首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic variation of brown trout from Duero, one of the main Atlantic Iberian river basins, was assessed at 34 enzymatic loci in 62 native populations. A strong intrabasin differentiation was detected (G(ST) = 0.46; range D: 0-0.066), mainly attributable to the existence of two divergent groups of populations within Duero: southern and northern groups. This divergence was mainly a consequence of the unequal distribution of *75 and *100 alleles at sMDH-B1,2* isoloci, which were correlated with substantial differences in genetic diversity among regions. The Lower Course region (nearly fixed for the *100 allele) and Pisuerga River (nearly fixed for the *75 allele) showed lower heterozygosities (H approximately 0.8%) in contrast with adjacent areas, which evidenced intermediate frequencies for both alleles and higher heterozygosities (H: 2.2-3.1%). Vicariance appeared as the more probable explanation for the significant positive correlation detected between genetic and geographical distances in Duero Basin. Genetic relationships with adjacent Iberian drainages indicate a close similarity between the southern group and Cantabric trout, whereas the northern group constitutes an ancient form from this basin. This study confirmed complex genetic relationships in brown trout from northwest Iberia, reasserting the existence of clines at several loci and for genetic diversity. The interaction between Cantabric and Duero trout, as well as the location of the limit of the anadromous form around the 42 degrees N parallel, are both required to understand the genetic characteristics of brown trout from this area.  相似文献   

2.
Genetic variation at 33 protein loci was investigated in 41 wild brown trout populations from four river basins in Galicia (northwest Spain) to analyse the amount and distribution of genetic diversity in a marginal area, located in the distribution limit of the anadromous form of this species. The genetic diversity detected within populations (H between 0 and 6%) lies within the range quoted for this species in previous reports. The Mino, the most southern river basin analysed, showed a significantly lower genetic diversity and the highest genetic differentiation among the river basins studied. The hierarchical gene diversity analysis showed high population differentiation in a restricted area (GST = 27%), mostly due to differences among populations within basins (GSC = 22%). The reduction of GST observed when the isolated samples were excluded from the analysis (GST = 17%) showed the importance of habitat fragmentation on the heterogeneity detected. Gene flow among populations was comparatively evaluated by three indirect methods, which in general revealed low figures of absolute number of migrants per generation, slightly higher than 1. The gene flow among basins reflected a positive relationship with geographical distance. This trend was confirmed by the significant correlation observed between geographical and genetic distances, including all population pairs, which suggests a component of isolation by distance in brown trout genetic structure. Nevertheless, the nonsignificant intrabasin correlation demonstrates the complexity of genetic relationships among populations in this species. The model of genetic structure in brown trout is discussed in the light of the results obtained.  相似文献   

3.
1. The present study was designed to characterize the genetic structure of brown trout ( Salmo trutta ) populations from the southern Balkans and to assess the spread of non-native strains and their introgression into native trout gene pools. We analysed polymorphism at nine microsatellite loci in seven supposedly non-admixed and three stocked brown trout populations.
2. The analyses confirmed the absence of immigration and extraordinarily strong genetic differentiation among the seven non-introgressed populations in parallel with low levels of intrapopulation genetic variability. In contrast, analyses of the stocked populations revealed that the genetic integrity of the local populations had been substantially changed, and the populations must be characterized as hybrid swarms. The pattern of population differentiation observed at microsatellites contrasted to that depicted previously by mtDNA variation. However, the close relationships between populations from the Danube and Axios river systems proposed solely by microsatellites could be explained by palaeogeographic events.
3. Our research showed that most of the populations examined represent unique gene pools, whose existence is critically compromised. Therefore, appropriate management and conservation strategies should be developed urgently in order to protect the subspecific biodiversity and to reverse currently negative trends.  相似文献   

4.
Population genetic structure approaches offer the possibility of defining management units in conservation activities of species. The genetic structure of the brown trout Salmo trutta in Galicia (NW Spain) was investigated by using microsatellites. We determined genetic variation across 10 microsatellite loci of 901 individuals from 30 geographical populations representing 18 river basins. The analysis of the spatial distribution of the genetic variation by using different methods clearly revealed strong genetic differentiation among two groups of populations living in the studied area. This result is concordant with previous work using allozymes and mtDNA markers, and confirms a secondary contact among two highly differentiated evolutionary lineages in Miño Basin. Although both lineages might be locally adapted, results suggest that they hybridize at the middle course of the river. The brown trout from the Upper Miño Basin belongs to the previously described Duero lineage, an Iberian endemism threatened by introgression with other Atlantic forms. The results support the recognition of the Upper Miño Basin as a particular biotic region in Galicia. This study illustrates how a multidisciplinary approach in spatial genetic analysis contributes to the delineation of conservation units as conspecific metapopulations.  相似文献   

5.
Ferox trout are large, long-lived, piscivorous trout normally found in deep lakes; they are highly prized by trophy anglers. Lough Corrib and Lough Mask, Western Ireland, have recorded the majority of Irish specimen ferox trout since angling records began. Little was known regarding the spawning location of ferox trout relative to sympatric brown trout, and a radio telemetry study was initiated in both catchments in 2005. Over the period 2005–2009, 79 ferox were captured by angling and radio tagged in Lough Corrib, while 55 ferox were tagged in Lough Mask. Manual and helicopter tracking were carried out on all spawning streams entering both lakes over the autumn/winter period to detect tagged fish. Overall, 37 radio-tagged trout (46.8%) were detected in Lough Corrib streams and 21 tagged trout (38.2%) were recorded from Lough Mask streams. Results from radio tracking indicate that the majority (92%) of ferox trout tagged in Lough Corrib spawned in a single spawning stream, the Cong river, while the majority (76%) of ferox trout tagged in Lough Mask spawned in the Cong canal and Cong river. These results suggest that these streams are most likely the principle spawning locations of ferox trout in both lakes. The occurrence of ferox trout predominantly in single spawning rivers in both catchments highlights the vulnerability of the study ferox populations. As a result of these findings, conservation measures were introduced for ferox trout in both catchments.  相似文献   

6.
Intraspecific genetic variation can have similar effects as species diversity on ecosystem function; understanding such variation is important, particularly for ecological key species. The brown trout plays central roles in many northern freshwater ecosystems, and several cases of sympatric brown trout populations have been detected in freshwater lakes based on apparent morphological differences. In some rare cases, sympatric, genetically distinct populations lacking visible phenotypic differences have been detected based on genetic data alone. Detecting such “cryptic” sympatric populations without prior grouping of individuals based on phenotypic characteristics is more difficult statistically, though. The aim of the present study is to delineate the spatial connectivity of two cryptic, sympatric genetic clusters of brown trout discovered in two interconnected, tiny subarctic Swedish lakes. The structures were detected using allozyme markers, and have been monitored over time. Here, we confirm their existence for almost three decades and report that these cryptic, sympatric populations exhibit very different connectivity patterns to brown trout of nearby lakes. One of the clusters is relatively isolated while the other one shows high genetic similarity to downstream populations. There are indications of different spawning sites as reflected in genetic structuring among parr from different creeks. We used >3000 SNPs on a subsample and find that the SNPs largely confirm the allozyme pattern but give considerably lower F ST values, and potentially indicate further structuring within populations. This type of complex genetic substructuring over microgeographical scales might be more common than anticipated and needs to be considered in conservation management.  相似文献   

7.
In a study of the genetic relationships among 879 anadromous brown trout Salmo trutta from 13 streams at the Island of Gotland, Sweden, using RFLP analysis of a mitochondrial DNA segment (NADH dehydrogenase-1 gene), six haplotypes were detected. Significant genetic divergence was observed among streams as well as between cohorts within streams. Approximately 8–9% of the total variation was due to differences between populations, and 4–5% was explained by differences between cohorts within populations. The female effective population size ( N ef) was assessed from temporal haplotype frequency differences between consecutive cohorts; the estimated average N ef over all populations was just below 30, suggesting that these populations were effectively quite small. With such small effective sizes the populations are expected to loose genetic variability quickly, but the observed levels do not appear particularly low. This indicates that female migration between streams occurs. The observed level of differentiation does not support the presumption that a particular pre-smolt migratory behaviour observed in Gotland streams, with large portions of fry leaving for the sea soon after hatching, results in a reduced homing ability. From a conservation management perspective the Gotland brown trout streams should be regarded as a population system where the vitality and survival of brown trout in one stream is dependent on the opportunity of contact and exchange of individuals from other streams.  相似文献   

8.
The spatial and temporal genetic structure of brown trout populations from three small tributaries of Lake Hald, Denmark, was studied using analysis of variation at eight microsatellite loci. From two of the populations temporal samples were available, separated by up to 13 years (3.7 generations). Significant genetic differentiation was observed among all samples, however, hierarchical analysis of molecular variance (AMOVA) showed that differentiation among populations accounted for a non-significant amount of the genetic differentiation, whereas differentiation among temporal samples within populations was highly significant (0.0244, P<0.001). Estimates of effective population size (N e) using a maximum-likelihood based implementation of the temporal method, yielded small values (N e ranging from 33 to 79). When a model was applied that allows for migration among populations, N e estimates were even lower (24–54), and migration rates were suggested to be high (0.13–0.36). All samples displayed a clear signal of a recent bottleneck, probably stemming from a period of unfavourable conditions due to organic pollution in the 1970–1980’s. By comparison to other estimates of N e in brown trout, Lake Hald trout represent a system of small populations linked by extensive gene flow, whereas other populations in larger rivers exhibit much higher N e values and experience lower levels of immigration. We suggest that management considerations for systems like Lake Hald brown trout should focus both on a regional scale and at the level of individual populations, as the future persistence of populations depends both on maintaining individual populations and ensuring sufficient migration links among these populations.  相似文献   

9.
Phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA (mtDNA) variation were used to infer the temporal dynamics of distributional and demographic history of brown trout (Salmo trutta). Both new and previously published data were analyzed for 1,794 trout from 174 populations. This combined analysis improved our knowledge of the complex evolutionary history of brown trout throughout its native Eurasian and North African range of distribution in many ways. It confirmed the existence of five major evolutionary lineages that evolved in geographic isolation during the Pleistocene and have remained largely allopatric since then. These should be recognized as the basic evolutionarily significant units within brown trout. Finer phylogeographic structuring was also resolved within major lineages. Contrasting temporal juxtaposition of different evolutionary factors and timing of major demographic expansions were observed among lineages. These unique evolutionary histories have been shaped both by the differential latitudinal impact of glaciations on habitat loss and potential for dispersal, as well as climatic impacts and landscape heterogeneity that translated in a longitudinal pattern of genetic diversity and population structuring at more southern latitudes. This study also provided evidence for the role of biological factors in addition to that of physical isolation in limiting introgressive hybridization among major trout lineages.  相似文献   

10.
SUMMARY. 1. Review of published studies on genetic variation, as shown by electrophoretic studies of protein variation, in natural brown trout ( Salmo trutta L.) populations from Britain and Ireland, Finland, France, Greece, Iceland, Norway, Sweden, U.S.A. and U.S.S.R., revealed abundant geographical variation in gene frequency with individual populations containing only a limited part of the gene diversity of the species.
2. Thirty-eight (54%) of the seventy gene loci examined have been found to be polymorphic in the species with an average population showing polymorphism at 16% of its loci (range 0-34.8%).
3. The brown trout is naturally subdivided into a large number of reproductively isolated and genetically distinct populations within, as well as among, drainages.
4. Two independent post-glacial colonizations, by genetically distinct races, followed by independent evolution in separate drainages over the past 13,000 years is seen as responsible for the genetic diversity of brown trout in north-western Europe.
5. Many genetically unique populations have been lost in the past 100 years and there is an urgent need to identify and conserve the remaining genetic diversity. Genetically unique populations are an irreplaceable resource for rational management in relation to angling and future aquaculture potential.  相似文献   

11.
We examined the long-term temporal (1910s to 1990s) genetic variation at eight microsatellite DNA loci in brown trout (Salmo trutta L) collected from five anadromous populations in Denmark to assess the long-term stability of genetic composition and to estimate effective population sizes (Ne). Contemporary and historical samples consisted of tissue and archived scales, respectively. Pairwise thetaST estimates, a hierarchical analysis of molecular variance (amova) and multidimensional scaling analysis of pairwise genetic distances between samples revealed much closer genetic relationships among temporal samples from the same populations than among samples from different populations. Estimates of Ne, using a likelihood-based implementation of the temporal method, revealed Ne >or= 500 in two of three populations for which we have historical data. A third population in a small (3 km) river showed Ne >or= 300. Assuming a stepping-stone model of gene flow we considered the relative roles of gene flow, random genetic drift and selection to assess the possibilities for local adaptation. The requirements for local adaptation were fulfilled, but only adaptations resulting from strong selection were expected to occur at the level of individual populations. Adaptations resulting from weak selection were more likely to occur on a regional basis, i.e. encompassing several populations. Ne appears to have declined recently in at least one of the studied populations, and the documented recent declines of many other anadromous brown trout populations may affect the persistence of local adaptation.  相似文献   

12.
We examined polymorphism at seven microsatellite loci in 4023 brown trout (Salmo trutta) collected from 32 tributaries to the Limfjord, Denmark (approximately 200 km) and from two hatcheries used for stocking. Populations differ in their estimated sizes and stocking histories. Mean individual inbreeding coefficients do not differ among locations within rivers. Relatedness varies between sites within rivers indicating varied local dynamics at a very small geographical scale. Relatedness is sometimes lower than expected among an equal number of simulated individuals with randomized genotypes, suggesting structure within locations. Five per cent of the genetic variance is distributed among rivers (F(ST) = 0.049), but in the western, less heavily stocked, area of the Limfjord a higher proportion of the genetic variance is distributed among rivers than among locations within rivers. The reverse is true of the eastern, more heavily stocked, area of the Limfjord. Here, a higher proportion of the genetic variance is distributed among locations within rivers than among rivers. Assignment tests reveal that the majority of trout (mean 77% of all fish) are more probably of local origin than hatchery origin but this proportion varies regionally, with rivers in the western area of the Limfjord showing a relatively high (mean 88%) and those in the eastern area showing a relatively low (mean 72%) proportion of locally assigned trout. These results can be interpreted as reflecting stocking impact. Also, the proportion of locally assigned trout correlates with the populations' stocking histories, with rivers presently subjected to stocking (hatchery trout) showing low (mean approximately 0.73), and rivers where stocking was discontinued showing high (mean approximately 0.84) proportions of local fish, probably reflecting lower survival of hatchery than of wild trout. There is evidence for isolation by distance at a large geographical scale when individual river populations are pooled into nine geographical regions but not at a small geographical scale when populations are considered individually. We reject the null hypothesis that stocking has had no impact on population structure but the relatively high proportion of locally assigned trout in populations where stocking with domestic fish no longer takes place suggests limited long-term success of stocking.  相似文献   

13.
1. The effect of habitat fragmentation on freshwater species has been addressed using brown trout Salmo trutta L. as a model species with a dendritic population structure. 2. Microsatellite loci were employed as molecular markers. Levels of gene flow and population subdivision were determined in more than 1200 brown trout individuals inhabiting four south European rivers with contrasting patterns of fragmentation, defined by the presence of barriers. 3. The genetic units in the four rivers were restricted by artificial barriers, and gene flow among samples within each river was associated with the level of fragmentation of the river. 4. Loss of genetic diversity and dislocation of the dendritic model have been detected in fragmented rivers. These results emphasise the importance of mitigating the impact of dams by constructing passages to restore gene flow along the river, for fish and other migratory species, as well as the need for caution in relation to stocking in isolated areas to avoid problems of inbreeding.  相似文献   

14.
The aim of this study was to analyze the morphological variation of brown trout (Salmo trutta) in the Duero basin, an Atlantic river basin in the Iberian Peninsula, where a spatial segregation of two divergent lineages was previously reported, based on isozyme, microsatellite and mtDNA data. In these studies, two divergent pure regions (Pisuerga and Lower-course) and several hybrid populations between them were identified. Morphological variation was evaluated in 11 populations representative of the genetic differentiation previously observed in the Duero basin, using multivariate analysis on 12 morphometric and 4 meristic traits. A large differentiation between populations was observed (interpopulation component of variance: 41.8%), similar to that previously detected with allozymes and microsatellites. Morphometric differentiation was also reflected by the high classification success of pure and hybrid individuals to their respective populations, using multivariate discriminant functions (94.1% and 79.0%, respectively). All multivariate and clustering analyses performed demonstrated a strong differentiation between the pure regions. The hybrid populations, though showing large differentiation among them, evidenced an intermediate position between the pure samples. Head and body shape traits were the most discriminant among the morphometric characters, while pectoral rays and gillrakers were the most discriminant among the meristic traits. These results confirmed the high divergence of the brown trout from the Duero basin and suggest some traits on which selection could be acting to explain the spatial segregation observed.  相似文献   

15.
The Hardangervidda in southern Norway, the largest mountain plateau in Europe, has thousands of lakes and streams, mainly between 1000 and 1300 m above sea level, where brown trout is the only fish species. To describe the current genetic diversity of brown trout in this area, a total of 863 fish from 20 lakes were genotyped with eleven microsatellites. Most diversity is within lake populations, but diversity among geographical groups and populations within groups was significant, too. Neighbor-joining, principle coordinate analysis and Bayesian clustering show three major geographic groups in accordance with the river systems. Bias was caused by recent stocking in two lakes. Low/no genetic differentiation among some populations indicates that intermixing is common when lakes are well-connected, as was also shown by assignment test. We recommend preserving the genetic diversity of brown trout in this unique area by managing stocking in lake systems according to genetic structure.  相似文献   

16.
Electrophoretic studies of five polymorphic enzyme loci ( G-3-PDH-2, LDH-I, LDH-5, PGI-2, PGI-3 ) in brown trout from Lough Melvin in northwestern Ireland have demonstrated that the morphotypes known by the vernacular names of 'ferox', 'gillaroo' and 'sonaghen', are not merely ecophenotypes but represent genetically distinct and reproductively isolated populations. The results suggest that the long life and higher growth potential of ferox trout of this lake, and possibly others, has a genetic basis. These separate demes of brown trout are probably the result of multiple invasions in post-glacial times of allopatrically derived stocks. Lough Melvin's isolated position and absence of pike, Esox lucius , and large cyprinids have probably contributed to its pristine condition. As such it is one of the few remaining examples of what may once have been a widespread situation in Britain and Ireland.  相似文献   

17.
The Caspian Sea, the largest inland closed water body in the world, has numerous endemic species. The Caspian brown trout (Salmo trutta caspius) is considered as endangered according to IUCN criteria. Information on phylogeography and genetic structure is crucial for appropriate management of genetic resources. In spite of the huge number of studies carried out in the Salmo trutta species complex across its distribution range, very few data are available on these issues for S. trutta within the Caspian Sea. Mitochondrial (mtDNA control region) and nuclear (major ribosomal DNA internal transcribed spacer 1, ITS-1, and ten microsatellite loci) molecular markers were used to study the phylogeography, genetic structure, and current captive breeding strategies for reinforcement of Caspian trout in North Iranian rivers. Our results confirmed the presence of Salmo trutta caspius in this region. Phylogenetic analysis demonstrated its membership to the brown trout Danubian (DA) lineage. Genetic diversity of Caspian brown trout in Iranian Rivers is comparable to the levels usually observed in sustainable anadromous European brown trout populations. Microsatellite data suggested two main clusters connected by gene flow among river basins likely by anadromous fish. No genetic differences were detected between the hatchery sample and the remaining wild populations. While the current hatchery program has not produced detectable genetic changes in the wild populations, conservation strategies prioritizing habitat improvement and recovering natural spawning areas for enhancing wild populations are emphasized.  相似文献   

18.
The effect of the introduction of fry of anadromous sea trout, Salmo trutta L., on the genetic integrity of landlocked brown trout populations was evaluated. Samples were taken from six brown trout populations from streams above impassable waterfalls in the Conwy river system (North Wales, U.K.) in 1989 and 1990. Three of these streams had no known stocking history and three had been stocked with sea trout fry from the lower Conwy system over the last few years. Representatives of these sea trout were collected from two streams in the lower Conwy system and from a hatchery. Allele frequencies at 13 loci, six of which were polymorphic, were determined by starch gel electrophoresis.
The stocked populations were intermediate in their allele frequencies between unstocked brown trout and sea trout samples. A principal component analysis suggested significant numbers of hybrids in all of the stocked streams. This shows that some of the introduced sea trout did not migrate down the falls to the sea, but stayed in fresh water and hybridized with the local population. The significance of this finding for the conservation of the genetic resource of brown trout stocks is discussed.  相似文献   

19.
Twenty-five populations of westslope cutthroat trout from throughout their native range were genotyped at 20 microsatellite loci to describe the genetic structure of westslope cutthroat trout. The most genetic diversity (heterozygosity, allelic richness, and private alleles) existed in populations from the Snake River drainage, while populations from the Missouri River drainage had the least. Neighbor-joining trees grouped populations according to major river drainages. A great amount of genetic differentiation was present among and within all drainages. Based on Nei’s D S , populations in the Snake River were the most differentiated, while populations in the Missouri River were the least. This pattern of differentiation is consistent with a history of sequential founding events through which westslope cutthroat trout may have experienced a genetic bottleneck as they colonized each river basin from the Snake to the Clark Fork to the Missouri river. These data should serve as a starting point for a discussion on management units and possible distinct population segments. Given the current threats to the persistence of westslope cutthroat trout, and the substantial genetic differentiation between populations, these topics warrant attention.  相似文献   

20.
1. Microsatellite and isozyme loci variation were used to study structure and dynamics of a brown trout (Salmo trutta) population heavily affected by damming. The downstream area accessible for spawning was drastically reduced to a stream 1 km long influenced by regulated discharge. 2. Stocking of hatchery‐reared juveniles failed and the population is entirely supported by anadromous adults from neighbouring populations. 3. Temporal genetic stability is reported here. Some punctual between‐river genetic differences are likely because of different contribution from each neighbouring river through years. 4. High anadromy‐mediated gene flow produces a lack of genetic substructure in the region. The role of anadromous brown trout on maintenance of endangered small populations is emphasised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号