首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conjugation, a major type of horizontal gene transfer in bacteria, involves transfer of DNA from a donor to a recipient using donor‐encoded conjugation machinery. Using a high‐throughput screen (Tn‐seq), we identified genes in recipients that contribute to acquisition of the integrative and conjugative element ICEBs1 by Bacillus subtilis. We found that null mutations in some genes caused an increase, and others a decrease in conjugation efficiency. Some mutations affected conjugation only when present in recipients. Other mutations affected conjugation when present in donors or recipients. Most of the genes identified are known or predicted to affect the cell envelope. Several encode enzymes involved in phospholipid biosynthesis and one encodes a homologue of penicillin‐binding proteins. Two of the genes identified also affected conjugation of Tn916, indicating that their roles in conjugation may be general. We did not identify any genes in recipients that were essential for ICEBs1 conjugation, indicating that if there are such genes, then these are either essential for cell growth or redundant. Our results indicate that acquisition of ICEBs1, and perhaps other conjugative elements, is robust and not easily avoided by mutation and that several membrane‐related functions affect the efficiency of conjugation.  相似文献   

2.
Virulence and antibiotic resistance genes transfer between bacteria by bacterial conjugation. Conjugation also mediates gene transfer from bacteria to eukaryotic organisms, including yeast and human cells. Predicting when and where genes transfer by conjugation could enhance our understanding of the risks involved in the release of genetically modified organisms, including those being developed for use as vaccines. We report here that Salmonella enterica serovar Typhimurium conjugated inside cultured human cells. The DNA transfer from donor to recipient bacteria was proportional to the probability that the two types of bacteria occupied the same cell, which was dependent on viable and invasive bacteria and on plasmid tra genes. Based on the high frequencies of gene transfer between bacteria inside human cells, we suggest that such gene transfers occur in situ. The implications of gene transfer between bacteria inside human cells, particularly in the context of antibiotic resistance, are discussed.  相似文献   

3.
Conjugation is the primary mechanism of horizontal gene transfer that spreads antibiotic resistance among bacteria. Although conjugation normally occurs in surface-associated growth (e.g., biofilms), it has been traditionally studied in well-mixed liquid cultures lacking spatial structure, which is known to affect many evolutionary and ecological processes. Here we visualize spatial patterns of gene transfer mediated by F plasmid conjugation in a colony of Escherichia coli growing on solid agar, and we develop a quantitative understanding by spatial extension of traditional mass-action models. We found that spatial structure suppresses conjugation in surface-associated growth because strong genetic drift leads to spatial isolation of donor and recipient cells, restricting conjugation to rare boundaries between donor and recipient strains. These results suggest that ecological strategies, such as enforcement of spatial structure and enhancement of genetic drift, could complement molecular strategies in slowing the spread of antibiotic resistance genes.  相似文献   

4.
Conjugation is the primary mechanism of horizontal gene transfer that spreads antibiotic resistance among bacteria. Although conjugation normally occurs in surface-associated growth (e.g., biofilms), it has been traditionally studied in well-mixed liquid cultures lacking spatial structure, which is known to affect many evolutionary and ecological processes. Here we visualize spatial patterns of gene transfer mediated by F plasmid conjugation in a colony of Escherichia coli growing on solid agar, and we develop a quantitative understanding by spatial extension of traditional mass-action models. We found that spatial structure suppresses conjugation in surface-associated growth because strong genetic drift leads to spatial isolation of donor and recipient cells, restricting conjugation to rare boundaries between donor and recipient strains. These results suggest that ecological strategies, such as enforcement of spatial structure and enhancement of genetic drift, could complement molecular strategies in slowing the spread of antibiotic resistance genes.  相似文献   

5.
Abstract Gene transfer among microorganisms has been well demonstrated in laboratory microcosms and in situ, under non-limiting nutrient conditions. The literature contains conflicting opinions, however, as to whether such processes could occur in the absence of nutrients. This review summarises the evidence for the occurrence of gene transfer by conjugation, transformation and transduction among non-growing bacteria in nutrient depleted environments. Conjugation by selftransmissible, or by non-selftransmissible but mobilisable, plasmids has been shown to occur among environmental isolates of Escherichia coli, Enterobacter cloacae, Pseudomonas aeruginosa and marine Vibrio strains. Transduction and transformation have been demonstrated in isolates of P. aeruginosa and marine Vibrio strains, respectively. It is possible that the mechanisms of these processes may be different in non-growing cells in nutrient depleted conditions, compared to those occurring in cells growing in rich media.  相似文献   

6.
Horizontal gene transfer greatly facilitates rapid genetic adaptation of bacteria to shifts in environmental conditions and colonization of new niches by allowing one-step acquisition of novel functions. Conjugation is a major mechanism of horizontal gene transfer mediated by conjugative plasmids and integrating conjugative elements (ICEs). While in most bacterial conjugative systems DNA translocation requires the assembly of a complex type IV secretion system (T4SS), in Actinobacteria a single DNA FtsK/SpoIIIE-like translocation protein is required. To date, the role and diversity of ICEs in Actinobacteria have received little attention. Putative ICEs were searched for in 275 genomes of Actinobacteria using HMM-profiles of proteins involved in ICE maintenance and transfer. These exhaustive analyses revealed 144 putative FtsK/SpoIIIE-type ICEs and 17 putative T4SS-type ICEs. Grouping of the ICEs based on the phylogenetic analyses of maintenance and transfer proteins revealed extensive exchanges between different sub-families of ICEs. 17 ICEs were found in Actinobacteria from the genus Frankia, globally important nitrogen-fixing microorganisms that establish root nodule symbioses with actinorhizal plants. Structural analysis of ICEs from Frankia revealed their unexpected diversity and a vast array of predicted adaptive functions. Frankia ICEs were found to excise by site-specific recombination from their host's chromosome in vitro and in planta suggesting that they are functional mobile elements whether Frankiae live as soil saprophytes or plant endosymbionts. Phylogenetic analyses of proteins involved in ICEs maintenance and transfer suggests that active exchange between ICEs cargo-borne and chromosomal genes took place within the Actinomycetales order. Functionality of Frankia ICEs in vitro as well as in planta lets us anticipate that conjugation and ICEs could allow the development of genetic manipulation tools for this challenging microorganism and for many other Actinobacteria.  相似文献   

7.
Thermus thermophilus HB27, an extremely thermophilic bacterium, exhibits high competence for natural transformation. To identify genes of the natural transformation machinery of T. thermophilus HB27, we performed homology searches in the partially completed T. thermophilus genomic sequence for conserved competence genes. These analyses resulted in the detection of 28 open reading frames (ORFs) exhibiting significant similarities to known competence proteins of gram-negative and gram-positive bacteria. Disruption of 15 selected potential competence genes led to the identification of 8 noncompetent mutants and one transformation-deficient mutant with a 100-fold reduced transformation frequency. One competence protein is similar to DprA of Haemophilus influenzae, seven are similar to type IV pilus proteins of Pseudomonas aeruginosa or Neisseria gonorrhoeae (PilM, PilN, PilO, PilQ, PilF, PilC, PilD), and another deduced protein (PilW) is similar to a protein of unknown function in Deinococcus radiodurans R1. Analysis of the piliation phenotype of T. thermophilus HB27 revealed the presence of single pilus structures on the surface of the wild-type cells, whereas the noncompetent pil mutants of Thermus, with the exception of the pilF mutant, were devoid of pilus structures. These results suggest that pili and natural transformation in T. thermophilus HB27 are functionally linked.  相似文献   

8.
Horizontal DNA transfer plays a major role in the evolution of bacteria. It allows them to acquire new traits rapidly and these may confer fitness advantages as the bacteria compete with others in the environment. Historically, the mechanisms of horizontal DNA transfer, chiefly conjugation, transformation and transduction, have received a great deal of attention. Less attention has been focused on the regulatory problems that may accompany the acquisition of new genes by lateral routes. How are these genes integrated into the existing regulatory circuits of the cell? Does a process of 'plug-and-play' operate, or are the new genes silenced pending the evolution of regulatory mechanisms that make their expression not only safe but also beneficial to both the gene and its new host? Recent research shows that bacterial nucleoid-associated proteins such as H-NS, HU and Fis are important contributors to the processes of regulatory integration that accompany horizontal gene transfer. A key emerging theme is the antagonism that exists between the DNA–protein–DNA bridging activity of the H-NS repressor and the DNA-bending and DNA-wrapping activities of regulatory proteins that oppose H-NS.  相似文献   

9.
Conjugation is the main mode of horizontal gene transfer that spreads antibiotic resistance among bacteria. Strategies for inhibiting conjugation may be useful for preserving the effectiveness of antibiotics and preventing the emergence of bacterial strains with multiple resistances. Filamentous bacteriophages were first observed to inhibit conjugation several decades ago. Here we investigate the mechanism of inhibition and find that the primary effect on conjugation is occlusion of the conjugative pilus by phage particles. This interaction is mediated primarily by phage coat protein g3p, and exogenous addition of the soluble fragment of g3p inhibited conjugation at low nanomolar concentrations. Our data are quantitatively consistent with a simple model in which association between the pili and phage particles or g3p prevents transmission of an F plasmid encoding tetracycline resistance. We also observe a decrease in the donor ability of infected cells, which is quantitatively consistent with a reduction in pili elaboration. Since many antibiotic-resistance factors confer susceptibility to phage infection through expression of conjugative pili (the receptor for filamentous phage), these results suggest that phage may be a source of soluble proteins that slow the spread of antibiotic resistance genes.  相似文献   

10.
Anaerobic reductive dehalogenation by Dehalococcoides spp. is an ideal system for studying functional diversity of closely related strains of bacteria. In Dehalococcoides spp., reductive dehalogenases (RDases) are key respiratory enzymes involved in the anaerobic detoxification of halogenated compounds at contaminated sites globally. Although housekeeping genes sequenced from Dehalococcoides spp. are >85% identical at the amino acid level, different strains are capable of dehalogenating diverse ranges of compounds, depending largely on the suite of RDase genes that each strain harbors and expresses. We identified RDase proteins that corresponded to known functions in four characterized cultures and predicted functions in an uncharacterized Dehalococcoides-containing mixed culture. Homologues within RDase subclusters containing PceA, TceA, and VcrA were among the most frequently identified proteins. Several additional proteins, including a formate dehydrogenase-like protein (Fdh), had high coverage in all strains and under all growth conditions.  相似文献   

11.
The extreme thermophile Thermus thermophilus HB27 exhibits high frequencies of natural transformation. Although we recently reported identification of the first competence genes in Thermus, the molecular basis of DNA uptake is unknown. A pilus-like structure is assumed to be involved. Twelve genes encoding prepilin-like proteins were identified in three loci in the genome of T. thermophilus. Mutational analyses, described in this paper, revealed that one locus, which contains four genes that encode prepilin-like proteins (pilA1 to pilA4), is essential for natural transformation. Additionally, comZ, a new competence gene with no similarity to known genes, was identified. Analysis of the piliation phenotype revealed wild-type piliation of a pilA1-pilA3Deltakat mutant and a comZ mutant, whereas a pilA4 mutant was found to be completely devoid of pilus structures. These findings, together with the significant similarity of PilA4 to prepilins, led to the conclusion that the T. thermophilus pilus structures are type IV pili. Furthermore, the loss of the transformation and piliation phenotype in the pilA4 mutant suggests that type IV pili are implicated in natural transformation of T. thermophilus HB27.  相似文献   

12.
Conjugation is an efficient way for transfer of genetic information between bacteria, even between highly diverged species, and a major cause for the spreading of resistance genes. We have investigated the subcellular localization of several conserved conjugation proteins carried on plasmid pLS20 found in Bacillus subtilis. We show that VirB1, VirB4, VirB11, VirD2, and VirD4 homologs assemble at a single cell pole, but also at other sites along the cell membrane, in cells during the lag phase of growth. Bimolecular fluorescence complementation analyses showed that VirB4 and VirD4 interact at the cell pole and, less frequently, at other sites along the membrane. VirB1 and VirB11 also colocalized at the cell pole. Total internal reflection fluorescence microscopy showed that pLS20 is largely membrane associated and is frequently found at the cell pole, indicating that transfer takes place at the pole, which is a preferred site for the assembly of the active conjugation apparatus, but not the sole site. VirD2, VirB4, and VirD4 started to localize to the pole or the membrane in stationary-phase cells, and VirB1 and VirB11 were observed as foci in cells resuspended in fresh medium but no longer in cells that had entered exponential growth, although at least VirB4 was still expressed. These data reveal an unusual assembly/disassembly timing for the pLS20 conjugation machinery and suggest that specific localization of conjugation proteins in lag-phase cells and delocalization during growth are the reasons why pLS20 conjugation occurs only during early exponential phase.  相似文献   

13.
Natural competence is active in very diverse species of the bacterial kingdom and probably participates in horizontal gene transfer. Recently, the genome sequence of various species, including Lactococcus lactis, revealed the presence of homologues of competence genes in bacteria, which were not previously identified as naturally transformable. We investigated the conservation among lactococcal strains of key components of the natural competence process in streptococci: (i) comX which encodes a sigma factor, allowing the expression of the late competence genes involved in DNA uptake, (ii) its recognition site, the cin-box and (iii) dprA which encodes a protein shown to determine the fate of incoming DNA. The comX and dprA genes and the cin-box appeared conserved among strains, although some L. lactis ssp. lactis strains presented an inactivated dprA gene. We established that ComX controls the expression of the late competence genes in L. lactis. In conclusion, our work strongly suggests that ComX has the same role in streptococci and L. lactis, i.e. the regulation of late competence genes. It also allowed the identification of a set of L. lactis strains and the construction of a comX overexpression system, which should facilitate the investigation of the natural competence activity in lactococci.  相似文献   

14.
Staddon JH  Bryan EM  Manias DA  Chen Y  Dunny GM 《Plasmid》2006,56(2):102-111
Conjugation is a major contributor to lateral gene transfer in bacteria, and pheromone-inducible conjugation systems in Enterococcus faecalis play an important role in the dissemination of antibiotic resistance and virulence in enterococci and related bacteria. We have genetically dissected the determinants of DNA processing of the enterococcal conjugative plasmid pCF10. Insertional inactivation of a predicted relaxase gene pcfG, via insertion of a splicing-deficient group II intron, severely reduced pCF10 transfer. Restoration of intron splicing ability by genetic complementation restored conjugation. The pCF10 origin of transfer (oriT) was localized to a 40-nucleotide sequence within a non-coding region with sequence similarity to origins of transfer of several other plasmids in gram positive bacteria. Deletion of the oriT reduced pCF10 transfer by more than five orders of magnitude without affecting pCF10-dependent mobilization of co-resident oriT-containing plasmids. Although the host range for pCF10 replication is limited to enterococci, we found that the pCF10 conjugation system promotes mobilization of oriT-containing plasmids to multiple bacterial genera. Therefore, this transfer system may have applications for gene delivery to a variety of poorly-transformed bacteria.  相似文献   

15.
Proteobacterium Escherichia coli strains harboring wide-transfer-range conjugative plasmids are able to transfer these plasmids to several yeast species. Whole plasmid DNA is mobilizable in the transkingdom conjugation phenomenon. Owing to the availability of various conjugative plasmids in bacteria, the horizontal DNA transfer has potential to occur between various bacteria and eukaryotes. In order to know host factor genes involved in such conjugation, we systematically tested the conjugability of strains among a yeast library comprising single-gene-knockout mutants in this study. This genome-wide screen identified 26 host chromosomal genes whose absence reduced the efficiency of the transkingdom conjugation. Among the 26 genes, 20 are responsible for vacuolar ATPase activity, while 5 genes (SHP1, CSG2, CCR4, NOT5, and HOF1) seem to play a role in maintaining the cell surface. Lack of either ZUO1 gene or SSZ1 gene, each of which encodes a component of the ribosome-associated cytoplasmic molecular chaperone, also strongly affected transkingdom conjugation.  相似文献   

16.
DNA pumps play important roles in bacteria during cell division and during the transfer of genetic material by conjugation and transformation. The FtsK/SpoIIIE proteins carry out the translocation of double-stranded DNA to ensure complete chromosome segregation during cell division. In contrast, the complex molecular machines that mediate conjugation and genetic transformation drive the transport of single stranded DNA. The transformation machine also processes this internalized DNA and mediates its recombination with the resident chromosome during and after uptake, whereas the conjugation apparatus processes DNA before transfer. This article reviews these three types of DNA pumps, with attention to what is understood of their molecular mechanisms, their energetics and their cellular localizations.The transport of DNA across membranes by bacteria occurs during sporulation, during cytokinesis, directly from other cells and from the environment. This review addresses the question “how is the DNA polyanion transferred processively across the hydrophobic membrane barrier”?DNA transport must occur through water-filled channels, at least conceptually addressing the problem posed by the hydrophobic membrane. DNA transporters presumably use metabolic energy directly or a coupled-flow (symporter or antiporter) mechanism to drive DNA processively through the channel. It is possible that a Brownian ratchet mechanism, in which directionality is imposed on a diffusive process, also contributes to transport.In this article, we will consider several DNA transport systems. We will begin with the simplest one, namely the FtsK/SpoIIIE system that is involved in cell division and sporulation. We will then turn to the more complex, multiprotein DNA uptake systems that accomplish genetic transformation (the uptake of environmental DNA from the environment) and the conjugation systems of Gram-negative bacteria that mediate the unidirectional transfer of DNA between cells. In each case we will discuss the proteins involved, their actions and the sources of energy that drive transport. Space limitations prevent discussion of other relevant topics, such as DNA transport during bacteriophage infection and more than a brief reference to conjugation in Gram-positive bacteria.  相似文献   

17.
Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared to the model without plate conjugation. The modelling approach described in this article can be applied generally when modelling dynamical systems.  相似文献   

18.
Lu J  Frost LS 《Journal of bacteriology》2005,187(14):4767-4773
Conjugation is a major mechanism for disseminating genetic information in bacterial populations, but the signal that triggers it is poorly understood in gram-negative bacteria. F-plasmid-mediated conjugation requires TraM, a homotetramer, which binds cooperatively to three binding sites within the origin of transfer. Using in vitro assays, TraM has previously been shown to interact with the coupling protein TraD. Here we present evidence that F conjugation also requires TraM-TraD interactions in vivo. A three-plasmid system was used to select mutations in TraM that are defective for F conjugation but competent for tetramerization and cooperative DNA binding to the traM promoter region. One mutation, K99E, was particularly defective in conjugation and was further characterized by affinity chromatography and coimmunoprecipitation assays that suggested it was defective in interacting with TraD. A C-terminal deletion (S79*, where the asterisk represents a stop codon) and a missense mutation (F121S), which affects tetramerization, also reduced the affinity of TraM for TraD. We propose that the C-terminal region of TraM interacts with TraD, whereas its N-terminal domain is involved in DNA binding. This arrangement of functional domains could in part allow TraM to receive the mating signal generated by donor-recipient contact and transfer it to the relaxosome, thereby triggering DNA transfer.  相似文献   

19.
The genome sequence of the extreme thermophile Thermus thermophilus   总被引:6,自引:0,他引:6  
Thermus thermophilus HB27 is an extremely thermophilic, halotolerant bacterium, which was originally isolated from a natural thermal environment in Japan. This organism has considerable biotechnological potential; many thermostable proteins isolated from members of the genus Thermus are indispensable in research and in industrial applications. We present here the complete genome sequence of T. thermophilus HB27, the first for the genus Thermus. The genome consists of a 1,894,877 base pair chromosome and a 232,605 base pair megaplasmid, designated pTT27. The 2,218 identified putative genes were compared to those of the closest relative sequenced so far, the mesophilic bacterium Deinococcus radiodurans. Both organisms share a similar set of proteins, although their genomes lack extensive synteny. Many new genes of potential interest for biotechnological applications were found in T. thermophilus HB27. Candidates include various proteases and key enzymes of other fundamental biological processes such as DNA replication, DNA repair and RNA maturation.  相似文献   

20.
Conjugation of ubiquitin-like protein Nedd8 to cullins (neddylation) is essential for the function of cullin-RING ubiquitin ligases (CRLs). Here, we show that neddylation stimulates CRL activity by multiple mechanisms. For the initiator ubiquitin, the major effect is to bridge the approximately 50 A gap between naked substrate and E2 approximately Ub bound to SCF. The gap between the acceptor lysine of ubiquitinated substrate and E2 approximately Ub is much smaller, and, consequentially, the impact of neddylation on transfer of subsequent ubiquitins by Cdc34 arises primarily from improved E2 recruitment and enhanced amide bond formation in the E2 active site. The combined effects of neddylation greatly enhance the probability that a substrate molecule acquires >or= 4 ubiquitins in a single encounter with a CRL. The surprisingly diverse effects of Nedd8 conjugation underscore the complexity of CRL regulation and suggest that modification of other ubiquitin ligases with ubiquitin or ubiquitin-like proteins may likewise have major functional consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号