首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous studies we have described the inhibitory action of a cytosolic protein fraction from heart muscle on ATP-dependent Ca2+ uptake by the sarcoplasmic reticulum (SR); further this inhibition was shown to be blocked by an inhibitor antagonist, also derived from the cytosol (Narayananet al., Biochim. Biophys. Acta. 735: 53–66, 1983; Can. J. Physiol. Pharmacol. 67: 999–1006, 1989). Here we report the complete purificationof the antagonist protein (AP) and characterization of its functional properties. AP was purified to homogeneity from rabbit heart cytosol using two procedures, one utilizing sequential DE52-cellulose and hydroxylapatite chromatography, and the other utilizing anion exchange chromatography on Mono QTM HR 5/5 column in a Pharmacia FPLC system. The purified AP has an apparent molecular weight of 64 kDa; it is made up of about 43% hydrophobic and 57% hydrophilic residues with the following amino-terminal sequence: E-A-H-K-S-E-I-A-H-R-F-N-D-V-G-E-E-H-F-I-G-L-V-L-I-T-F-S-Q-Y-L-Q-K-X-P-Y-E-E-H-A. This partial amino acid sequence data indicate strong sequence homology to serum albumin (sequence homology: 85% to rat serum albumin and 74% to sheep and bovine serum albumin). The purified AP caused concentration-dependent-blockade of the inhibition of Ca2+ uptake by SR observed in the presence of the cytosolic Ca2+ uptake inhibitor protein. This antagonist action of AP was markedly potentiated by calmodulin. AP did not influence the Ca2+ uptake activity of SR measured in the absence of the inhibitor protein and calmodulin. These observations suggest a likely physiological role for AP in the regulation of Ca2+ cycling by SR through a calmodulin-dependent mechanism  相似文献   

2.
Cytosol from rabbit heart and slow and fast skeletal muscles was fractionated using (NH4)2SO4 to yield three cytosolic protein fractions, viz., CPF-I (protein precipitated at 30% saturation), CPF-II (protein precipitated between 30 and 60% saturation), and cytosol supernatant (protein soluble at 60% saturation). The protein fractions were dialysed and tested for their effects on ATP-dependent, oxalate-supported Ca2+ uptake by sarcoplasmic reticulum from heart and slow and fast skeletal muscles. CPF-I from heart and slow muscle, but not from fast muscle, caused marked inhibition (up to 95%) of Ca2+ uptake by sarcoplasmic reticulum from heart and from slow and fast muscles. Neither unfractionated cytosol nor CPF-II or cytosol supernatant from any of the muscles altered the Ca2+ uptake activity of sarcoplasmic reticulum. Studies on the characteristics of inhibition of sarcoplasmic reticulum Ca2+ uptake by CPF-I (from heart and slow muscle) revealed the following: (a) Inhibition was concentration- and temperature-dependent (50% inhibition with approx. 80 to 100 μg CPF-I; seen only at temperatures above 20°C). (b) The inhibitor reduced the velocity of Ca2+ uptake without appreciably influencing the apparent affinity of the transport system for Ca2+. (c) Inhibition was uncompetitive with respect to ATP. (d) Sarcoplasmic reticulum washed following exposure to CPF-I showed reduced rates of Ca2+ uptake, indicating that inhibition results from an interaction of the inhibitor with the sarcoplasmic reticulum membrane. (e) Concomitant with the inhibition of Ca2+ uptake, CPF-I also inhibited the Ca2+-ATPase activity of sarcoplasmic reticulum. (f) Heat-treatment of CPF-I led to loss of inhibitor activity, whereas exposure to trypsin appeared to enhance its inhibitory effect. (g) Addition of CPF-I to Ca2+-preloaded sarcoplasmic reticulum vesicles did not promote Ca2+ release from the vesicles. These results demonstrate the presence of a soluble protein inhibitor of sarcoplasmic reticulum Ca2+ pump in heart and slow skeletal muscle but not in fast skeletal muscle. The characteristics of the inhibitor and its apparently selective distribution suggest a potentially important role for it in the in vivo regulation of sarcoplasmic reticulum Ca2+ pump, and therefore in determining the duration of Ca2+ signal in slow-contracting muscle fibers.  相似文献   

3.
This comparative study investigates the relationship between sarcoplasmic reticulum (SR) calcium(Ca2+)-ATPase transport activity and phospholamban (PLB) phosphorylation in whole cardiac homogenates of spo`ntaneously hypertensive rats (SHR) and their parent, normotensive Wistar Kyoto (WKY) strain during early postnatal development at days 1, 3, 6, 12 and at day 40 to ascertain any difference in SR Ca2+ handling before the onset of hypertension. At day 1, the rate of homogenate oxalate-supported Ca2+ uptake was significantly higher in SHR than in WKY (0.25 ± 0.02 vs 0.12 ± 0.01 nmoles Ca2+/mg wet ventricular weight/min, respectively; p < 0.001). This interstrain difference disappeared with further developmental increase in SR Ca2+ transport. Western Blot analysis and a semiquantitative ELISA did not reveal any difference in the amount of immunoreactive PLB (per mg of total tissue protein) between strains at any of the ages studied. In addition, levels of phosphorylated PLB formed in vitro in the presence of radiolabelled ATP and catalytic (C) subunit of protein kinase A did not differ between SHR and WKY at days 1, 3, 6 and 12. At day 40, C subunit-catalyzed formation of 32P-PLB was reduced by 66% (p < 0.001) in SHR when compared to age-matched WKY In the early postnatal period between day 1 and 12 SR Ca2+-transport values were linearly related to the respective 32P-PLB levels of both SHR and WKY rats. The results indicate that cardiac SR of SHR can sequester Ca2+ at a much higher rate immediately after birth compared to WKY rats. The disappearance of this interstrain difference with further development suggests that some endogenous neuroendocrine or nutritional factor(s) from the hypertensive mother may exert an influence upon the developing heart in utero resulting in a transiently advanced maturation of the SR Ca2+ transport function in SHR pups at the time of birth.  相似文献   

4.
In this study, we investigated the role of elevated sarcoplasmic reticulum (SR) Ca2+ leak through ryanodine receptors (RyR2s) in heart failure (HF)-related abnormalities of intracellular Ca2+ handling, using a canine model of chronic HF. The cytosolic Ca2+ transients were reduced in amplitude and slowed in duration in HF myocytes compared with control, changes paralleled by a dramatic reduction in the total SR Ca2+ content. Direct measurements of [Ca2+]SR in both intact and permeabilized cardiac myocytes demonstrated that SR luminal [Ca2+] is markedly lowered in HF, suggesting that alterations in Ca2+ transport rather than fractional SR volume reduction accounts for the diminished Ca2+ release capacity of SR in HF. SR Ca2+ ATPase (SERCA2)-mediated SR Ca2+ uptake rate was not significantly altered, and Na+/Ca2+ exchange activity was accelerated in HF myocytes. At the same time, SR Ca2+ leak, measured directly as a loss of [Ca2+]SR after inhibition of SERCA2 by thapsigargin, was markedly enhanced in HF myocytes. Moreover, the reduced [Ca2+]SR in HF myocytes could be nearly completely restored by the RyR2 channel blocker ruthenium red. The effects of HF on cytosolic and SR luminal Ca2+ signals could be reasonably well mimicked by the RyR2 channel agonist caffeine. Taken together, these results suggest that RyR2-mediated SR Ca2+ leak is a major factor in the abnormal intracellular Ca2+ handling that critically contributes to the reduced SR Ca2+ content of failing cardiomyocytes.  相似文献   

5.
A cytosolic protein fraction, termed CPF-I, derived by (NH4)2 SO4 fractionation of rabbit heart cytosol caused marked inhibition (up to 95%) of ATP-dependent Ca2+ uptake by cardiac sarcoplasmic reticulum. The inhibitory effect of CPF-I was concentration-dependent (50% inhibition with ~ 80–100 μg CPF-I) and heat labile. The inhibitor reduced the velocity of Ca2+ uptake without altering the apparent affinity of the transport system for Ca2+. Concomitant with the inhibition of Ca2+ uptake, Ca2+-sensitive ATP hydrolysis was also inhibited by CPF-I. The inhibitor did not cause release of Ca2+ from Ca2+-preloaded membrane vesicles. The inhibitor activity of CPF-I could be adsorbed to a DEAE cellulose column and could be eluted with a linear gradient of KCl. These results demonstrate the presence of a soluble protein inhibitor of sarcoplasmic reticulum calcium pump in cardiac muscle and raises the intriguing possibility of its participation in the regulation of calcium pump invivo.  相似文献   

6.
Of the major cellular antioxidant defenses, glutathione (GSH) is particularly important in maintaining the cytosolic redox potential. Whereas the healthy myocardium is maintained at a highly reduced redox state, it has been proposed that oxidation of GSH can affect the dynamics of Ca2+-induced Ca2+ release. In this study, we used multiple approaches to define the effects of oxidized glutathione (GSSG) on ryanodine receptor (RyR)-mediated Ca2+ release in rabbit ventricular myocytes. To investigate the role of GSSG on sarcoplasmic reticulum (SR) Ca2+ release induced by the action potential, we used the thiol-specific oxidant diamide to increase intracellular GSSG in intact myocytes. To more directly assess the effect of GSSG on RyR activity, we introduced GSSG within the cytosol of permeabilized myocytes. RyR-mediated Ca2+ release from the SR was significantly enhanced in the presence of GSSG. This resulted in decreased steady-state diastolic [Ca2+]SR, increased SR Ca2+ fractional release, and increased spark- and non-spark-mediated SR Ca2+ leak. Single-channel recordings from RyR’s incorporated into lipid bilayers revealed that GSSG significantly increased RyR activity. Moreover, oxidation of RyR in the form of intersubunit crosslinking was present in intact myocytes treated with diamide and permeabilized myocytes treated with GSSG. Blocking RyR crosslinking with the alkylating agent N-ethylmaleimide prevented depletion of SR Ca2+ load induced by diamide. These findings suggest that elevated cytosolic GSSG enhances SR Ca2+ leak due to redox-dependent intersubunit RyR crosslinking. This effect can contribute to abnormal SR Ca2+ handling during periods of oxidative stress.  相似文献   

7.
Abstract: Nerve growth cones isolated from fetal rat brain exhibit in their cytosol a robust level of phospholipase A2 activity hydrolyzing phosphatidylinositol (PI) and phosphatidylethanolamine (PE) but not phosphatidylcholine (PC). Western blot analysis with an antibody to the well-characterized cytosolic phospholipase A2 (mol wt 85,000) reveals only trace amounts of this PC- and PE-selective enzyme in growth cones. By gel filtration on Superose 12, growth cone phospholipase A2 activity elutes essentially as two peaks of high molecular mass, at ~65 kDa and at well over 100 kDa. Anion exchange chromatography completely separates a PI-selective from a PE-selective activity, indicating the presence of two different, apparently monoselective phospholipase A2 species. The PI-selective enzyme, the predominant phospholipase A2 activity in whole growth cones, is enriched greatly in these structures relative to their parent fractions from fetal brain. This phospholipase A2 is resistant to reducing agents and is found in the cytosol as well as membrane-associated in the presence of Ca2+. However, its catalytic activity is Ca2+-independent regardless of whether the enzyme is associated with pure substrate or mixed-lipid growth cone vesicles. The PE-selective phospholipase A2 in growth cones was studied in less detail but shares with the PI-selective enzyme several properties, including intracellular localization, the existence of cytosolic and membrane-associated forms, and Ca2+ independence. Our data indicate growth cones contain two high-molecular-weight forms of phospholipase A2 that share many properties with known, Ca2+-independent cytosolic phospholipase A2 species but that appear to be monoselective for PI and PE, respectively. In particular, the PI-selective enzyme may represent a new member of the growing family of cytoplasmic phospholipase A2. The enrichment of the PI-selective phospholipase A2 in growth cones suggests it plays a major role in the regulation of growth cone function.  相似文献   

8.
The dyadic organization of ventricular myocytes ensures synchronized activation of sarcoplasmic reticulum (SR) Ca2+ release during systole. However, it remains obscure how the dyadic organization affects SR Ca2+ handling during diastole. By measuring intraluminal SR Ca2+ ([Ca2+]SR) decline during rest in rabbit ventricular myocytes, we found that ∼76% of leaked SR Ca2+ is extruded from the cytosol and only ∼24% is pumped back into the SR. Thus, the majority of Ca2+ that leaks from the SR is removed from the cytosol before it can be sequestered back into the SR by the SR Ca2+-ATPase (SERCA). Detubulation decreased [Ca2+]SR decline during rest, thus making the leaked SR Ca2+ more accessible for SERCA. These results suggest that Ca2+ extrusion systems are localized in T-tubules. Inhibition of Na+-Ca2+ exchanger (NCX) slowed [Ca2+]SR decline during rest by threefold, however did not prevent it. Depolarization of mitochondrial membrane potential during NCX inhibition completely prevented the rest-dependent [Ca2+]SR decline. Despite a significant SR Ca2+ leak, Ca2+ sparks were very rare events in control conditions. NCX inhibition or detubulation increased Ca2+ spark activity independent of SR Ca2+ load. Overall, these results indicate that during rest NCX effectively competes with SERCA for cytosolic Ca2+ that leaks from the SR. This can be explained if the majority of SR Ca2+ leak occurs through ryanodine receptors in the junctional SR that are located closely to NCX in the dyadic cleft. Such control of the dyadic [Ca2+] by NCX play a critical role in suppressing Ca2+ sparks during rest.  相似文献   

9.
The dyadic organization of ventricular myocytes ensures synchronized activation of sarcoplasmic reticulum (SR) Ca2+ release during systole. However, it remains obscure how the dyadic organization affects SR Ca2+ handling during diastole. By measuring intraluminal SR Ca2+ ([Ca2+]SR) decline during rest in rabbit ventricular myocytes, we found that ∼76% of leaked SR Ca2+ is extruded from the cytosol and only ∼24% is pumped back into the SR. Thus, the majority of Ca2+ that leaks from the SR is removed from the cytosol before it can be sequestered back into the SR by the SR Ca2+-ATPase (SERCA). Detubulation decreased [Ca2+]SR decline during rest, thus making the leaked SR Ca2+ more accessible for SERCA. These results suggest that Ca2+ extrusion systems are localized in T-tubules. Inhibition of Na+-Ca2+ exchanger (NCX) slowed [Ca2+]SR decline during rest by threefold, however did not prevent it. Depolarization of mitochondrial membrane potential during NCX inhibition completely prevented the rest-dependent [Ca2+]SR decline. Despite a significant SR Ca2+ leak, Ca2+ sparks were very rare events in control conditions. NCX inhibition or detubulation increased Ca2+ spark activity independent of SR Ca2+ load. Overall, these results indicate that during rest NCX effectively competes with SERCA for cytosolic Ca2+ that leaks from the SR. This can be explained if the majority of SR Ca2+ leak occurs through ryanodine receptors in the junctional SR that are located closely to NCX in the dyadic cleft. Such control of the dyadic [Ca2+] by NCX play a critical role in suppressing Ca2+ sparks during rest.  相似文献   

10.
A 94 kDa large subunit thiol-protease, as identified by anti-calpain antibodies, has been isolated from skeletal muscle junctional sarcoplasmic reticulum (SR). This protease cleaves specifically the skeletal muscle ryanodine receptor (RyR)/Ca2+ release channel at one site resulting in the 375 kDa and 150 kDa fragments. The 94 kDa thiol-protease degrades neither other SR proteins nor the ryanodine receptor of cardiac nor brain membranes. The partially purified 94 kDa protease, like the SR associated protease, had an optimal pH of about 7.0, was absolutely dependent on the presence of thiol reducing reagents, and was completely inhibited by HgCl2, leupeptin and the specific calpain I inhibitor. However, while the SR membrane-associated protease requires Ca2+ at a submicromolar concentration, the isolated thiol-protease has lost the Ca2+ requirement. The 94 kDa thiol-protease had no effect on ryanodine binding but modified the channel activity of RyR reconstituted into planar lipid bilayer: in a time-dependent manner, the channel activity decreases and within several minutes the channel is converted into a subconducting state. The protease-modified channel activity is still Ca2+-dependent and ryanodine sensitive. This 94 kDa thiol-protease cross react with anti-calpain antibodies thus, may represent the novel large subunit of the skeletal muscle specific calpain p94. Received: 10 December 1996/Revised: 11 August 1997  相似文献   

11.
A multifunctional Ca2+/calmodulin dependent protein kinase was purified approximately 650 fold from cytosolic extract of Candida albicans. The purified preparation gave a single band of 69 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis with its native molecular mass of 71 kDa suggesting that the enzyme is monomeric. Its activity was dependent on calcium, calmodulin and ATP when measured at saturating histone IIs concentration. The purified Ca2+/CaMPK was found to be autophosphorylated at serine residue(s) in the presence of Ca2+/calmodulin and enzyme stimulation was strongly inhibited by W-7 (CaM antagonist) and KN-62 (Ca2+/CaM dependent PK inhibitor). These results confirm that the purified enzyme is Ca2+/CaM dependent protein kinase of Candida albicans. The enzyme phosphorylated a number of exogenous and endogenous substrates in a Ca2+/calmodulin dependent manner suggesting that the enzyme is a multifunctional Ca2+/calmodulin-dependent protein kinase of Candida albicans.  相似文献   

12.
The aim of this study was to explore the possible participation of cardiac renin-angiotensin system (RAS) in the ischemia-reperfusion induced changes in heart function as well as Ca2+-handling activities and gene expression of cardiac sarcoplasmic reticulum (SR) proteins. The isolated rat hearts, treated for 10 min without and with 30 M captopril or 100 M losartan, were subjected to 30 min ischemia followed by reperfusion for 60 min and processed for the measurement of SR function and gene expression. Attenuated recovery of the left ventricular developed pressure (LVDP) upon reperfusion of the ischemic heart was accompanied by a marked reduction in SR Ca2+-pump ATPase, Ca2+-uptake and Ca2+-release activities. Northern blot analysis revealed that mRNA levels for SR Ca2+-handling proteins such as Ca2+-pump ATPase (SERCA2a), ryanodine receptor, calsequestrin and phospholamban were decreased in the ischemia-reperfused heart as compared with the non-ischemic control. Treatment with captopril improved the recovery of LVDP as well as SR Ca2+-pump ATPase and Ca2+-uptake activities in the postischemic hearts but had no effect on changes in Ca2+-release activity due to ischemic-reperfusion. Losartan neither affected the changes in contractile function nor modified alterations in SR Ca2+-handling activities. The ischemia-reperfusion induced decrease in mRNA levels for SR Ca2+-handling proteins were not affected by treatment with captopril or losartan. The results suggest that the improvement of cardiac function in the ischemic-reperfused heart by captopril is associated with the preservation of SR Ca2+-pump activities; however, it is unlikely that this action of captopril is mediated through the modification of cardiac RAS. Furthermore, cardiac RAS does not appear to contribute towards the ischemia-reperfusion induced changes in gene expression for SR Ca2+-handling proteins.  相似文献   

13.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg–1 i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart. (Mol Cell Biochem 261: 245–249, 2004)  相似文献   

14.
Sarcoplasmic reticulum (SR) Ca2+ handling plays a key role in normal excitation-contraction coupling and aberrant SR Ca2+ handling is known to play a significant role in certain types of arrhythmia. Because arrhythmias are spatially distinct, emergent phenomena, they must be investigated at the tissue level. However, methods for directly probing SR Ca2+ in the intact heart remain limited. This article describes the protocol for dual optical mapping of transmembrane potential (Vm) and free intra-SR [Ca2+] ([Ca2+]SR) in the Langendorff-perfused rabbit heart. This approach takes advantage of the low-affinity Ca2+ indicator Fluo-5N, which has minimal fluorescence in the cytosol where intracellular [Ca2+] ([Ca2+]i) is relatively low but exhibits significant fluorescence in the SR lumen where [Ca2+]SR is in the millimolar range. In addition to revealing SR Ca2+ characteristics spatially across the epicardial surface of the heart, this approach has the distinct advantage of simultaneous monitoring of Vm, allowing for investigations into the bidirectional relationship between Vm and SR Ca2+ and the role of SR Ca2+ in arrhythmogenic phenomena.  相似文献   

15.
The effect of regucalcin on Ca2+/calmodulin-dependent protein kinase activity in the cytosol of rat renal cortex was investigated. Regucalcin is a calcium-binding protein which exists in rat liver and renal cortex. Protein kinase activity in renal cortex cytosol was markedly increased by the addition of CaCl2 (0.5 mM) plus calmodulin (10 µg/ml) in the enzyme reaction mixture. This increase was completely prevented by the addition of trifluoperazine (25 µM), an antagonist of calmodulin. The cytosolic Ca2+/calmodulin- dependent protein kinase activity was clearly inhibited by the addition of regucalcin; an appreciable effect of regucalcin was seen at 0.01 µM. The cytosolic Ca2+/calmodulin-dependent protein kinase activity was fairly increased by increasing concentrations of added Ca2+ (100-1000 µM). This increase was markedly blocked by the presence of regucalcin (0.1 µM). The inhibitory effect of regucalcin on the protein kinase activity was also seen with varying concentrations of calmodulin (2-20 µg/ml). These results demonstrate that regucalcin can regulate Ca2+/calmodulin-dependent protein kinase activity in renal cortex cells.  相似文献   

16.
Summary Control of mitochondrial respiration depends on ADP availability to the F1ATPase. An electrochemical gradient of ADP and ATP across the mitochondrial inner membrane is maintained by the adenine nucleotide translocase which provides ADP to the matrix for ATP synthesis and ATP for energy-dependent processes in the cytosol. Mitochondrial respiration is responsive to the cytosolic phosphorylation potential, ATP/ADP · Pi which is in apparent equilibrium with the first two sites in the electron transport chain. Conventional measures of free adenine nucleotides is a confounding issue in determining cytosolic and mitochondrial phosphorylation potentials. The advent of phosphorus-31 nuclear magnetic resonance (P-31 NMR) allows the determination of intracellular free concentrations of ATP, creatine-P and Pi in perfused muscle in situ. In the glucose-perfused heart, there is an absence of correlation between the cytosolic phosphorylation potential as determined by P-31 NMR and cardiac oxygen consumption over a range of work loads. These data suggest that contractile work leads to increased generation of mitochondrial NADH so that ATP production keeps pace with myosin ATPase activity. The mechanism of increased ATP synthesis is referred to as stimulusre-sponse-metabolism coupling. In muscle, increased contractility is a result of interventions which increase cytosolic free Ca2+ concentrations. The Ca2- signal thus generated increases glycogen breakdown and myosin ATPase in the cytosol. This signal is concomitantly transmitted to the mitochondria which respond to small increases in matrix Ca2+ by activation of Ca2+-sensitive dehydrogenases. The Ca2+-activated dehydrogenase activities are key rate-controlling enzymes in tricarboxylic acid cycle flux, and their activation by Ca2- leads to increased pyridine nucleotide reduction and oxidative phosphorylation. These observations which have been consistent in preparations both in vitro and in situ do not obviate a role for ADP control of muscle respiration, but do explain, in part, the lack of dramatic fluctuations in the cytosolic phosphorylation potential over a large range of contractile activities.  相似文献   

17.
Ca2+-dependent protein kinases (CDPKs) play an important role in plant signal transduction. Protein kinase(s) activities induced by 5°C cold stress in rice (Oryza sativa L.) seedlings were investigated in both leaf and stem tissues in an early (up to 45 min) and late (up to 12 h) response study. The leaf had 37-, 47- and 55-kDa protein kinase activities, and the stem had 37-, 47- and 55-kDa protein kinase activities. A 16-kDa protein showed constitutive kinase activity in the rice seedling leaf and stem. It was further identified that the 47-kDa protein kinase activity induced by cold in both the cytosolic and membrane fractions of the stem was strictly Ca2+-dependent. This CDPK activitiy increased in the presence of the Ca2+ ionophore A23187 in stem segments, whereas it was decreased by the Ca2+ channel blocker, LaCl3, and the Ca2+ chelator, EGTA. The general protein kinase inhibitor, staurosporine, completely inhibited this CDPK activity in vitro, and both W7, a calmodulin antagonist, and H7, a protein kinase C inhibitor, could only partially decrease this activity. The protein phosphatase inhibitor, okadaic acid, increased CDPK activity. This CDPK activity was also induced by salt, drought stress and the phytohormone abscicic acid. Among the 18 rice varieties tested, this cold-induced 47-kDa CDPK activity was stronger in the cold-tolerant varieties than in the sensitive ones. Received: 13 August 1999 / Accepted: 24 January 2000  相似文献   

18.
《Biophysical journal》2023,122(2):386-396
The type 2a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) plays a central role in the intracellular Ca2+ homeostasis of cardiac myocytes, pumping Ca2+ from the cytoplasm into the sarcoplasmic reticulum (SR) lumen to maintain relaxation (diastole) and prepare for contraction (systole). Diminished SERCA2a function has been reported in several pathological conditions, including heart failure. Therefore, development of new drugs that improve SERCA2a Ca2+ transport is of great clinical significance. In this study, we characterized the effect of a recently identified N-aryl-N-alkyl-thiophene-2-carboxamide (or compound 1) on SERCA2a Ca2+-ATPase and Ca2+ transport activities in cardiac SR vesicles, and on Ca2+ regulation in a HEK293 cell expression system and in mouse ventricular myocytes. We found that compound 1 enhances SERCA2a Ca2+-ATPase and Ca2+ transport in SR vesicles. Fluorescence lifetime measurements of fluorescence resonance energy transfer between SERCA2a and phospholamban indicated that compound 1 interacts with the SERCA-phospholamban complex. Measurement of endoplasmic reticulum Ca2+ dynamics in HEK293 cells expressing human SERCA2a showed that compound 1 increases endoplasmic reticulum Ca2+ load by enhancing SERCA2a-mediated Ca2+ transport. Analysis of cytosolic Ca2+ dynamics in mouse ventricular myocytes revealed that compound 1 increases the action potential-induced Ca2+ transients and SR Ca2+ load, with negligible effects on L-type Ca2+ channels and Na+/Ca2+ exchanger. However, during adrenergic receptor activation, compound 1 did not further increase Ca2+ transients and SR Ca2+ load, but it decreased the propensity toward Ca2+ waves. Suggestive of concurrent desirable effects of compound 1 on RyR2, [3H]-ryanodine binding to cardiac SR vesicles shows a small decrease in nM Ca2+ and a small increase in μM Ca2+. Accordingly, compound 1 slightly decreased Ca2+ sparks in permeabilized myocytes. Thus, this novel compound shows promising characteristics to improve intracellular Ca2+ dynamics in cardiomyocytes that exhibit reduced SERCA2a Ca2+ uptake, as found in failing hearts.  相似文献   

19.
Collet C  Ma J 《Biophysical journal》2004,87(1):268-275
Activation of store-operated Ca2+ entry (SOCE) into the cytoplasm requires retrograde signaling from the intracellular Ca2+ release machinery, a process that involves an intimate interaction between protein components on the intracellular and cell surface membranes. The cellular machinery that governs the Ca2+ movement in muscle cells is developmentally regulated, reflecting maturation of the junctional membrane structure as well as coordinated expression of related Ca2+ signaling molecules. Here we demonstrate the existence of SOCE in freshly isolated skeletal muscle cells obtained from embryonic days 15 and 16 of the mouse embryo, a critical stage of muscle development. SOCE in the fetal muscle deactivates incrementally with the uptake of Ca2+ into the sarcoplasmic reticulum (SR). A novel Ca2+-dependent facilitation of SOCE is observed in cells transiently exposed to high cytosolic Ca2+. Our data suggest that cytosolic Ca2+ can facilitate SOCE whereas SR luminal Ca2+ can deactivate SOCE in the fetal skeletal muscle. This cooperative mechanism of SOCE regulation by Ca2+ ions not only enables tight control of SOCE by the SR membrane, but also provides an efficient mechanism of extracellular Ca2+ entry in response to physiological demand. Such Ca2+ signaling mechanism would likely contribute to contraction and development of the fetal skeletal muscle.  相似文献   

20.
Hyperamylinemia is a condition that accompanies obesity and precedes type II diabetes, and it is characterized by above-normal blood levels of amylin, the pancreas-derived peptide. Human amylin oligomerizes easily and can deposit in the pancreas [1], brain [2], and heart [3], where they have been associated with calcium dysregulation. In the heart, accumulating evidence suggests that human amylin oligomers form moderately cation-selective [[4], [5]] channels that embed in the cell sarcolemma (SL). The oligomers increase membrane conductance in a concentration-dependent manner [5], which is correlated with elevated cytosolic Ca2+. These findings motivate our core hypothesis that non-selective inward Ca2+ conduction afforded by human amylin oligomers increase cytosolic and sarcoplasmic reticulum (SR) Ca2+ load, which thereby magnifies intracellular Ca2+ transients. Questions remain however regarding the mechanism of amylin-induced Ca2+ dysregulation, including whether enhanced SL Ca2+ influx is sufficient to elevate cytosolic Ca2+ load [6], and if so, how might amplified Ca2+ transients perturb Ca2+-dependent cardiac pathways. To investigate these questions, we modified a computational model of cardiomyocytes Ca2+ signaling to reflect experimentally-measured changes in SL membrane permeation and decreased sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) function stemming from acute and transgenic human amylin peptide exposure. With this model, we confirmed the hypothesis that increasing SL permeation alone was sufficient to enhance Ca2+ transient amplitudes. Our model indicated that amplified cytosolic transients are driven by increased Ca2+ loading of the SR and that greater fractional release may contribute to the Ca2+-dependent activation of calmodulin, which could prime the activation of myocyte remodeling pathways. Importantly, elevated Ca2+ in the SR and dyadic space collectively drive greater fractional SR Ca2+ release for human amylin expressing rats (HIP) and acute amylin-exposed rats (+Amylin) mice, which contributes to the inotropic rise in cytosolic Ca2+ transients. These findings suggest that increased membrane permeation induced by oligomeratization of amylin peptide in cell sarcolemma contributes to Ca2+ dysregulation in pre-diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号