首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To compare the effects of alpha-ketoglutarate (alpha-KG) and melatonin on 24-h rhythmicity of oxidative stress in N-nitrosodiethylamine (NDEA)-injected Wistar male rats, melatonin (5 mg/kg i.p.) or alpha-KG (2 g/kg through an intragastric tube) was given daily for 20 weeks. In blood collected at 6 time points during a 24-h period, serum activity of aspartate transaminase (AST) and alanine transaminase (ALT) and the levels of alpha-fetoprotein (alpha-FP) were measured as markers of liver function. To assess lipid peroxidation and the antioxidant status, plasma levels of thiobarbituric acid reactive substances (TBARS) and of reduced glutathione (GSH) were measured, together with the activity of erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST). NDEA augmented mesor and amplitude of rhythms in AST and ALT activity and plasma alpha-FP levels and mesor values of plasma TBARS, while decreasing mesor values of plasma GSH and erythrocyte SOD, CAT, GPx and GST. Acrophases were delayed by NDEA in all cases except for alpha-FP rhythm, which became phase-advanced. Co-administration of melatonin or alpha-KG partially counteracted the effects of NDEA. Melatonin decreased mesor of plasma TBARS and augmented mesor of SOD activity. The results indicate that melatonin and alpha-KG are effective in protecting from NDEA-induced perturbation of 24-h rhythms in oxidative stress. Melatonin augmented antioxidant defense in rats.  相似文献   

2.
The aim of this work was to determine the effects of dietary intake vitamin E and selenium (Se) on lipid peroxidation as thiobarbituric acid reactive substances (TBARS) and on the antioxidative defense mechanisms in the liver of rats treated with high doses of prednisolone. Two hundred fifty adult male Wistar rats were randomly divided into five groups. The rats were fed a normal diet, but groups 3, 4, and 5 received a daily supplement in their drinking water of 20 mg vitamin E, 0.3 mg Se, and a combination of vitamin E and Se, respectively, for 30 d. For 3 d subsequently, the control group (group 1) was treated with a placebo, and the remaining four groups were injected intramuscularly with 100 mg/kg body weight (BW) prednisolone. After the last administration of prednisolone, 10 rats from each group were killed at 4, 8, 12, 24, and 48 h and the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) enzymes and the levels of glutathione (GSH) and TBARS in their livers were measured. GSH-Px, SOD, and CAT enzyme activities and GSH levels in prednisolone-treatment group (group 2) began to decrease gradually at 4 h, falling respectively to 38%, 55%, and 40% of the control levels by 24 h, and recovering to the control levels at 48 h. In contrast, prednisolone administration caused an increase in the hepatic TBARS, reaching up to four times the levels of the control at 24 h. However, supplementation with vitamin E and Se had a preventive effect on the elevation of the hepatic TBARS and improved the diminished activities of the antioxidative enzymes and the levels of GSH. Therefore, the present study demonstrates the effectiveness of vitamin E and Se in reducing hepatic damage in glucocorticoid-treated rats and suggests that reductions in increased TBARS as a result of prednisolone may be an important factor in the action of vitamin E and Se.  相似文献   

3.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

4.
The aim of this work was to investigate the production of oxidative damage in homogenized kidney, liver and brain of spontaneously hypertensive rats (SHR), as well as the involvement of angiotensin (Ang) II in this process. Groups of 12-week-old SHR and Wistar Kyoto rats (WKY) were given 10 mg/kg/day losartan in the drinking water during 14 days. Other groups of WKY and SHR without treatment were used as controls. The production of thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (Gpx) were determined. No significant difference in TBARS was observed between untreated SHR or WKY rats; GSH content was lower in the liver but higher in the brain of SHR compared to WKY rats. In tissues from the SHR group, SOD and Gpx activities were reduced, whereas CAT activity was slightly increased in kidney. TBARS levels did not change in WKY rats after losartan administration, but were reduced in SHR liver and brain. Losartan treatment decreased GSH content in WKY kidney, but increased GSH in SHR liver. The activity of the antioxidant enzymes was not modified by losartan in WKY rats; however, their activities increased in tissues from treated SHR. The lower activity of antioxidant enzymes in tissues from hypertensive rats compared to those detected in normotensive controls, indicates oxidative stress production. Ang II seems to play no role in this process in normotensive animals, although AT1 receptor blockade in SHR enhances the enzymatic activity indicating that Ang II is implicated in oxidative stress generation in the hypertensive animals.  相似文献   

5.
Homocystinuria is a neurometabolic disease caused by severe deficiency of cystathionine beta-synthase activity, resulting in severe hyperhomocysteinemia. Affected patients present several symptoms including a variable degree of motor dysfunction, being that the pathomechanism is not fully understood. In the present study we investigated the effect of chronic hyperhomocysteinemia on some parameters of oxidative stress, namely 2′7′dichlorofluorescein (DCFH) oxidation, levels of thiobarbituric acid-reactive substances (TBARS), antioxidant enzyme activities (SOD, CAT and GPx), reduced glutathione (GSH), total sulfhydryl and carbonyl content, as well as nitrite levels in soleus skeletal muscle of young rats subjected to model of severe hyperhomocysteinemia. We also evaluated the effect of creatine on biochemical alterations elicited by hyperhomocysteinemia. Wistar rats received daily subcutaneous injection of homocysteine (0.3–0.6 μmol/g body weight), and/or creatine (50 mg/kg body weight) from their 6th to the 28th days age. Controls and treated rats were decapitated at 12 h after the last injection. Chronic homocysteine administration increased 2′7′dichlorofluorescein (DCFH) oxidation, an index of production of reactive species and TBARS levels, an index of lipoperoxidation. Antioxidant enzyme activities, such as SOD and CAT were also increased, but GPx activity was not altered. The content of GSH, sulfhydril and carbonyl were decreased, as well as levels of nitrite. Creatine concurrent administration prevented some homocysteine effects probably by its antioxidant properties. Our data suggest that the oxidative insult elicited by chronic hyperhomocystenemia may provide insights into the mechanisms by which homocysteine exerts its effects on skeletal muscle function. Creatine prevents some alterations caused by homocysteine.  相似文献   

6.
We investigated whether cold acclimation leads to increased activity of the antioxidant defense enzymes and muscle injury. Comparisons were between short track skaters (n=6) and inline skaters (n=6) during rest and at submaximal cycling (65% VO2max) in cold (ambient temperature: 5+/-1 degrees C, relative humidity: 41+/-8%) and warm conditions (ambient temperature: 21+/-1 degrees C, relative humidity: 35+/-5%), during 60 min, respectively, and during the recovery phase. Erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHpx), reduced glutathione (GSH), thiobarbituric substance acid (TBARS), serum creatine kinase (CK), lactate dehydrogenase (LDH), plasma myoglobin (Mb) and cortisol were determined. Activities of CAT and GSHpx and the level of GSH and TBARS in erythrocyte and the level of LDH in serum were elevated in cold acclimated subjects. We suggested that the compensatory increase in antioxidative defense enzymes resulting from long-term cold exposure may reflect the elevated reactive oxygen species (ROS) production and muscle injury at this environment acclimation.  相似文献   

7.
The antihyperglycemic, antihyperlipidemic and antioxidative properties of hydroethanolic extract of Butea monosperma bark were investigated in alloxan-induced diabetic mice. Alloxan administration resulted in higher blood glucose level and reduced hepatic glycogen content as compared to normal animals. Besides, serum lipid profile parameters such as total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL) and very low density lipoprotein (VLDL) cholesterol were also found to be significantly elevated, whereas the level of high density lipoprotein (HDL) cholesterol was markedly reduced in diabetic animals. Oxidative damage in the tissues of diabetic mice was evidenced by a marked increase in the level of thiobarbituric acid reactive substances (TBARS), distinct decrease in reduced glutathione (GSH) content and declined activity of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). The daily treatment of diabetic animals with crude extract of B. monosperma bark (300 mg kg(-1)) for 45 days significantly lowered blood glucose level and elevated hepatic glycogen content, bringing the values close to those observed in normal control and glibenclamide-treated diabetic mice. Furthermore, the level of various lipid profile parameters was also reversed towards normal. TBARS and GSH also restored towards normal and the declined activity of antioxidant enzymes in diabetic animals was also normalized in crude extract administered mice, thus indicating the antioxidant efficacy of the drug in diabetes-induced oxidative damage. Significant antihyperglycemic and antioxidant potential of the crude extract of B. monosperma bark indicated that it may find use in the management of diabetes and resultant oxidative stress.  相似文献   

8.
Gao M  Li Y  Long J  Shah W  Fu L  Lai B  Wang Y 《Mutation research》2011,719(1-2):52-59
Benzo[a]pyrene [B(a)P] is one of the most prevalent environmental carcinogens and genotoxic agents. However, the mechanisms of B(a)P-induced oxidative damage in cervical tissue are still not clear. The present study was to investigate the oxidative stress and DNA damage in cervix of ICR female mice induced by acute treatment with B(a)P. Oxidative stress was assayed by analysis of malondialdehyde (MDA), superoxide anion and H(2)O(2), and antioxidant enzymes. The alkaline single-cell electrophoresis (SCGE) was used to measure DNA damage. The contents of MDA and glutathione (GSH), and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were significantly increased in cervix 24, 48 and 72h after B(a)P treatment of a single dose of 12.5 and 25mg/kg, while GSH, CAT, SOD and GST had no significant difference with the dose of 50mg/kg B(a)P at post-treatment time 48 and 72h except for SOD activity at 48h which was significant. The maximum values of SOD, CAT, GST and GSH were peaked at 24h and then decreased gradually while GPx activities and MDA levels persisted for up to 72h. Superoxide anion, H(2)O(2) and DNA damage changed similarly as the activity of SOD, CAT or GST. Additionally, increases of formamidopyrimidine DNA glycosylase (FPG) specific DNA damage were observed and can be greatly rescued by vitamin C pretreatment. Overall, B(a)P demonstrated a time- and dose- related oxidative stress and DNA damage in cervix.  相似文献   

9.

Background

The aim of the present paper was to describe the enzymatic antioxidant system in Hymenolepis diminuta collected from rats exposed to chronic cestode invasion.

Methodology

We dissected different tissues of H. diminuta (immature proglottids, genital primordia, hermaphroditic proglottids, early uterus, and gravid uterus) and studied activity of: superoxide dismutases (SOD1 and SOD2), catalase (CAT), glutathione peroxidases (non-Se-dependent GSHPx and Se-dependent GSHPx), glutathione-S-transferase (GST) and glutathione reductase (GSHR), and oxidative stress markers ?? reduced glutathione (GSH), and the lipid peroxidation level (TBARS).

Results

We demonstrated changes in antioxidant enzyme activities and levels of oxidative stress markers in different tissues of the parasite. The levels of TBARS and GSH indicate that oxidative stress occurred in tissues located proximal to the intestine wall. Activity of SOD1 was high in all parts of H. diminuta, but the GST activity was the highest of all studied antioxidant enzymes. SOD2 activity differed significantly in various parts of H. diminuta. Significant differences were observed for nonSeGSHPx and activity of other GSH-dependent enzymes was generally similar in all the tissues.

Conclusions

Our results show that the enzymatic antioxidant system of H. diminuta, allows the parasite to adapt and live under conditions of chronic oxidative stress. It suggests an oxidative-antioxidative balance during interactions between parasite and host.  相似文献   

10.
Antioxidant defenses within the lung are pivotal in preventing damage from oxidative toxicants. There have also been several reports with conflicting results on the antioxidant system during aging. In this study, we attempted to investigate age-related alterations in both antioxidant enzyme activities and thiobarbituric acid-reactive substances (TBARS), a product of lipid peroxidation, in the whole lung of control and sulfur dioxide (SO2) exposed rats of different age groups (3-, 12-, and 24-months-old). Swiss-Albino Male rats were exposed to 10 ppm SO2 1 hr/day, 7 days/week for 6 weeks. The antioxidant enzymes examined include Cu,Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST). A mixed pattern of age-associated alterations in antioxidant activities was observed. SOD, GSH-Px and GST activities were increased with age, but CAT activity was decreased. Lung SOD, GSH-Px and GST activities were also increased in response to SO2. The level of TBARS was increased with age. SO2 exposure stimulated lipid peroxide formation in the lung as indicated by an increase in the level of TBARS. These findings suggest that both aging and SO2 exposure may impose an oxidative stress to the body. We conclude that the increase in the activities of the antioxidant enzymes of the lung during aging, could be interpreted as a positive feedback mechanism in response to rising lipid peroxidation.  相似文献   

11.
Our aim was to assess the degree of oxidative stress in patients with periodontitis by measuring their levels of thiobarbituric acid reactive substances (TBARS), enzymatic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GSHPx)), and non-enzymatic antioxidants (vitamins E and C, reduced glutathione (GSH)). This study was conducted on 25 adult chronic periodontitis sufferers who were patients in Rajah Muthiah Dental College and Hospital, Annamalai University. The levels of TBARS and non-enzymatic antioxidants, and the activities of enzymatic antioxidants in the patients' plasma, erythrocytes and gingival tissues were assayed using specific colorimetric methods. The periodontitis sufferers had a significantly higher TBARS level than the healthy subjects. In the plasma, erythrocytes, erythrocyte membranes and gingival tissues of the periodontitis sufferers, enzymatic antioxidant activities were found to be significantly higher, whereas the levels of non-enzymatic antioxidants were significantly lower (except for reduced glutathione in the gingival tissues) relative to the parameters found for healthy subjects. The disturbance in the endogenous antioxidant defense system due to over-production of lipid peroxidation products at inflammatory sites can be related to a higher level of oxidative stress in patients with periodontitis.  相似文献   

12.
Saadet Gü          reyya B   lmen  Dijle K   pmen Korgun  Piraye Yargi  o  lu  Aysel A  ar 《Free radical research》2001,34(6):621-627
Antioxidant defenses within the lung are pivotal in preventing damage from oxidative toxicants. There have also been several reports with conflicting results on the antioxidant system during aging. In this study, we attempted to investigate age-related alterations in both antioxidant enzyme activities and thiobarbituric acid-reactive substances (TBARS), a product of lipid peroxidation, in the whole lung of control and sulfur dioxide (SO2) exposed rats of different age groups (3-, 12-, and 24-months-old). Swiss-Albino Male rats were exposed to 10 ppm SO2 1 hr/day, 7 days/week for 6 weeks. The antioxidant enzymes examined include Cu,Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST). A mixed pattern of age-associated alterations in antioxidant activities was observed. SOD, GSH-Px and GST activities were increased with age, but CAT activity was decreased. Lung SOD, GSH-Px and GST activities were also increased in response to SO2. The level of TBARS was increased with age. SO2 exposure stimulated lipid peroxide formation in the lung as indicated by an increase in the level of TBARS. These findings suggest that both aging and SO2 exposure may impose an oxidative stress to the body. We conclude that the increase in the activities of the antioxidant enzymes of the lung during aging, could be interpreted as a positive feedback mechanism in response to rising lipid peroxidation.  相似文献   

13.
The antiulcerogenic effect of diffractaic acid (DA) isolated from Usnea longissima, a lichen species, on indomethacin (IND)-induced gastric lesions was investigated in rats. Administration of 25, 50, 100 and 200 mg/kg doses of DA and ranitidine (RAN) (50 mg/kg dose) reduced the gastric lesions by 43.5%, 52.9%, 91.4%, 96.7% and 72.7%, respectively. It is known that oxidative stress leads to tissue injury in organisms. Thus, in all treated groups of rats, the in vivo activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and the levels of reduced glutathione (GSH) and lipid peroxidation (LPO) were evaluated. IND caused oxidative stress, which resulted in LPO in tissues, by decreasing the levels of GPx, SOD and GSH as compared to healthy rats. In contrast to IND, the administration of DA and RAN showed a significant decrease in LPO level and an increase in tissue SOD, GPx and GSH levels. However, while CAT activity was significantly increased by the administration of IND, the administration of DA and RAN decreased CAT activity. The administration of IND also increased the myeloperoxidase (MPx) activity, which shows neutrophil infiltration into the gastric mucosal tissues. In contrast to IND, the administration of DA and RAN decreased MPx activity. The changes in activities of gastric mucosal nitric oxide synthases (NOS) throughout the development of gastric mucosal damage induced by IND were also studied. A decrease in constitutive NOS (cNOS) activity and an increase in inducible NOS (iNOS) activity were determined in gastric damaged tissues induced by IND. The administration of DA (100 mg/kg dose) and RAN reversed the activities of iNOS and cNOS. These results suggest that the gastroprotective effect of DA can be attributed to its enhancing effects on antioxidant defense systems as well as reducing effects of neutrophil infiltration.  相似文献   

14.
In the present study, we investigated, in vivo (acute and chronic) and in vitro, the effects of proline on the activities of antioxidant enzymes such as catalase (CAT), glutathione peroxidase and superoxide dismutase (SOD) in erythrocytes and also investigated the effect on thiobarbituric acid-reactive substances (TBARS) in the plasma of rats. For the experiments, the number of animals per group ranged from eight to ten. For acute administration, 29-day-old rats received one subcutaneous injection of proline (18.2 μmol/g body weight) or an equivalent volume of 0.9% saline solution (control) and were killed 1 h later. For chronic treatment, buffered proline was injected subcutaneously into rats twice a day at 10 h intervals from the 6th to the 28th day of age. Rats were killed 12 h after the last injection. For in vitro studies, proline (30.0 μM to 1.0 mM) was added to the incubation medium. Results showed that acute administration of proline reduced CAT and increased SOD activities, while chronic treatment increased the activities of CAT and SOD in erythrocytes and TBARS in the plasma of rats. Furthermore, in vitro studies showed that proline increased TBARS in the plasma (0.5 and 1.0 mM) and CAT activity (1.0 mM) in the erythrocytes of rats. The influence of the antioxidants (α-tocopherol plus ascorbic acid) on the effects elicited by proline was also studied. Treatment with antioxidants for 1 week or from the 6th to the 28th day of age prevented the alterations caused by acute and chronic, respectively, proline administration on the oxidative parameters evaluated. Data indicate that proline alters antioxidant defenses and induces lipid peroxidation in the blood of rats.  相似文献   

15.

Aims

The aim of this study was to evaluate the antioxidant status and oxidative stress biomarkers in the blood of children and teenagers with Down syndrome.

Main methods

The analysis of enzymatic antioxidant defenses, such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione transferase (GST), non-enzymatic antioxidants, such as levels of reduced glutathione (GSH), uric acid (UA) and vitamin E, as well as oxidative damage indicators, such as protein carbonyls (PC) levels and lipoperoxidation (TBARS), of DS individuals (n = 20) compared to healthy controls (n = 18). Except the vitamin E was measured by HPLC, all other markers were measured spectrophotometrically.

Key Findings

Antioxidant enzymes analysis showed significant increases in the SOD (47.2%), CAT (24.7%) and GR (49.6%) activities in DS subjects. No significant difference in GPx activity was detected while GST activity (61.2%) was decreased, and both responses may be consequence of the depletion of GSH (24.9%) levels. There were no significant differences in TBARS levels, while PC levels showed decreased (31.7%) levels compared to healthy controls, which may be related to the increase (16.1%) found in serum UA. Levels of vitamin E showed no significant differences between DS individuals compared to controls.

Significance

The results revealed a systemic pro-oxidant status in DS individuals, evidenced by the increased activity of some important antioxidant enzymes, together with decreased GSH levels in whole blood and elevated UA levels in plasma, probably as an antioxidant compensation related to the redox imbalance in DS individuals.  相似文献   

16.
Mussels Perna perna were exposed to air for 24 h showing a clear increase in the levels of lipid peroxidation and oxidative DNA damage, measured as 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo). The levels of lipid peroxidation increased both in the digestive gland and gills, while oxidative DNA damage increased only in the gills. After the 24 h of air exposure, mussels were re-submersed for a period of 3 h, leading values to return to a pre-aerial exposure levels. Control animals were kept immersed during the whole period. Several antioxidant and complementary enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), glutathione S-transferase (GST) and the levels of total glutathione (Total GSH) were assayed in a second set of experiments where one group of mussels were exposed to air for 18 h and other to 1 h re-submersion after 18 h aerial exposure. Only a 52% increase in the glutathione S-transferase activity was observed in the digestive gland, which remained elevated to about 40% after 1 h re-submersion, showing that defense systems can be modulated even during oxygen deprivation in P. perna. The DNA and lipid oxidative damage observed after aerial exposure indicates that mussels face an oxidative challenge, and are able to counteract such an “insult” as values of lipid peroxidation and DNA damage returned to control values after 3 h re-submersion.  相似文献   

17.
The mRNA levels of three antioxidant genes, Cu/Zn superoxide dismutase (SOD), catalase (CAT) and phospholipid hydroperoxide glutathione peroxidase (GSH-Px), were quantified with real-time qRT-PCR in liver of Atlantic salmon Salmo salar exposed to 80% (normoxia), 105% and 130% O2 saturation for 54 days. The salmon were then translocated and exposed to 90% and 130% O2 saturation for additional 72 days during smoltification. TBARS and vitamin E levels in liver and the levels of oxidized glutathione (GSSG), total glutathione (GSH) and the resulting oxidative stress index (OSI) in blood were quantified as traditional oxidative stress markers. No significant mean normalized expression (MNE) differences of SOD, CAT or GSH-Px were found in liver after hyperoxia exposure at the two sampling times. Significantly decreased OSI was found in smolt exposed to 130% O2 saturation after 126 days (n = 18, P < 0.0001), indicating hyperoxia-induced oxidative stress. No effects were seen on growth, or on the levels of thiobarbituric reactive substances (TBARS) and vitamin E in liver after the exposure experiment. Overall, the mRNA expression of SOD, CAT and GSH-Px in liver related poorly with the hyperoxic exposure regimes, and more knowledge are needed before the expressed levels of these antioxidant genes can be applied as biomarkers of hyperoxia in Atlantic salmon.  相似文献   

18.
It has been suggested that reactive oxygen species (ROS) plays an important role in radio contrast media (RCM)‐induced ischemia reperfusion tissue injury although antioxidants may have protective effects on the injury. We investigated the effects of erdosteine as an antioxidant agent on RCM‐induced liver toxicity in rats by evaluation of lipid peroxidation (as TBARS), catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH) and glutathione peroxidase (GSH‐Px) values and histological evaluation. Twenty‐one rats were equally divided into three groups as follows: control, RCM, and RCM plus erdosteine. RCM was intraperitoneally administered for 1 day. Erdosteine was administered orally for 2 days after RCM administration. Liver samples were taken from the rats and they homogenized in a motor‐driven tissue homogenizer. TBARS levels were significantly (p < 0.005) higher in RCM group than in control although SOD activities significantly (p < 0.05) decreased in RCM group. TBARS levels were lower in RCM plus erdosteine group than in control although SOD activity and GSH level increased (p < 0.05) in liver as compared to RCM alone. Erdosteine showed also histopathological protection (p < 0.0001) against RCM induced hepatotoxicity. GSH‐Px and CAT activities were not statistically changed by the erdosteine. According to our results, it can be concluded that radiocontrast media can induce oxidative stress in liver as suggested by previous studies. Erdosteine seems to be protective agent on the radiocontrast media‐induced liver toxicity by inhibiting the production of ROS via the enzymatic antioxidant system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Lipid peroxidation is believed to play an important role in pathogenesis of diseases. 4-Nitroquiunoline 1-oxide (4-NQO) a potent oral carcinogen, widely used for induction of oral carcinogenesis, was found to induce lipid peroxidation in vivo and in vitro. Green tea contains high content of polyphenols, which are potent antioxidants. Thus green tea polyphenols (GP) can play a protective role in 4-NQO induced in vitro lipid peroxidation. 4-NQO at the concentration of 1.5 mM was found to induce lipid peroxidation in 5% liver homogenate in phosphate buffered saline and extent of lipid peroxidation at the different time intervals 0, 15, 30 and 45 min where studied by assessing parameters such as hydroxyl radical production (OH), thiobarbituric acid reactants (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT). It was found that addition of 4-NQO caused an increase in OH and TBARS level and a decrease in activity of SOD, CAT and the levels of GSH. Simultaneous addition of GP 10 mg/ml significantly decreased lipid peroxidation and increased in antioxidant status. Thus, we conclude that GP, a potent antioxidant, was found to nullify 4-NQO induced lipid peroxidation in vitro and 4-NQO acts initially by causing oxidative stress and leads to carcinogenesis.  相似文献   

20.
目的:以小鼠肾脏细胞中的活性氧(ROS)、丙二醛(MDA)、谷胱甘肽(GSH)含量和超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)活力为指标,探讨全氟辛烷磺酸钾(PFOS-K)对小鼠肾脏的氧化性损伤作用。方法:以剂量为6mg/kg·bw、12 mg/kg·bw、24 mg/kg·bw 3个浓度的PFOS-K混悬液,每天分别给小鼠经口灌胃一次,连续染毒20天后检测肾脏脏器系数,以及肾脏中ROS、MDA、GSH含量的变化和SOD、GSH-Px、CAT活性的改变。结果:与阴性对照组相比,在6-24 mg/kg·bw剂量范围内,PFOS-K使小鼠体重下降、肾脏重量增加、肾脏脏器系数增大,且表现出一定的剂量-效应关系(r小鼠体重=-0.905,r肾脏湿重=0.938,r脏器系数=0.936)。PFOS-K使小鼠肾脏内活性氧(ROS)及丙二醛(MDA)含量增多(rROS=0.990,rMDA=0.997)、谷胱甘肽(GSH)含量减少(rGSH=-0.994),超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)活力降低(rSOD=-0.917,rGSH-Px=-0.986,rCAT=-0.991)。结论:本试验条件下,PFOS-K致使小鼠肾脏肿大,影响了肾脏的发育;造成了肾脏的氧化性损伤,肾组织内抗氧化酶系统遭到破坏,氧化应激反应增强,具有氧化损伤作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号