首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The protective effect of alpha-ketoglutarate dehydrogenase substrate and its analogs on the enzyme inactivation by diethylpyrocarbonate was studied. The values of true rate constants for diethylpyrocarbonate-induced inactivation and the Kd values for the enzyme complexes with ligands were determined. A comparison of Kd values for a number of ligands suggests that the histidine residue of the enzyme active center interacts with the alpha-keto group of the substrate. A mechanism of this histidine residue involvement in the catalytic act is proposed. According to this mechanism, the imidazole ring of histidine which is responsible for the substrate activation causes a simultaneous formation of a catalytically active form of the coenzyme--thiamine pyrophosphate ilide. It is assumed that the lower (as compared with the enzyme-substrate complexes) values of rate constants of inactivation by diethylpyrocarbonate for alpha-ketoglutarate dehydrogenase complexes with succinate, glutarate, and oxaloacetate are due to additional protonation of the histidine residue, eventually resulting in the blocking of the analogs interaction with the coenzyme.  相似文献   

2.
1. Glutamate dehydrogenase was subject to rapid inactivation when irradiated in the presence of Rose Bengal or incubated in the presence of ethoxyformic anhydride. 2. Inactivation in the presence of Rose Bengal led to the photo-oxidation of four histidine residues. Oxidation of three histidine residues had little effect on enzyme activity, but oxidation of the fourth residue led to the almost total loss of activity. 3. Acylation of glutamate dehydrogenase with ethoxyformic anhydride at pH6.1 led to the modification of three histidine residues with a corresponding loss of half the original activity. Acylation at pH7.5 led to the modification of two histidine residues and a total loss of enzyme activity. 4. One of the histidine residues undergoing reaction at pH6.1 also undergoes reaction at pH7.5. 5. The presence of either glutamate or NAD(+) in the reaction mixtures at pH6.1 had no appreciable effect. At pH7.5 glutamate caused a marked decrease in both the degree of alkylation and degree of inactivation. NAD(+) had no effect on the degree of inactivation at pH7.5 but did modify the extent of acylation. 6. The normal response of the enzyme towards ADP was unaffected by acylation at pH6.1 or 7.5. 7. The normal response of the enzyme towards GTP was altered by treatment at both pH6.1 and 7.5.  相似文献   

3.
The reaction between formate dehydrogenase from Bacterium sp. 1 and diethylpyrocarbonate results in the enzyme inactivation. 4 histidine residues can be blocked per subunit by this reagent. The enzyme activity correlates with the disappearance of free histidines. The process of enzyme inactivation is biphasic and obeys pseudo-first-order kinetics. NAD and NADH slow down the rate of inactivation, but do not protect histidine residues against modification. Formate does not protect the enzyme. The modification of 80% of histidines increases the Km value for both substrates 3-fold. The general conformation of enzyme in the course of modification is preserved. The modification of histidines markedly decreases the reactivity of an essential SH-group of formate dehydrogenase against the Ellman reagent.  相似文献   

4.
The pK values of the histidine residues in ribonuclease T1 (RNase T1) are unusually high: 7.8 (His-92), 7.9 (His-40), and 7.3 (His-27) [Inagaki et al. (1981) J. Biochem. 89, 1185-1195]. In the RNase T1 mutant Glu-58----Ala, the first two pK values are reduced to 7.4 (His-92) and 7.1 (His-40). These lower pKs were expected since His-92 (5.5 A) and His-40 (3.7 A) are in close proximity to Glu-58 at the active site. The conformational stability of RNase T1 increases by over 4 kcal/mol between pH 9 and 5, and this can be entirely accounted for by the greater affinity for protons by the His residues in the folded protein (average pK = 7.6) than in the unfolded protein (pk approximately 6.6). Thus, almost half of the net conformational stability of RNase T1 results from a difference between the pK values of the histidine residues in the folded and unfolded conformations. In the Glu-58----Ala mutant, the increase in stability between pH 9 and 5 is halved (approximately 2 kcal/mol), as expected on the basis of the lower pK values for the His residues in the folded protein (average pK = 7.1). As a consequence, RNase T1 is more stable than the mutant below pH 7.5, and less stable above pH 7.5. These results emphasize the importance of measuring the conformational stability as a function of pH when comparing proteins differing in structure.  相似文献   

5.
The α -toxin (phospholipase C) of Clostridium perfringens has been reported to contain catalytically essential zinc ions We report here that histidine residues are essential for the co-ordination of these ion(s). Incubation of alpha toxin with diethylpyrocarbonate, a histidine modifying reagent, did not result in the loss of phospholipase C activity unless the protein was first incubated with EDTA, suggesting that zinc ions normally protect the susceptible histidine residues. When the amino acid sequences of three phospholipase C's were aligned, essential zinc binding histidine residues in the non-toxic B. cereus phospholipase C were found in similar positions in the toxic C. perfringens enzyme and the weakly toxic C. bifermentans phospholipase C.  相似文献   

6.
The ACCO gene from Lycopersicon esculentum (tomato) has been cloned into the expression vector PT7-7. The highly expressed protein was recovered in the form of inclusion bodies. ACCO is inactivated by diethyl pyrocarbonate (DEPC) with a second-order rate constant of 170 M–1 min–1. The pH–inactivation rate data imply the involvement of an amino acid residue with a pK value of 6.05. The difference UV spectrum of the the DEPC-inactivated versus native ACCO showed a single peak at 242 nm indicating the modification of histidine residues. The inactivation was reversed by the addition of hydroxylamine to the DEPC-inactivated ACCO. Substrate/cofactor protection studies indicate that both iron and ACC bind near the active site, which contains histidine residues. Four histidines of ACCO were individually mutated to alanine and glycine. H39A is catalytically active, while H177A, H177G, H211A, H211G, H234A, and H234G are basically inactive. The results indicate that histidine residues 177, 211, and 234 may serve as ligands for the active-site iron of ACCO and/or may play some important structural or catalytic role.  相似文献   

7.
A specific chemical modification of histidyl residues in tyrosyl-tRNA synthetase by diethyl pyrocarbonate was performed. It is shown that five of sixteen histidyl residues can react with diethyl pyrocarbonate in the native conditions. Modification of two histidyl residues per dimer results in the inactivation of tyrosyl-tRNA synthetase in both steps of the tRNATyr aminoacylation. All substrates protect tyrosyl-tRNA synthetase against inactivation with diethyl pyrocarbonate, the most effective protector being combination of ATP and tyrosine. Histidyl residues of tyrosyl-tRNA synthetase are suggested to be involved in the catalytic mechanism of aminoacylation of tRNATyr.  相似文献   

8.
A novel staphylolytic enzyme, ALE-1, is a glycylglycine endopeptidase produced by Staphylococcus capitis EPK1. ALE-1 possesses seven histidines. Chemical modification studies using diethylpyrocarbonate and iodoacetic acid suggested that a histidine or tyrosine residue(s) in the molecule is important for the organism's staphylolytic activity. All of the histidine residues, one tyrosine, and one aspartic acid residue in the N-terminally truncated ALE-1 (DeltaN-term ALE-1) were systematically altered by site-directed mutagenesis, and the enzyme activities and metal contents of the variants were measured. Our studies indicated that His-150, His-200, His-231, His-233, and Asp-154 are essential for the enzyme activity of DeltaN-term ALE-1. Except for His-150 and Asp-154, all of these amino acids were located within the 38-amino-acid region conserved among 11 proteins, including 5 staphylolytic endopeptidases. Inductively coupled plasma-mass spectrometric analysis of DeltaN-term ALE-1 revealed that it contains one atom of zinc per molecule. Measurement of the zinc content of the mutant DeltaN-term ALE-1 suggested that His-150 and -233 are important for zinc binding; their loss in these variant enzymes coincided with the loss of staphylolytic activity. These results strongly suggest that ALE-1 is a novel member of zinc metalloproteases.  相似文献   

9.
A subset of superoxide dismutase 1 (Cu/Zn-SOD1) mutants that cause familial amyotrophic lateral sclerosis (FALS) have heightened reactivity with (-)ONOO and H(2)O(2) in vitro. This reactivity requires a copper ion bound in the active site and is a suggested mechanism of motor neuron injury. However, we have found that transgenic mice that express SOD1-H46R/H48Q, which combines natural FALS mutations at ligands for copper and which is inactive, develop motor neuron disease. Using a direct radioactive copper incorporation assay in transfected cells and the established tools of single crystal x-ray diffraction, we now demonstrate that this variant does not stably bind copper. We find that single mutations at copper ligands, including H46R, H48Q, and a quadruple mutant H46R/H48Q/H63G/H120G, also diminish the binding of radioactive copper. Further, using native polyacrylamide gel electrophoresis and a yeast two-hybrid assay, the binding of copper was found to be related to the formation of the stable dimeric enzyme. Collectively, our data demonstrate a relationship between copper and assembly of SOD1 into stable dimers and also define disease-causing SOD1 mutants that are unlikely to robustly produce toxic radicals via copper-mediated chemistry.  相似文献   

10.
The number and role of histidine residues in the active site of extracellular guanyloribonuclease Sa produced by Streptomyces aureofaciens (RNAase Sa) were studied via chemical modification by ethoxyformic anhydride by means of circular dichroism measurements. It was shown that only one of two histidines of RNAase Sa is situated in the active site of the enzyme. Ethoxyformylation of RNAase Sa in the presence of Guo-3'-P, Guo-5'-P and dGuo-5-P, all of them being competitive inhibitors of the enzyme, supported the assumption that an essential histidine residue is bound to the phosphate group in the position 3' of the ribose ring. The circular dichroism measurements of native and modified RNAase Sa and of its complex with Guo-3'-P showed that the modification of the essential histidine residue resulted in alteration of binding of RNAase Sa to Guo-3'-P; histidine thus may play a key role in the formation of such a complex.  相似文献   

11.
The interaction of streptokinase with diethylpyrocarbonate resulting in partial inactivation of the protein was studied. Eight histidine residues are blocked per streptokinase molecule by this reagent. Ethoxyformylation of streptokinase histidyls is characterized by a rate constant corresponding to modification of free L-histidine. No reactivation of streptokinase was achieved by treatment of the modified protein with hydroxylamine. The CD spectroscopy data suggest that the residues modified by diethylpyrocarbonate are of no consequence for the stabilization of the protein secondary structure. The specificity of modification of streptokinase histidine residues by diethylpyrocarbonate is discussed. Based on the gel chromatography data, it was assumed that partial inactivation of streptokinase depends on the formation of protein oligomers with a decreased activatory function.  相似文献   

12.
Insulin has proved difficult to study by nuclear magnetic resonance spectroscopy because of its complex aggregation behaviour in solution and its insolubility between pH 4 and 7. Now for the first time it has been possible to assign the 1H nuclear magnetic resonances of the H-2 histidine protons of residues B5 and B10 of bovine 2 Zn insulin and Zn-free insulin, and the B5 and A8 residues of hagfish insulin. As expected, the addition of Zn to Zn-free insulin causes virtually no change in the chemical shift or the rate of H-D exchange of the H-2 proton of histidine B5, which is not involved in Zn binding in the 2 Zn insulin hexamer. The rate of H-D exchange of the H-2 proton of histidine B10 is decreased markedly on Zn binding at this residue, but the chemical shift of the resonance remains virtually constant owing to the balancing of an upfield ring current shift of the ordered histidine residues by a downfield shift due to electron withdrawal from the ring nitrogen by the Zn binding.  相似文献   

13.
Lipoxygenases constitute a class of non-heme, non-sulfur iron dioxygenases acting upon lipids possessing a 1,4-cis-cis-pentadiene moiety. The iron is known to be essential for activity. A motif of six histidine residues has been found in all of the thirteen lipoxygenases, from both plant and animal sources, whose sequences have been reported. We had previously obtained mutant proteins in which each of the 6 conserved histidines of soybean lipoxygenase L-1 had been replaced and found that the mutants H499Q, H504Q (or H504S) and H690Q had no detectable enzymatic activity. We have now found that these inactive proteins contain no Fe, although they have the same electrophoretic mobility as wild-type L-1 under both denaturing and non-denaturing conditions and react with anti-L-1 antibodies.  相似文献   

14.
The lactose transport protein (LacS) of Streptococcus thermophilus is a chimeric protein consisting of an amino-terminal carrier domain and a carboxyl-terminal phosphoenolpyruvate:sugar phosphotransferase system (PTS) IIA protein domain. The histidine residues of LacS were changed individually into glutamine or arginine residues. Of the 11 histidine residues present in LacS, only the His-376 substitution in the carrier domain significantly affected sugar transport. The region around His-376 was found to exhibit sequence similarity to the region around His-322 of the lactose transport protein (LacY) of Escherichia coli, which has been implicated in sugar binding and in coupling of sugar and H+ transport. The H376Q mutation resulted in a reduced rate of uptake and altered affinity for lactose (beta-galactoside), melibiose (alpha-galactoside), and the lactose analog methyl-beta-D-thiogalactopyranoside. Similarly, the extent of accumulation of the galactosides by cells expressing LacS(H376Q) was highly reduced in comparison to cells bearing the wild-type protein. Nonequilibrium exchange of lactose and methyl-beta-D-thiogalactopyranoside by the H376Q mutant was approximately 2-fold reduced in comparison to the activity of the wild-type transport protein. The data indicate that His-376 is involved in sugar recognition and is important, but not essential, for the cotransport of protons and galactosides. The carboxyl-terminal domain of LacS contains 2 histidine residues (His-537 and His-552) that are conserved in seven homologous IIA protein(s) (domains) of PTSs. P-enolpyruvate-dependent phosphorylation of wild-type LacS, but not of the mutant H552Q, was demonstrated using purified Enzyme I and HPr, the general energy coupling proteins of the PTS, and inside-out membrane vesicles isolated from E. coli in which the lactose transport gene was expressed. The His-537 and His-552 mutations did not affect transport activity when the corresponding genes were expressed in E. coli.  相似文献   

15.
ROMK channels are inhibited by intracellular acidification. This pH sensitivity is related to several amino acid residues in the channel proteins such as Lys-61, Thr-51, and His-206 (in ROMK2). Unlike all other amino acids, histidine is titratable at pH 6-7 carrying a positive charge below pH 6. To test the hypothesis that certain histidine residues are engaged in CO(2) and pH sensing of ROMK1, we performed experiments by systematic mutations of all histidine residues in the channel using the site-directed mutagenesis. There are two histidine residues in the N terminus. Mutations of His-23, His-31, or both together did not affect channel sensitivity to CO(2). Six histidine residues are located in the C terminus. His-225, His-274, His-342, and His-354 were critical in CO(2) and pH sensing. Mutation of either of them reduced CO(2) and pH sensitivities by 20-50% and approximately 0.2 pH units, respectively. Simultaneous mutations of all of them eliminated the CO(2) sensitivity and caused this mutant channel to respond to only extremely acidic pH. Similar mutations of His-280 had no effect. The role of His-270 in CO(2) and pH sensing is unclear, because substitutions of this residue with either a neutral, negative, or positive amino acid did not produce any functional channel. These results therefore indicate that histidine residues contribute to the sensitivity of the ROMK1 channel to hypercapnia and intracellular acidosis.  相似文献   

16.
Beta-peptides are emerging as an attractive class of peptidomimetic molecules. In contrast to naturally occurring alpha-peptides, short oligomers of beta-amino acids (comprising just 4-6 monomers) exhibit stable secondary structures that make them amenable for quantitative, concerted experimental and theoretical studies of the effects of particular chemical interactions on structure. In this work, molecular simulations are used to study the thermodynamic stability of helical conformations formed by beta-peptides containing varying proportions of acyclic (beta(3)) and cyclic (ACH) residues. More specifically, several beta-peptides differing only in their content of cyclic residues are considered in this work. Previous computational studies of beta-peptides have relied mostly on energy minimization of molecular dynamics simulations. In contrast, our study relies on density-of-states based Monte Carlo simulations to calculate the free energy and examine the stability of various folded structures of these molecules along a well-defined order parameter. By resorting to an expanded-ensemble formalism, we are able to determine the free energy required to unfold specific molecules, a quantity that could be measured directly through single-molecule force spectroscopy. Simulations in both implicit and explicit solvents have permitted a systematic study of the role of cyclic residues and electrostatics on the stability of secondary structures. The molecules considered in this work are shown to exhibit stable H-14 helical conformations and, in some cases, relatively stable H-12 conformations, thereby suggesting that solvent quality may be used to manipulate the hydrogen-bonding patterns and structure of these peptides.  相似文献   

17.
18.
The role of active site histidine residues in SCN oxidation by lacrimal gland peroxidase (LGP) has been probed after modification with diethylpyrocarbonate (DEPC). The enzyme is irreversibly inactivated following pseudo-first order kinetics with a second order rate constant of 0.26 M–1 sec–1 at 25°C. The pH dependent rate of inactivation shows an inflection point at 6.6 indicating histidine derivatization. The UV difference spectrum of the modified versus native enzyme shows a peak at 242 nm indicating formation of N-carbethoxyhistidine. Carbethoxyhistidine formation and associated inactivation are reversed by hydroxylamine indicating histidine modification. The stoichiometry of histidine modification and the extent of inactivation show that out of five histidine residues modified, modification of two residues inactivates the enzyme. Substrate protection with SCN during modification indicates that although one histidine is protected, it does not prevent inactivation. The spectroscopically detectable compound II formation is lost due to modification and is not evident after SCN protection. The data indicate that out of two histidines, one regulates compound I formation while the other one controls SCN binding. SCN protected enzyme is inactive due to loss of compound I formation. SCN binding studies by optical difference spectroscopy indicate that while the native enzyme binds SCN with the Kd of 15 mM, the modified enzyme shows very weak binding with the Kd of 660 mM. From the pH dependent binding of SCN, a plot of log Kd vs. pH shows a sigmoidal curve from which the involvement of an enzyme ionizable group of pKa 6.6 is ascertained and attributed to the histidine residue controlling SCN binding. LGP has thus two distinctly different essential histidine residues – one regulates compound I formation while the other one controls SCN binding.  相似文献   

19.
The immunoglobulin-binding activity of subcomponent Clq of human complement is lost following treatment with diethylpyrocarbonate; the inactivation showed first-order kinetics with respect to time and modifier concentration. Soluble IgG oligomers protected Clq against diethylpyrocarbonate modification. Treatment of modified Clq with hydroxylamine resulted in an 85% recovery of its ability to bind to aggregated immunoglobulin. The inactivation process was associated with modification of 12.1 +/- 0.7 histidine residues per Clq molecule. These data are consistent with the presence of histidine residues in the immunoglobulin-binding sites of Clq; these residues may participate in ionic interactions with the carboxyl groups known to be in the Clq binding site of IgG.  相似文献   

20.
Macrolide 2'-phosphotransferase (MPH(2')) catalyzes the transfer of the gamma-phosphate of ATP to the 2'-hydroxyl group of macrolide antibiotics. In this study, H198 and H205, conserved in the ATP-binding region motif 1 in the putative amino acid sequence of MPH(2')II, were replaced by Ala to investigate their role. H205 was also subsequently replaced by Asn. H198A and H205N mutant enzymes retained more than 50% of the specific activity of the original enzyme to substrate oleandomycin. On the other hand, the specific activity of the H205A mutant enzyme was reduced to less than 1% of that of the wild enzyme. The results suggested that H205 is crucial for maintaining the catalytic activity of MPH(2')II, and Asn can substitute for His at this position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号