首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The interaction of proteins bound to sites widely separated on the genome is a recurrent motif in both prokaryotic and eukaryotic regulatory systems. Lac repressor mediates the formation of "DNA loops" by the simultaneous interaction of a single protein tetramer with two DNA-binding sites. The DNA-binding properties of a Lac repressor mutant (LacIadi) deficient in the association of protein dimers to tetramers was investigated. The results of quantitative footprint and gel mobility-shift titrations suggest that the wild-type Lac repressor (LacI+) binds cooperatively to two operator sites separated by 11 helical turns on a linear DNA restriction fragment by the formation of a "looped complex." LacIadi binds to this two-site operator non-cooperatively and without formation of a looped complex. These results demonstrate that the dimer-tetramer association of LacI+ is directly responsible for its cooperative binding and its ability to mediate formation of a looped complex. The Iadi mutation disrupts the monomer-dimer as well as eliminating the dimer-tetramer association equilibria while the DNA binding affinity of LacIadi to a single site is unchanged relative to the wild-type protein. These results suggest that DNA binding and dimer-tetramer association are functionally unlinked. The similarity of the DNA-binding properties of LacIadi and Gal repressor, a protein believed to function by mediating the formation of a looped complex, are discussed.  相似文献   

5.
6.
7.
While many Type II restriction enzymes are dimers with a single DNA-binding cleft between the subunits, SfiI is a tetramer of identical subunits. Two of its subunits (a dimeric unit) create one DNA-binding cleft, and the other two create a second cleft on the opposite side of the protein. The two clefts bind specific DNA cooperatively to give a complex of SfiI with two recognition sites. This complex is responsible for essentially all of the DNA-cleavage reactions by SfiI: virtually none is due to the complex with one site. The communication between the DNA-binding clefts was examined by disrupting one of the very few polar interactions in the otherwise hydrophobic interface between the dimeric units: a tyrosine hydroxyl was removed by mutation to phenylalanine. The mutant protein remained tetrameric in solution and could bind two DNA sites. But instead of being activated by binding two sites, like wild-type SfiI, it showed maximal activity when bound to a single site and had a lower activity when bound to two sites. This interaction across the dimer interface thus enforces in wild-type SfiI a cooperative transition between inactive and active states in both dimers, but without this interaction as in the mutant protein, a single dimer can undergo the transition to give a stable intermediate with one inactive dimer and one active dimer.  相似文献   

8.
To analyze the DNA binding domain of E coli LexA repressor and to test whether the repressor binds as a dimer to DNA, negative dominant lexA mutations affecting the binding domain have been isolated. A large number of amino acid substitutions between amino acid positions 39 and 46 were introduced using cassette mutagenesis. Mutants defective in DNA binding were identified and then examined for dominance to lexA+. A number of substitutions weakened repressor function partially, whereas other substitutions led to a repressor with no demonstrable activity and a defective dominant phenotype. Since the LexA binding site has dyad symmetry, we infer that this dominance results from interaction of monomers of wild-type LexA protein with mutant monomers and that an oligomeric form of repressor binds to operator. The binding of LexA protein to operator DNA was investigated further using a mutant protein, LexA408, which recognizes a symmetrically altered operator mutant but not wild-type operator. A mixture of mutant LexA408 and LexA+ proteins, but neither individual protein, bound to a hybrid recA operator consisting of mutant and wild-type operator half sites. These results suggest that at least 1 LexA protein monomer interacts with each operator half site. We discuss the role of LexA oligomer formation in binding of LexA to operator DNA.  相似文献   

9.
Residues 2, 6, 8 and 10 of Mnt repressor are the major determinants of operator DNA binding and recognition. Here, we investigate the interaction of wild-type Mnt and mutants bearing the Arg2----Lys, His6----Ala, Asn8----Ala and Arg10----Lys mutations with operator DNA modified by methylation or by symmetric base substitutions. The wild-type pattern of methylation interference is altered in specific ways for each of the mutant proteins. In addition, some of the mutant proteins show a 'loss of contact' phenotype with specific mutant operators. Taken together, these and previous results predict the following contacts between side chains in the Mnt tetramer and operator DNA: Arg2 recognizes the guanines at operator positions 10 and 12; His6 contacts the guanines at operator positions 5 and 17; Asn8 contacts operator positions 4, 7, 15 and 18; Arg10 contacts the guanines at operator positions 8 and 14. The proposed contacts can be accommodated in a structural model in which the anti-parallel beta-sheet motifs of Mnt dimers lie in the major grooves of each operator half-site, centered over pseudo-symmetry axes that are 5.5 bp from the central dyad axis of the operator.  相似文献   

10.
Expression of the Staphylococcus aureus plasmid-encoded QacA multidrug transporter is regulated by the divergently encoded QacR repressor protein. To circumvent the formation of disulfide-bonded degradation products, site-directed mutagenesis to replace the two cysteine residues in wild-type QacR was undertaken. Analysis of a resultant cysteineless QacR derivative indicated that it retained full DNA-binding activities in vivo and in vitro and continued to be fully proficient for the mediation of induction of qacA expression in response to a range of structurally dissimilar multidrug transporter substrates. The cysteineless QacR protein was used in cross-linking and dynamic light-scattering experiments to show that its native form was a dimer, whereas gel filtration indicated that four QacR molecules bound per DNA operator site. The addition of inducing compounds led to the dissociation of the four operator-bound QacR molecules from the DNA as dimers. Binding of QacR dimers to DNA was found to be dependent on the correct spacing of the operator half-sites. A revised model proposed for the regulation of qacA expression by QacR features the unusual characteristic of one dimer of the regulatory protein binding to each operator half-site by a process that does not appear to require the prior self-assembly of QacR into tetramers.  相似文献   

11.
We have analyzed the DNA binding properties of Tet-repressor mutants with single amino acid residue replacements at eight positions within the alpha-helix-turn-alpha-helix DNA-binding motif. A saturation mutagenesis of Gln38, Pro39, Thr40, Tyr42, Trp43 and His44 in the second alpha-helix was performed; in addition, several substitutions of Thr27 and Arg28 in the first alpha-helix were constructed. The abilities of these mutant repressors to bind a set of 16 operator variants were determined and revealed 23 new binding specificities. All repressor mutants with DNA-binding activity were inducible by tetracycline, while mutants lacking binding activity were trans-dominant over the wild-type. All mutant proteins were present at the same intracellular steady-state concentrations as the wild-type. These results suggest the structural integrity of the mutant repressors. On the basis of the new recognition specificities, five contacts between a repressor monomer and each operator half-site and the chemical nature of these repressor-operator interactions are proposed. We suggest that Arg28 contacts guanine of the G.C base-pair at operator position 2 with two H-bonds, Gln38 binds adenine of the A.T base-pair at position 3 with two H-bonds, and the methyl group of Thr40 participates in a van der Waals' contact with cytosine of the G.C base-pair at position 6 of tet operator. A previously unrecognized type of interaction is proposed for Pro39, which inserts its side-chain between the methyl groups of the thymines of T.A and A.T base-pairs at positions 4 and 5. Computer modeling of these proposed contacts reveals that they are possible using the canonical structures of the helix-turn-helix motif and B-DNA. These contacts suggest an inverse orientation of the Tet repressor helix-turn-helix with respect to the operator center as compared with non-inducible repressor-operator complexes, and are supported by similar contacts of other repressor-operator complexes.  相似文献   

12.
The operator-binding domain of phage lambda repressor provides a model for DNA recognition by the helix-turn-helix (HTH) motif. In the wild-type protein, dimerization is mediated by hydrophobic packing (of the dyad-related helix 5), which serves as an indirect determinant of operator affinity. The mutant repressor, Tyr88----Cys, forms an intersubunit disulfide linkage and exhibits enhancement of both structural stability and operator affinity. Yet the dimer-specific operator affinity of the mutant is 10-fold weaker than that of the wild-type (noncovalent) dimer, suggesting nonlocal effects of the intersubunit disulfide bond on HTH recognition (Sauer et al., 1986). To explore such nonlocal effects, we describe laser Raman studies of the Cys88 mutant repressor and its interaction with operator sites OL1 and OR3. The following results have been obtained: (i) Wild-type and mutant dimers exhibit similar secondary structures, indicated by quantitative comparison of Raman amide I and amide III bands. (ii) The engineered disulfide of the mutant lacks rigorous symmetry; we observe mainly the gauche/gauche/trans CC-S-S-CC rotamer. (iii) Remarkably, distinctive local and nonlocal differences are observed in the mechanisms of DNA recognition by wild-type and mutant repressors. These differences involve specific hydrogen-bonding interactions between the protein and DNA, including guanine N7 sites in the major groove of DNA, and alterations in DNA phosphodiester conformation induced by protein binding. We analyze these differences in relation to crystal structures of the wild-type dimer with and without bound DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
CTX is a filamentous bacteriophage that encodes cholera toxin and integrates into the Vibrio cholerae genome to form stable lysogens. In CTX lysogens, gene expression originating from the rstA phage promoter is repressed by the phage-encoded repressor RstR. The N-terminal region of RstR contains a helix-turn-helix DNA-binding element similar to the helix-turn-helix of the cI/Cro family of phage repressors, whereas the short C-terminal region is unrelated to the oligomerization domain of cI repressor. Purified His-tagged RstR bound to three extended 50-bp operator sites in the rstA promoter region. Each of the RstR footprints exhibited a characteristic staggered pattern of DNase I-accessible regions that suggested RstR binds DNA as a dimer-of-dimers. In gel permeation chromatography and cross-linking experiments, RstR oligomerized to form dimers and tetramers. RstR was shown to be tetrameric when bound to operator DNA by performing mobility shift experiments with mixtures of RstR and a lengthened active variant of RstR. Binding of RstR to the high affinity O1 site could be fit to a cooperative model of operator binding in which two RstR dimers associate to form tetrameric RstR-operator complexes. The binding of RstR dimers to the left or right halves of O1 operator DNA was not observed in mobility shift assays. These observations support a model in which protein-protein contacts between neighboring RstR dimers contribute to strong operator binding.  相似文献   

15.
Binding of cI repressor to DNA fragments containing the three specific binding sites of the right operator (OR) of bacteriophage lambda was studied in vitro over the temperature range 5-37 degrees C by quantitative footprint titration. The individual-site isotherms, obtained for binding repressor dimers to each site of wild-type OR and to appropriate mutant operator templates, were analyzed for the Gibbs energies of intrinsic binding and pairwise cooperative interactions. It is found that dimer affinity for each of the three sites varies inversely with temperature, i.e., the binding reactions are enthalpy driven, unlike many protein-DNA reactions. By contrast, the magnitude of the pairwise cooperativity terms describing interaction between adjacently site-bound repressor dimers is quite small. This result in combination with the recent finding that repressor monomer-dimer assembly is highly enthalpy driven (with delta H degrees = -16 kcal mol-1) [Koblan, K. S., & Ackers, G. K. (1991) Biochemistry 30, 7817-7821] indicates that the associative contacts between site-bound repressors that mediate cooperativity are unlikely to be the same as those responsible for dimerization. The intrinsic binding enthalpies for all three sites are negative (exothermic) and nearly temperature-invariant, indicating no heat capacity changes on the scale of those inferred in other protein-DNA systems. However, the three operator sites are affected differentially by temperature: the intrinsic binding free energies for sites OR1 and OR3 change in parallel over the entire range, delta H0OR1 = -23.3 +/- 4.0 kcal mol-1 and delta H0OR3 = -22.7 +/- 1.2 kcal mol-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In optimal cases, bivalent ligands can bind with exceptionally high affinity to their protein targets. However, designing optimised linkers, that orient the two binding groups perfectly, is challenging, and yet crucial in both fragment-based ligand design and in the discovery of bisubstrate enzyme inhibitors. To further our understanding of linker design, a series of novel bivalent S-adenosylmethionine (SAM) analogues were designed with the aim of interacting with the MetJ dimer in a bivalent sense (1:1 ligand/MetJ dimer). A range of ligands was synthesised and analyzed for ability to promote binding of the Escherichia coli methionine repressor, MetJ, to its operator DNA. Binding of bivalent SAM analogues to the MetJ homodimer in the presence of operator DNA was evaluated by fluorescence anisotropy and the effect of linker length and structure was investigated. The most effective bivalent ligand identified had a flexible linker, and promoted the DNA-protein interaction at 21-times lower concentration than the corresponding monovalent control compound.  相似文献   

17.
The DNA-binding properties of two super-repressor mutants of the Escherichia coli trp repressor, EK18 and AV77, have been investigated using steady-state fluorescence anisotropy measurements, in order to further elucidate the basis for their super-repressor phenotypes. Several suggestions have been previously proposed as the basis for the super-repressor phenotype of EK18 and AV77. For the negative to positive charge change EK18 mutant, increased electrostatic interactions between the EK18 mutant and the operator and increased protein-protein interactions between EK18 dimers have been suggested as contributing to the super-repressor phenotype of this mutant. We show that EK18 dimers actually bind to wild-type and variant operator sequences with a decrease in apparent cooperativity and an increase in affinity, compared to WTTR dimers. Thus, the EK18 super-repressor phenotype is not due to increased cooperative binding between EK18 dimers. These results support the hypothesis that the super-repressor phenotype of EK18 arises from increased electrostatic interactions between the mutant and DNA. In the case of the AV77 mutant, weaker binding affinity of apo-AV77 to non-specific DNA, increased selectivity of binding of AV77 for the operator, and a higher population of folded functional AV77 dimers available to bind the operator under limiting L-Trp conditions in vivo, have been proposed for the super-repressor phenotype of this mutant. We show that like the EK18 mutant, apoAV77 binds with higher affinity to non-specific DNA compared to apo-WTTR and that the holo-AV77 mutant does not bind with higher selectivity to the operator, has had been previously proposed. We therefore conclude that the super-repressor phenotype of the AV77 mutant is due to an increase in the population of folded, functional AV77 dimers, under limiting L-Trp conditions in vivo.  相似文献   

18.
In order to compare the structures of the DNA-binding sites on variants of the lac repressor, we have studied the influence of these variants on the dimethylsulfate methylation of the lac operator. Since a bound protein changes the availability of specific purines in the operator to this chemical attack, comparisons of the methylation patterns will show similarities or differences in the protein DNA contacts. We compared lac repressor, induced lac repressor (repressor bound to the gratuitous inducer isopropyl-β-d-thiogalactoside), mutant repressors having increased operator affinities (X86, I12 and the X86-I12 double mutant) and repressor peptides (long headpiece, residues 1 to 59 and short headpiece. residues 1 to 51). All of these repressors and repressor peptides exhibit the same general pattern of protection and enhancement in the operator; however, the short headpiece pattern differs most from that of the repressor while the induced repressor and the long headpiece show intermediate patterns that are strikingly similar to each other. The mutant repressors do not show an isopropyl-β-d-thiogalactoside effect but otherwise are almost indistinguishable from wild-type repressor. These results demonstrate that all molecules bind to the operator using basically the same protein-DNA contacts; they imply that (1) most and possibly all repressor contacts to operator lie within amino acids 1 to 51, (2) inducer weakens many contacts rather than totally disrupting one or even a few and (3) the tight-binding mutants do not make additional contacts to the DNA.These results are consistent with a model in which the amino-terminal portions of two repressor monomers make the DNA contacts. We show that one can understand the affinity of binding as related to the accuracy of the register of the two amino-terminal portions along the DNA. Furthermore, the action of inducer and the behaviour of the tight binding mutants can be accomodated within a two-state model in which the strongly or weakly binding states correspond to structures in which the amino-terminal regions are rigidly or loosely held with respect to each other.  相似文献   

19.
In Salmonella typhimurium the genes coding for the enzymes of histidine utilization (hut) are clustered in two adjacent operons, hutMIGC and hut(P,R,Q)UH. A single repressor, the product of the C gene, regulates both operons by binding at two operator sites, one near M and one in (P,R,Q). The deoxyribonucleic acid (DNA)-binding activity of the repressor was measured using DNA's containing separate operators. The repressor had greater activity when assayed using DNA containing the operator of the (P,R,Q)UH operon than when assayed using DNA containing the operator of the MIGC operon. The binding to either operator was absent in the presence of the inducer, urocanate. The DNA-binding activities were also determined for two super-repressors. The super-repressors had altered DNA-binding properties, although the self-regulated nature of the repressors complicated the analysis of the results. A purfication procedure for the wild-type repressor is presented. The purified repressor was somewhat unstable, and additional experiments using it were not performed.  相似文献   

20.
Abstract In Salmonella typhimurium the metE and metR promoters overlap and are divergently transcribed. Three tandem repeats of an 8 bp sequence defined previously as the metE operator site for MetJ-mediated repression also overlap the −35 region of the metR promoter. Starting with a metE-lacZ · metR-galK double gene fusion, site-directed mutagenesis was used to change nucleotides in each of the repeat units from the consensus sequence. Each mutation, along with the wild-type metE-lacZ · metR-galK gene fusion, was cloned into phage λgt2. Regulation of the metE and metR genes was examined by measuring β-galactosidase and galactokinase levels in Escherichia coli strains lysogenized with phage carrying the wild-type and mutant fusions. Mutations in each of the 8 bp repeat units disrupt MetJ-mediated repression for both the metE-lacZ and metR-galK gene fusions, suggesting that the metE and metR genes share a common operator site for the MetJ repressor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号