首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theoretical study for the water-assisted mechanism in one-carbon unit transfer reaction catalyzed by glycinamide ribonucleotide transformylase (GAR Tfase) is investigated in which the proton transfers in an indirect way and the energy barrier for each transition state has been lowered about 80–100 kJ/mol when compared with the corresponding one in a no-water-involved mechanism. There are two possible pathways in each mechanism: one is concerted and the other is stepwise. Our results have verified the presumption from experiments that one water molecule can assist to achieve the whole reaction. Because the addition of this water molecule in the transition states can relax the strong strain in the unstable system and greatly lowered the energy barrier. The water-assisted paths are preferable to the no-water-involved ones and the bulk solvent effect of water is also discussed.  相似文献   

2.
Several new 10-formyl and 10-hydroxymethyl derivatives of 5,8,10-trideazapteroic acid have been synthesized by a novel and convenient enamine alkylation procedure. Two of these compounds (10a and 10b) were shown to be very powerful inhibitors of L. casei (10a, IC50 = 8 × 10−6 M ; 10b, IC50 = 7 × 10−6 M ) and recombinant mouse (10a, IC50 = 3.4 × 10−5 M ; 10b, IC50 = 2.8 × 10−5 M ) glycinamide ribonucleotide formyltransferase (GARFT). These IC50 values are comparable to the classical GARFT inhibitor (6R)-DDATHF (IC50, L. casei 2.3 × 10−6M ; recombinant mouse 2.3 × 10−5 M ) under identical assay conditions. For both compounds, the inhibition of L. casei GARFT increased with time of incubation, but not markedly with the recombinant mouse enzyme. Due to their potential ability to interfere with purine biosynthesis and to penetrate microbial cells the new nonclassical GARFT inhibitors reported here may be useful for the treatment of infections caused by microorganisms that are sensitive and resistant to conventional antimicrobial agents.  相似文献   

3.
The crystal structure of Escherichia coli GAR Tfase at 2.1 A resolution in complex with 10-formyl-5,8,10-trideazafolic acid (10-formyl-TDAF, K(i) = 260 nM), an inhibitor designed to form an enzyme-assembled multisubstrate adduct with the substrate, beta-GAR, was studied to determine the exact nature of its inhibitory properties. Rather than forming the expected covalent adduct, the folate inhibitor binds as the hydrated aldehyde (gem-diol) in the enzyme active site, in a manner that mimics the tetrahedral intermediate of the formyl transfer reaction. In this hydrated form, the inhibitor not only provides unexpected insights into the catalytic mechanism but also explains the 10-fold difference in inhibitor potency between 10-formyl-TDAF and the corresponding alcohol, and a further 10-fold difference for inhibitors that lack the alcohol. The presence of the hydrated aldehyde was confirmed in solution by (13)C-(1)H NMR spectroscopy of the ternary GAR Tfase-beta-GAR-10-formyl-TDAF complex using the (13)C-labeled 10-formyl-TDAF. This insight into the behavior of the inhibitor, which is analogous to protease or transaminase inhibitors, provides a novel and previously unrecognized basis for the design of more potent inhibitors of the folate-dependent formyl transfer enzymes of the purine biosynthetic pathway and development of anti-neoplastic agents.  相似文献   

4.
5-Aminoimidazole ribonucleotide (AIR) synthetase, glycinamide ribonucleotide (GAR) synthetase, and GAR transformylase activities from chicken liver exist on a single polypeptide of Mr 110,000 [Daubner, C. S., Schrimsher, J. L., Schendel, F. J., Young, M., Henikoff, S., Patterson, D., Stubbe, J., & Benkovic, S. J. (1985) Biochemistry 24, 7059-7062]. Details of copurification of these three activities through four chromatographic steps are reported. The ratios of these activities remain constant throughout the purification. AIR synthetase has an absolute requirement for K+ for activity and under these conditions has apparent molecular weights of 330,000, determined by Sephadex G-200 chromatography, and 133,000, determined by sucrose density gradient ultracentrifugation. Incubation of 18O-labeled formylglycinamidine ribonucleotide (FGAM) with AIR synthetase results in stoichiometric production of AIR, ADP, and [18O]Pi. NMR spectra of beta-FGAM and beta-AIR are reported.  相似文献   

5.
J H Shim  S J Benkovic 《Biochemistry》1999,38(31):10024-10031
Site-directed mutagenesis followed by studies of the pH dependence of the kinetic parameters of the mutants has been used to probe the role of the active site residues and loops in catalysis by glycinamide ribonucleotide transformylase (EC 2.1.2.2). The analysis of the mutants of the strictly conserved active site residues, His108 and Asp144, revealed that His108 acts in a salt bridge with Asp144 as a general acid catalyst with a pK(a) value of 9.7. Asp144 also plays a key role in the preparation of the active site geometry for catalysis. The rate-limiting step in the pH range of 6-10 appears to be the catalytic steps involving tetrahedral intermediates, supported by the observation of a pL (L being H or D)-independent solvent deuterium isotope effect of 2. The ionization of the amino group of glycinamide ribonucleotide both as a free and as a bound form dominates the kinetic behavior at low pH. The analysis of a mutation, H121Q, within the loop spanning amino acids 111-131 suggests the closure of the loop is involved in the binding of the substrate. The kinetic behavior parallels pH effects revealed by a series of X-ray crystallographic structures of the apoenzyme and inhibitor-bound enzyme [Su, Y., Yamashita, M. M., Greasley, S. E. , Mullen, C. A., Shim, J. H., Jennings, P. A., Benkovic, S. J., and Wilson, I. A. (1998) J. Mol. Biol. 281, 485-499], permitting a more exact formulation of the probable catalytic mechanism.  相似文献   

6.
PurT-encoded glycinamide ribonucleotide transformylase, or PurT transformylase, functions in purine biosynthesis by catalyzing the formylation of glycinamide ribonucleotide through a catalytic mechanism requiring Mg(2+)ATP and formate. From previous x-ray diffraction analyses, it has been demonstrated that PurT transformylase from Escherichia coli belongs to the ATP-grasp superfamily of enzymes, which are characterized by three structural motifs referred to as the A-, B-, and C-domains. In all of the ATP-grasp enzymes studied to date, the adenosine nucleotide ligands are invariably wedged between the B- and C-domains, and in some cases, such as biotin carboxylase and carbamoyl phosphate synthetase, the B-domains move significantly upon nucleotide binding. Here we present a systematic and high-resolution structural investigation of PurT transformylase complexed with various adenosine nucleotides or nucleotide analogs including Mg(2+)ATP, Mg(2+)-5'-adenylylimidodiphosphate, Mg(2+)-beta,gamma-methyleneadenosine 5'-triphosphate, Mg(2+)ATPgammaS, or Mg(2+)ADP. Taken together, these studies indicate that the conformation of the so-called "T-loop," delineated by Lys-155 to Gln-165, is highly sensitive to the chemical identity of the nucleotide situated in the binding pocket. This sensitivity to nucleotide identity is in sharp contrast to that observed for the "P-loop"-containing enzymes, in which the conformation of the binding motif is virtually unchanged in the presence or absence of nucleotides.  相似文献   

7.
Glycinamide ribonucleotide transformylase (GART; 10-formyltetrahydrofolate:5'-phosphoribosylglycinamide formyltransferase, EC 2.1.2.2), an essential enzyme in de novo purine biosynthesis, has been a chemotherapeutic target for several decades. The three-dimensional structure of the GART domain from the human trifunctional enzyme has been solved by X-ray crystallography. Models of the apoenzyme, and a ternary complex with the 10-formyl-5,8-dideazafolate cosubstrate and a glycinamide ribonucleotide analogue, hydroxyacetamide ribonucleotide [alpha,beta-N-(hydroxyacetyl)-d-ribofuranosylamine], are reported to 2.2 and 2.07 A, respectively. The model of the apoenzyme represents the first structure of GART, from any source, with a completely unoccupied substrate and cosubstrate site, while the ternary complex is the first structure of the human GART domain that is bound at both the substrate and cosubstrate sites. A comparison of the two models therefore reveals subtle structural differences that reflect substrate and cosubstrate binding effects and implies roles for the invariant residues Gly 133, Gly 146, and His 137. Preactivation of the DDF formyl group appears to be key for catalysis, and structural flexibility of the active end of the substrate may facilitate nucleophilic attack. A change in pH, rather than folate binding, correlates with movement of the folate binding loop, whereas the phosphate binding loop position does not vary with pH. The electrostatic surface potentials of the human GART domain and Escherichia coli enzyme explain differences in the binding affinity of polyglutamylated folates, and these differences have implications to future chemotherapeutic agent design.  相似文献   

8.
Exposure to nitrous oxide (N2O) in vivo is accompanied by oxidation of cob[I]-alamin to the inactive cob[III]alamin [1]. There is loss of methionine synthetase activity [2] and evidence of depressed supply of single carbon units at the formate level of oxidation [3,4,5]. We measured the effect of inactivation of B12 on the folate-dependent transformylases concerned in purine synthesis. After 24 h exposure to N2O there was a significant fall in glycinamide ribonucleotide transformylase (EC 2.1.2.2) and a significant increase in 5-amino-4-imidazole carboxamide transformylase (EC 2.1.2.3).  相似文献   

9.
Antibody probes of Western blots [Renart, J., Reiser, J., & Stark, G. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 3116] of chicken liver homogenates under various conditions revealed that glycinamide ribonucleotide transformylase can be rapidly proteolyzed in such homogenates. These findings, along with molecular weight measurements by ultracentrifugation, identify the true form of glycinamide ribonucleotide transformylase as a monomeric protein of 117000 daltons. This protein has been purified 400-fold in 44% yield from chicken liver in one step on an affinity column of 10-formyl-5,8-dideazafolate-Sepharose. Native glycinamide ribonucleotide transformylase retains full activity after proteolytic cleavage to a form (Mr 55000) similar to fragments seen in the Western blot of the homogenates. This phenomenon may be responsible for the previous identification of glycinamide ribonucleotide (GAR) transformylase as a dimer of 55000-dalton subunits. Similar analyses using antibodies to 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase [Mueller, W. T., & Benkovic, S. J. (1981) Biochemistry 20, 337] and trifunctional enzyme [Smith, G. K., Mueller, W. T., Wasserman, G. F., Taylor, W. D., & Benkovic, S. J. (1980) Biochemistry 19, 4313] confirm that these two proteins were isolated in their native forms.  相似文献   

10.
The atomic structure of glycinamide ribonucleotide transformylase, an essential enzyme in purine biosynthesis, has been determined at 3.0 A resolution. The last three C-terminal residues and a sequence stretch of 18 residues (residues 113 to 130) are not visible in the electron density map. The enzyme forms a dimer in the crystal structure. Each monomer is divided into two domains, which are connected by a central mainly parallel seven-stranded beta-sheet. The N-terminal domain contains a Rossmann type mononucleotide fold with a phosphate ion bound to the C-terminal end of the first beta-strand. A long narrow cleft stretches from the phosphate to a conserved aspartic acid, Asp144, which has been suggested as an active-site residue. The cleft is lined by a cluster of residues, which are conserved between bacterial, yeast, avian and human enzymes, and likely represents the binding pocket and active site of the enzyme. GAR Tfase binds a reduced folate cofactor and glycinamide ribonucleotide for the catalysis of one of the initial steps in purine biosynthesis. Folate analogs and multi-substrate inhibitors of the enzyme have antineoplastic effects and the structure determination of the unliganded enzyme and enzyme-inhibitor complexes will aid the development of anti-cancer drugs.  相似文献   

11.
J Aimi  H Qiu  J Williams  H Zalkin    J E Dixon 《Nucleic acids research》1990,18(22):6665-6672
The trifunctional enzyme encoding glycinamide ribonucleotide synthetase (GARS)-aminoimidazole ribonucleotide synthetase (AIRS)-glycinamide ribonucleotide transformylase (GART) was cloned by functional complementation of an E. coli mutant using an avian liver cDNA expression library. In E. coli, genes encoding these separate activities (purD, purM, and purN, respectively) produce three proteins. The avian cDNA, in contrast, encodes a single polypeptide with all three enzyme activities. Using the avian DNA as a probe, a cDNA encoding the complete coding sequence of the trifunctional human enzyme was also isolated and sequenced. The deduced amino acid sequence of the human and avian polyproteins show extensive sequence homologies to the bacterial purD, purM, and purN encoded proteins. Avian and human liver RNAs appear to encode both a trifunctional enzyme (G-ARS-AIRS-GART) as well as an RNA which encodes only GARS. The trifunctional protein has been implicated in the pathology of Downs Syndrome and molecular tools are now available to explore this hypothesis. Initial efforts to compare the expression of GARS-AIRS-GART between a normal fibroblast cell line and a Downs Syndrome cell line indicate that the levels of RNA are similar.  相似文献   

12.
The design and synthesis of 10-(2-benzoxazolcarbonyl)-DDACTHF (1) as an inhibitor of glycinamide ribonucleotide transformylase (GAR Tfase) and aminoimidazole carboxamide transformylase (AICAR Tfase) are reported. Ketone 1 and the corresponding alcohol 13 were evaluated for inhibition of GAR Tfase and AICAR Tfase and the former was found to be a potent inhibitor of recombinant human (rh) GAR Tfase (Ki=600 nM).  相似文献   

13.
The catalytic cycle for the heterolytic splitting of H2 by Ni-Fe hydrogenase has been investigated in four recent quantum chemical studies. The mechanisms proposed are described and compared. Although there are clear differences in these mechanisms and in the assignments of the different states observed experimentally, there are also important points of concensus.  相似文献   

14.
5-Amino-4-imidazolecarboxamide ribonucleotide transformylase/IMP cyclohydrolase (ATIC) is a bifunctional protein possessing two enzymatic activities that sequentially catalyze the last two steps in the pathway for de novo synthesis of inosine 5'-monophosphate. This bifunctional enzyme is of particular interest because of its potential as a chemotherapeutic target. Furthermore, these two catalytic activities reside on the same protein throughout all of nature, raising the question of whether there is some kinetic advantage to the bifunctionality. Rapid chemical quench, stopped-flow absorbance, and steady-state kinetic techniques were used to elucidate the complete kinetic mechanism of human ATIC. The kinetic simulation program KINSIM was used to model the kinetic data obtained in this study. The detailed kinetic analysis, in combination with kinetic simulations, provided the following key features of the enzyme reaction pathway. 1) The rate-limiting step in the overall reaction (2.9 +/- 0.4 s(-1)) is likely the release of tetrahydrofolate from the formyltransferase active site or a conformational change associated with tetrahydrofolate release. 2) The rate of the reverse transformylase reaction (6.7 s(-1)) is approximately 2-3-fold faster than the forward rate (2.9 s(-1)), whereas the cyclohydrolase reaction is essentially unidirectional in the forward sense. The cyclohydrolase reaction thus draws the overall bifunctional reaction toward the production of inosine monophosphate. 3) There was no kinetic evidence of substrate channeling of the intermediate, the formylaminoimidazole carboxamide ribonucleotide, between the formyltransferase and the cyclohydrolase active sites.  相似文献   

15.
Inhibition of gastric acid secretion by thiocyanate is explained by a protonophoric mechanism assuming that thiocyanate induces a H(+) back flux from the acidic gastric lumen into the parietal cells of gastric mucosa. Protonophoric activity of thiocyanate was examined by swelling measurements using rat liver mitochondria and theoretically by quantum chemical methods. Mitochondria suspended in K-thiocyanate medium plus nigericin (an H/K-exchanger) swelled when the medium pH was acidic, indicating that SCN(-) initiates a transfer of H(+) across the inner membrane. To rationalize the protonophoric activity of thiocyanate, we considered the dehydration of SCN(-) to be critical for transmembranal H(+) transfer. For modeling this process, various hydrate clusters of SCN(-) and Cl(-) were generated and optimized by density functional theory (DFT) at the B3-LYP/6-311++G(d,p) level. The cluster hydration energy was lower for SCN(-) than for Cl(-). The total Gibbs free energies of hydration of the ions were estimated by a hybrid supermolecule-continuum approach based on DFT. The calculated hydration energies also led to the conclusion that SCN(-) is less efficiently solvated than Cl(-). Due to the easier removal of the hydration shell of SCN(-) relative to Cl(-), SCN(-) is favored in going across the membrane, giving rise to the protonophoric activity.  相似文献   

16.
Properties of six chloroethylenes which could serve as indicators of their relative metabolic behavior and carcinogenic activity have been calculated using Modified Neglect of Diatomic Overlap (MNDO), a semiempirical, all valence electron, molecular orbital method. Possible pathways of transformation of parent compounds to acylchlorides, chloroaldehydes and epoxides — their putative ultimate carcinogens — were considered, and heats of formation and relative stabilities of intermediates were calculated. Our results indicate that carbonyl compounds could be formed with and without the intermediacy of epoxides, suggesting the possibility of more than one pathway in activation of parent compounds. Electronic properties of carbonyl products and epoxide carbocations, putative ultimate carcinogens which could serve as indicators of their relative electrophilicities, were also calculated. The results obtained indicated that the relative extent of metabolism to carbonyl products, rather than their electrophilicity, is a determinant of the relative carcinogenic activity of the parent compound. Of the various thermodynamic criteria investigated, four were found to be indicators of both relative metabolic behavior and carcinogenic activity.  相似文献   

17.
Quantum chemical calculations were performed on the formation of intermediates with trigonal bipyramidal (TBP) configurations in the hydrolysis of adenosine 3',5'-monophosphate (cAMP) with phosphodiesterases and the activation of protein kinases by cAMP. The results show that in the reaction sequence concerning the hydrolysis of cAMP with phosphodiesterase the TBP intermediate must possess an equatorial-apical cyclic phosphate ring with the 3'-oxygen atom in the apical position. This could be an additional reason for the sensitivity of the 3' position in cAMP towards modifications in comparison with the 5' position. According to the calculations, a mechanistic model is presented for the enzymatic hydrolysis of cAMP with the involvement of a covalently bonded enzyme-nucleotide intermediate. Also a model is offered for the activation of protein kinase by cAMP. The activation of protein kinase is assumed to proceed via diequatorial-ring-positioned TBP intermediates resulting in the formation of a covalent bond between cAMP and the protein kinase with retention of the cyclic phosphate ring. It seems likely that the enzyme-nucleotide intermediate enforces a conformational change in the enzyme, which causes the dissociation of the regulatory and catalytic subunit of the protein kinase, necessary for a physiological response.  相似文献   

18.
The mechanism of protein synthesis is still unknown due to inability to detect the so-called enzyme "peptidyl transferase" even after elucidation of high-resolution crystal structure of ribosome. We have recently shown by model building and semi-empirical energy calculation that the tRNA molecule at P-site of ribosome may act as peptidyl transferase (Das et al. (1999) J. Theor. Biol. 200, 193-205). We proposed that the tetrahedral intermediate formed from nucleophylic attack of CO of P-site amino-acylated tRNA by NH2 of A-site amino-acylated tRNA is converted to a six-member ring intermediate by conformational change. This ring intermediate produces a free tRNA and a tRNA covalently linked to a peptide. However, energy of the six-member ring intermediate was calculated to be quite high. We show here that the energy values of all the reactants, intermediates and products are within the expected range when they are calculated using high level ab initio quantum chemical methods.  相似文献   

19.
Sml1 is a small protein in Saccharomyces cerevisiae which inhibits the activity of ribonucleotide reductase (RNR). RNR catalyzes the rate-limiting step of de novo dNTP synthesis. Sml1 is a downstream effector of the Mec1/Rad53 cell cycle checkpoint pathway. The phosphorylation by Dun1 kinase during S phase or in response to DNA damage leads to diminished levels of Sml1. Removal of Sml1 increases the population of active RNR, which raises cellular dNTP levels. In this study using mass spectrometry and site-directed mutagenesis, we have identified the region of Sml1 phosphorylation to be between residues 52 and 64 containing the sequence GSSASASASSLEM. This is the first identification of a phosphorylation sequence of a Dun1 biological substrate. This sequence is quite different from the consensus Dun1 phosphorylation sequence reported previously from peptide library studies. The specific phosphoserines were identified to be Ser(56), Ser(58), and Ser(60) by chemical modification of these residues to S-ethylcysteines followed by collision activated dissociation. To investigate further Sml1 phosphorylation, we constructed the single mutants S56A, S58A, S60A, and the triple mutant S56A/S58A/S60A and compared their degrees of phosphorylation with that of wild type Sml1. We observed a 90% decrease in the relative phosphorylation of S60A compared with that of wild type, a 25% decrease in S58A, and little or no decrease in the S56A mutant. There was no observed phosphate incorporation in the triple mutant, suggesting that Ser(56), Ser(58), and Ser(60) in Sml1 are the sites of phosphorylation. Further mutagenesis studies reveal that Dun1 kinase requires an acidic residue at the +3 position, and there is cooperativity between the phosphorylation sites. These results show that Dun1 has a unique phosphorylation motif.  相似文献   

20.
Cytochrome c oxidase (CcO) is the terminal enzyme of the respiratory chain. By reducing oxygen to water, it generates a proton gradient across the mitochondrial or bacterial membrane. Recently, two independent X-ray crystallographic studies ((Aoyama et al. Proc. Natl. Acad. Sci. USA 106 (2009) 2165-2169) and (Koepke et al. Biochim. Biophys. Acta 1787 (2009) 635-645)), suggested that a peroxide dianion might be bound to the active site of oxidized CcO. We have investigated this hypothesis by combining quantum chemical calculations with a re-refinement of the X-ray crystallographic data and optical spectroscopic measurements. Our data suggest that dianionic peroxide, superoxide, and dioxygen all form a similar superoxide species when inserted into a fully oxidized ferric/cupric binuclear site (BNC). We argue that stable peroxides are unlikely to be confined within the oxidized BNC since that would be expected to lead to bond splitting and formation of the catalytic P intermediate. Somewhat surprisingly, we find that binding of dioxygen to the oxidized binuclear site is weakly exergonic, and hence, the observed structure might have resulted from dioxygen itself or from superoxide generated from O(2) by the X-ray beam. We show that the presence of O(2) is consistent with the X-ray data. We also discuss how other structures, such as a mixture of the aqueous species (H(2)O+OH(-) and H(2)O) and chloride fit the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号