaired. We also found that the conditioning performance was influenced by the odor concentration, intertrial interval, and starvation time. A slight sensitization elicited by imbibing sucrose was observed. These results indicate that oriental fruit flies have a high capacity to form an olfactory memory as a result of classical conditioning.  相似文献   

15.
Drastic reductions in population size, or bottlenecks, are thought to significantly erode genetic variability and reduce fitness. However, it has been suggested that a population can be purged of the genetic load responsible for reduced fitness when subjected to bottlenecks. To investigate this phenomenon, we put a number of Drosophila melanogaster isofemale lines known to differ in inbreeding depression through four ‘founder‐flush’ bottleneck cycles with flush sizes of 5 or 100 pairs and assayed for relative fitness (single‐pair productivity) after each cycle. Following the founder‐flush phase, the isofemale lines, with a large flush size and a history of inbreeding depression, recovered most of the fitness lost from early inbreeding, consistent with purging. The same isofemale lines, with a small flush size, did not regain fitness, consistent with the greater effect of genetic drift in these isofemale lines. On the other hand, the isofemale lines that did not show initial inbreeding depression declined in fitness after repeated bottlenecks, independent of the flush size. These results suggest that the nature of genetic variation in fitness may greatly influence the way in which populations respond to bottlenecks and that stochastic processes play an important role. Consequently, an attempt intentionally to purge a population of detrimental variation through inbreeding appears to be a risky strategy, particularly in the genetic management of endangered species.  相似文献   

16.
Apparently unpaired exposure to appetitive or aversive stimuli can suppress or enhance later associative learning. While the suppressive effect has been found in both vertebrate and invertebrate animals, it is not clear if the enhancing effect is restricted to the vertebrates. Additionally, whether Drosophila associative learning can be influenced in either direction is open. To address these questions, we examined the effects of pre-exposing flies to a high temperature negative reinforcer in the heat-box place-learning paradigm. We found that pre-exposing flies to an unavoidable high temperature enhanced later associative conditioning that uses mild increases in temperature. This enhancement lasts at least 20 min, does not depend on changes in the straightforward avoidance behavior of a high temperature source, and is independent of the antennal thermosensor. We thus provide an example of enhanced associative learning after unpaired exposure to a typical reinforcer in an invertebrate animal, suggesting the conservation of this component of learning.  相似文献   

17.
There is limited information concerning the effect of salinity on phytosiderophores exudation from wheat roots. The aim of this hydroponic experiment was to investigate the effect of salinity on phytosiderophore release by roots of three bread wheat genotypes differing in Zn efficiency (Triticum aestivum L. cvs. Rushan, Kavir, and Cross) under Zn deficiency conditions. Wheat seedlings were transferred to Zn-free nutrient solutions and exposed to three salinity levels (0, 60, and 120 mM NaCl). The results indicated that Cross and Rushan genotypes exuded more phytosiderophore than did the Kavir genotype. Our findings suggest that the adaptive capacity of Zn-efficient ‘Cross’ and ‘Rushan’ wheat genotypes to Zn deficiency is due partly to the higher amounts of phytosiderophore release. Only 15 days of Zn deficiency stress was sufficient to distinguish between Zn-efficient (Rushan and Cross) and Zn-inefficient (Kavir) genotypes, with the former genotypes exuding more phytosiderophore than the latter. Higher phytosiderophore exudation under Zn deficiency conditions was accompanied by greater Fe transport from root to shoot. The maximum amount of phytosiderophore was exuded at the third week in ‘Cross’ and at the fourth week in ‘Kavir’ and ‘Rushan’. For all three wheat genotypes, salinity stress resulted in higher amounts of phytosiderophore exuded by the roots. In general, for ‘Kavir’, the largest amount of phytosiderophore was exuded from the roots at the highest salinity level (120 mM NaCl), while for ‘Cross’ and ‘Rushan’, no significant difference was found in phytosiderophore exudation between the 60 and 120 mM NaCl treatments. More investigation is needed to fully understand the physiology of elevated phytosiderophore release by Zn-deficient wheat plants under salinity conditions.  相似文献   

18.
The effect of heat stress (38 degrees C) on the content of octopamine (OA) and 20-hydroxyecdysone (20HE) was studied under normal and stressful conditions in adult flies of Drosophila virilis lines contrasting in the level of the juvenile hormone (JH). The wild-type flies (line 101) exhibited a pronounced sex dimorphism for the content of both OA and 20HE, which was substantially lower in this line than in flies of the mutant line 147. The level of both hormones increased in flies of line 101 exposed to heat stress, whereas it remained unchanged in flies of line 147 under the same conditions. The effect of heat stress on the level of JH metabolism and fertility was also studied in D. melanogaster wild-type lines and lines carrying mutations in genes responsible for OA and DA syntheses. In octopamineless females of the T beta hnM18 line and in females of the Ste line characterized by a doubled content of DA, JH degradation differed from normal: it was increased in both young and mature T beta hnM18 females, while decreased in young and increased in mature Ste flies. Fertility was substantially lower in the Ste than in the wild-type line. Flies of all of the D. melanogaster lines produced a stress response; however, in mutant lines, both fertility and stress reactivity of the systems controlling JH metabolism differed significantly from that of the wild-type lines. The role of JH, 20HE, OA, and DA interaction in regulation of Drosophila reproduction under stressful conditions is discussed.  相似文献   

19.
Phenoloxidase (PO) is an important component of the insect immune system and is frequently used to measure an individual's immune defence ability. However, evidence documenting positive correlations between the immune assay and resistance against pathogens is scarce and contradictory. We used replicate lines of yellow dung flies Scathophaga stercoraria (L.) with different PO levels to investigate whether PO levels affect resistance against parasitic mites and entomopathogenic fungi. Prevalence of flies exposed to pathogens was the same in all selection regimes, although pathogens clearly negatively affected fitness. PO measurements alone therefore do not necessarily predict overall resistance against pathogens. Furthermore, under starvation lines selected for high PO levels did not survive longer than those selected for low PO levels, irrespective of exposure to pathogens. This suggests that even if elevated immune levels increase an individual's ability to combat pathogens, the benefits may not outweigh the costs of increased investment in immunity.  相似文献   

20.
1. The theory on adaptive phenotypic plasticity assumes different fitness optima in different environments. To demonstrate these fitness differences in the field or under laboratory conditions can be difficult.
2. The size of the coloured patches on the abdomen of Eristalis arbustorum varies with rearing temperature. At low temperatures small patches develop and at higher temperatures larger patches develop. Consequently, the colour patch size varies seasonally.
3. To study the relative fitness of two extreme phenotypes in abdominal coloration in the summer, a total of 591 laboratory-reared flies were released in six large population cages. As a measure of fitness, survival was estimated.
4. In all replicate cages the survival of the pale phenotypes was higher than that of the dark phenotypes, indicating a higher fitness for the pale flies under summer conditions.
5. The fat content of flies reared under identical conditions to those released in the cages was measured. Pale flies had ≈ 0·7 mg more fat than dark flies (± 25% extra fat). However, it is argued that this difference in fat reserves could not have been the only cause of the observed difference in survival.
6. The results are discussed in relation to mimicry and thermoregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号