首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to study the mechanism of entry and localization of bilirubin (BR) into cell membrane, binding of BR to sealed and human serum albumin (HSA)-entrapped sealed membranes was studied by CD spectroscopy. An induced bisignate CD cotton effects (CDCEs) of BR-bound sealed membranes were observed with maxima at 515 nm and minima at 470 nm with a shoulder at 430 nm. BR-bound HSA-entrapped sealed membranes produced CD spectra with additional positive peaks at 450 and 475 nm and negative troughs at 390 and 415 nm. The induced CDCEs of BR-bound sealed membranes and BR-bound HSA-entrapped sealed membranes were perturbed by the addition of drugs (ceftriaxone and sodium salicylate) with the effect of ceftriaxone being more pronounced. Drugs’ being the displacer of BR from albumin, their incorporation in the incubation mixture was paralleled by reduction in CDCEs. Taken together, these results suggest that BR can traverse the membrane bilayer towards the inner surface instead of remaining intercalated in the exterior half of the bilayer.  相似文献   

2.
The binding of rhein with human serum albumin (HSA) has been studied in detail by spectroscopic method including circular dichroism (CD), Fourier transformation infrared spectra (FT-IR), fluorescence spectra. The binding parameters for the reaction have been calculated according to Scatchard equation at different temperatures. The plots indicated that the binding of HSA to rhein at 303, 310 and 318 K is characterized by one binding site with the affinity constant K at (4.93+/-0.16)x10(5), (4.02+/-0.16)x10(5) and (2.69+/-0.16)x10(5) M-1, respectively. The secondary structure compositions of free HSA and its rhein complexes were estimated by the FT-IR spectra. FT-IR and curve-fitted results of amide I band are in good agreement with the analyses of CD spectra. Molecular Modeling method was used to calculate the interaction modes between the drug and HSA.  相似文献   

3.
The structural changes of human serum albumin (HSA) induced by the addition of cadmium acetate were systematically investigated using UV–vis absorption, circular dichroism (CD), synchronous, and three‐dimentional (3D) fluorescence methods. The fluorescence spectra suggested the formation of cadmium acetate–HSA complex. UV absorption result indicated that the interaction between cadmium acetate and HSA could lead to the alteration of the protein skeleton. The structural analysis according to CD method showed that the cadmium acetate binding altered HSA conformation with a major reduction of α‐helix, inducing a partial protein unfolding. Synchronous fluorescence spectra suggested that cadmium acetate was situated closer to tryptophan residue compared to tyrosine residues, making tryptophan residue locate in a more hydrophobic environment. 3D fluorescence demonstrated that cadmium acetate could induce the HSA aggregation and cause a slight unfolding of the polypeptide backbone of the protein.  相似文献   

4.
芦丁与人血清白蛋白相互作用的紫外可见光谱特性研究   总被引:1,自引:0,他引:1  
本文通过测定芦丁与HSA相互作用前后的紫外可见吸收光谱、圆二色性及人血清白蛋白(HSA)的荧光特性,研究了芦丁与HSA结合作用。结果表明,芦丁在紫外区有三个特征的吸收峰(264.0、285.5及354.5nm)、在330~300 nm及300~230 nm处显示圆二色性,HSA引起芦丁紫外可见吸收光谱波峰红移;芦丁与HSA相互作用后,不引起HSA二级结构的改变,但对其三级结构有影响,同时对HSA荧光激发及发生光谱最大峰位及幅度有影响。  相似文献   

5.
The current study reports the binding of curcumin (CUR) as the main pharmacologically active ingredient of turmeric and diacetylcurcumin (DAC) as a bioactive derivative of curcumin to human serum albumin (HSA) and bovine serum albumin (BSA). The apparent binding constants and number of substantive binding sites have been evaluated by fluorescence quenching method. The distance (r) between donor (HSA and BSA) and acceptor (CUR and DAC) was obtained on the basis of the Förster’s theory of non-radiative energy transfer. The minor changes on the far-UV circular dichroism spectra resulted in partial changes in the calculated secondary structure contents of HSA and BSA. The negligible alteration in the secondary structure of both albumin proteins indicated that ligand-induced conformational changes are localized to the binding site and do not involve considerable changes in protein folding. The visible CD spectra indicated that the optical activity observed during the ligand binding due to induced-protein chirality. All of the achieved results suggested the important role of the phenolic OH group of CUR in the binding process.  相似文献   

6.
Streptococcal protein G (SpG) is a bacterial cell surface receptor exhibiting affinity to both human immunoglobulin (IgG) and human serum albumin (HSA). Interestingly, the serum albumin and immunoglobulin-binding activities have been shown to reside at functionally and structurally separated receptor domains. The binding domain of the HSA-binding part has been shown to be a 46-residue triple alpha-helical structure, but the binding site to HSA has not yet been determined. Here, we have investigated the precise binding region of this bacterial receptor by protein engineering applying an alanine-scanning procedure followed by binding studies by surface plasmon resonance (SPR). The secondary structure as well as the HSA binding of the resulting albumin-binding domain (ABD) variants were analyzed using circular dichroism (CD) and affinity blotting. The analysis shows that the HSA binding involves residues mainly in the second alpha-helix.  相似文献   

7.
The reaction of human serum albumin (HSA) with aldoses (C3-C6) and acetaldehyde has been studied. U.v. and fluorescent spectra of the HSA-glyceraldehyde and HSA-GlcN adducts reveal yellow chromophores absorbing at 300-350 nm and emitting at 435 nm. However, even limited reaction of HSA with acetaldehyde induced perturbation in the Trp microenvironment. C.d. spectra of the adducts show an average 20% decrement in mean residual ellipticity [theta], which is independent of the extent of the reaction and the aldose used. It is concluded that most of the reactions with aldoses occur at the surface of the HSA molecule. With the exception of the GlcN adduct, the HSA adducts rearrange to produce pyrrole rings on the protein surface. I.e.f. analysis shows that the pI values of the modified HSA are almost linearly correlated with the chain length of the reacting aldose: from pI 4.2 for HSA-glyceraldehyde up to pI 5.0 for HSA-GlcN.  相似文献   

8.
In this paper, we use spectroscopic methods (fluorescence spectroscopy, UV absorption spectroscopy, and circular dichroism (CD) spectroscopy) to elucidate the effects of reactive oxygen species generated by γ‐irradiation on the molecular properties of human serum albumin (HSA). The results of fluorescence spectroscopy indicated that oxidation by γ‐irradiation can lead to conformational changes of HSA. Data of CD spectra suggested that with the increase of radiation dose the percentage of α‐helix in HSA has decreased. The determination of protein hydrophobicity showed that the effective hydrophobicity of HSA decreased up to 62% compared to the native HSA solution due to the exposure to the γ‐irradiation. Furthermore, small changes in the esterase‐like activity of HSA were introduced because of oxidation. The content of bityrosine increased markedly, suggesting that the oxidized HSA was aggregated. Moreover, there was no obvious change in the molecular properties of HSA with low γ‐irradiation dose. Changes happened when the irradiation dose exceeded 200 Gy.  相似文献   

9.
The interactions between imidazolium [trans-tetrachlorobis(imidazol) ruthenate(III)] (Ru-im) and human serum albumin (HSA) have been investigated through UV-Vis, CD, fluorescence spectroscopy and by the antibody precipitation test. Binding of Ru(III)-imidazole species to albumin has a strong impact on the protein structure and influences considerably the albumin binding of other molecules such as warfarin or heme. The metal complex-HSA interactions cause conformational changes with the loss of helical stability of the protein and local perturbation in the domain IIA binding pocket. The relative fluorescence intensity of the ruthenium-bound HSA decreased, suggesting that perturbation around the Trp 214 residue took place. This was confirmed by the destabilisation of the warfarin binding site which includes Trp 214, observed in the metal-bound HSA.  相似文献   

10.
Pistolozzi M  Bertucci C 《Chirality》2008,20(3-4):552-558
Drug binding to albumins from different mammalian species was investigated to disclose evidence of species-dependent stereoselectivity in drug-binding processes and affinities. This aspect is important for evaluating the reliability of extrapolating distribution data among species. The circular dichroism (CD) signal induced by drug binding to the albumins [human serum albumin (HSA), bovine serum albumin (BSA), rat serum albumin (RSA), and dog serum albumin (DSA)] were measured and analyzed. The binding of selected drugs and metabolites to HSA significantly differed from the binding to the other albumins in terms of affinity and conformation of the bound ligands. In particular, phenylbutazone, a marker of site one on HSA, showed a higher affinity for binding to BSA with respect to RSA, HSA, and DSA, respectively. In the case of diazepam, a marker of site two on HSA, the affinity decreased in order from HSA to DSA, RSA, and BSA. The induced CD spectra were similar in terms of energy and band signs, suggesting almost the same conformation for the bound drug to the different albumins. Stereoselectivity was high for the binding of ketoprofen to HSA and RSA. A different sign was observed for the CD spectra induced by the drug to the two albumins because of the prevalence of a different conformation of the bound drug. Interestingly, the same induced CD spectra were obtained using either the racemic form or the (S)-enantiomer. Finally, significant differences were observed in the affinity of bilirubin, being highest for BSA, then decreasing for RSA, HSA, and DSA. A more complex conformational equilibrium was observed for bound bilirubin.  相似文献   

11.
The binding of clofazimine to human serum albumin (HSA) was investigated by applying optical spectroscopy and molecular docking methods. Fluorescence quenching data revealed that clofazimine binds to protein with binding constant in the order of 104 M?1, and with the increase in temperature, Stern–Volmer quenching constants gradually decreased indicating quenching mode to be static. The UV–visible spectra showed increase in absorbance upon interaction of HSA with clofazimine which further reveals formation of the drug–albumin complex. Thermodynamic parameters obtained from fluorescence data indicate that the process is exothermic and spontaneous. Forster distance (Ro) obtained from fluorescence resonance energy transfer is found to be 2.05 nm. Clofazimine impelled rise in α-helical structure in HSA as observed from far-UV CD spectra while there are minor alterations in tertiary structure of the protein. Clofazimine interacts strongly with HSA inducing secondary structure in the protein and slight alterations in protein topology as suggested by dynamic light scattering results. Moreover, docking results indicate that clofazimine binds to hydrophobic pocket near to the drug site II in HSA.  相似文献   

12.
Optical spectroscopy and molecular docking methods were used to examine the binding of aristolochic acid I (AAI) to human serum albumin (HSA) in this paper. By monitoring the intrinsic fluorescence of single Trp214 residue and performing displacement measurements, the specific binding of AAI in the vicinity of Sudlow's Site I of HSA has been clarified. An apparent distance of 2.53 nm between the Trp214 and AAI was obtained via fluorescence resonance energy transfer (FRET) method. In addition, the changes in the secondary structure of HSA after its complexation with the ligand were studied with circular dichroism (CD) spectroscopy, which indicated that AAI does not has remarkable effect on the structure of the protein. Moreover, thermal denaturation experiments clearly indicated that the HSA−AAI complexes are conformationally more stable. Finally, the binding details between AAI and HSA were further confirmed by molecular docking studies, which revealed that AAI was bound at subdomain IIA through multiple interactions, such as hydrophobic effect, van der Waals forces and hydrogen bonding.  相似文献   

13.
Khan MM  Muzammil S  Tayyab S 《Biochimie》2000,82(3):203-209
Chloroform-induced conformational changes of bilirubin (BR) bound to different serum albumins were studied by circular dichroism (CD) and fluorescence spectroscopy. Addition of a small amount of chloroform ( approximately 20 mM) to a solution containing 20 microM albumin and 15 microM BR changed the sign order and magnitude of the characteristic CD spectra of all BR-albumin complexes except BR-PSA complex which showed abnormal behavior. Monosignate negative CD Cotton effects (CDCEs) of BR complexed with SSA, GSA and BuSA were transformed into bisignate CDCEs in presence of chloroform akin to those exhibited by chloroform free solution of BR-HSA complex, indicating that the pigment acquired right handed plus (P) chirality when chloroform was added to these complexes. Bisignate CD spectra of BR complexed with HSA and BSA showed complete inversion upon addition of chloroform corroborating earlier findings. On the other hand, changes observed with BR-RSA complex were slightly different showing an additional CD band of weak intensity centered around 390 nm though inversion of CDCEs was similar to that of BR-HSA complex. Monosignate CD spectra of BR-PSA complex also showed three CD bands occurring at 409, 470 and 514 nm after chloroform addition. These results indicated significant but different effects of chloroform on the conformation of bound BR in BR-albumin complexes which can be ascribed to the changes in the exciton chirality of bilirubin probably due to altered hydrophobic microenvironment induced by the binding of chloroform at or near the ligand binding site. Chloroform severely quenched the intrinsic tryptophan fluorescence of the protein and shifted the emission maxima towards blue region in all the albumins except PSA. However, quantitative differences in both quenching and blue shift were noted in different serum albumins. This suggests that chloroform probably binds in the close vicinity of tryptophan residue(s) located in subdomain(s) IIA or IB and II both. The fluorescence of BR-albumin complexes was also found to be sensitive to the presence of a small amount of chloroform. But the changes observed in the fluorescence of the bound pigment in presence of chloroform were less marked as compared to the changes in the intrinsic fluorescence of protein per se. Taken together, these results suggest that there is at least one conserved site for chloroform binding in all these albumins which is at or near the BR binding site.  相似文献   

14.
The interactions between HInd[RuInd2Cl4] and human serum albumin have been investigated through UV-Vis, circular dichroism (CD), fluorescence spectroscopy and the inductively coupled plasma-atomic emission spectroscopy (ICP(AES)) method. Binding of Ru(III)-indazole species to albumin has strong impact on protein structure and it influences considerably albumin binding of other molecules like warfarin, heme or metal ions. The metal complex-human serum albumin (HAS) interactions cause conformational changes with loss of helical stability of the protein and local perturbation in the domain IIA binding pocket. The relative fluorescence intensity of the ruthenium-bound HSA decreased, suggesting that perturbation around the Trp 214 residue took place. This was confirmed by the destabilization of the warfarin-binding site, which includes Trp 214, observed in the metal-bound HSA.  相似文献   

15.
Unlike human serum albumin (HSA), dog serum albumin (DSA) does not possess the characteristics of the specific first binding site for Cu(II). In DSA, the important histidine residue in the third position, responsible for the Cu(II)-binding specificity in HSA, is replaced by a tyrosine residue. In order to study the influence of the tyrosine residue in the third position of DSA, a simple model of the NH2-terminal native sequence tripeptide of DSA, glycylglycyl-L-tyrosine-N-methylamide (GGTNMA) was synthesized and its Cu(II)-binding properties studied by analytical potentiometry, spectrophotometry, CD, and NMR spectroscopy. The species analysis indicated the existence of five mono-complexes at different protonation states: MHA, MA, MH-1A, MH-2A, MH-3A, and only one bis-complex MH-2A-2. The complexing ability of GGTNMA to Cu(II) was found to be weaker than that of the Cu(II) binding peptide models of HSA. The visible absorption spectra of Cu(II)-GGTNMA complexes are similar to those observed in the case of DSA-Cu(II) complexes. The weaker binding and the spectral properties of Cu(II)-GGTNMA complexes are consistent with less specific Cu(II)-binding properties of the peptide of this sequence similar to what was noted with DSA. CD results are in excellent agreement with species analysis and visible spectra where it is clearly evident that Cu(II) binds to GGTNMA starting from the alpha-NH2 group and step by step to deprotonated amide nitrogens as the pH is raised. The absence of any charge transfer band around 400 nm strongly indicates that Cu(II) does not bind to the phenolate group. Furthermore, NMR results are consistent with the noninvolvement of the tyrosine residue of GGTNMA in Cu(II) complexation. Thus, it is clear that the low Cu(II)-binding affinity of DSA is due to the genetic substitution of tyrosine for histidine at the NH2-terminal region of the protein.  相似文献   

16.
Exposure of BR–albumin complexes to visible light at pH 8.0 led to a change in the fluorescence intensity at 525 nm, which was found to be different for different serum albumins. Whereas a complex of BR with human serum albumin (HSA) showed a marked increase in fluorescence upon photoirradiation, BR–sheep serum albumin (SSA) complex failed to produce a marked increase. On the other hand, a complex of pig serum albumin (PSA) with BR produced a remarkable decrease in fluorescence upon photoirradiation. Equilibration of these complexes with 20 mM chloroform for 1 h resulted in alteration in the photoinduced fluorescence. These photoinduced fluorescence modulations were found to be concentration dependent. Photoirradiation of BR–HSA complex led to a significant decrease in the positive CDCEs of the bisignate CD spectra in a time dependent manner that can be reconciled, to a significant extent, in the presence of chloroform. Taken together, all these results suggest that chiroptical properties/stability of albumin-bound BR varies with albumin species, protein concentration and the presence of chloroform.  相似文献   

17.
Due to the potential special position of protoporphyrin IX in the evolution of photosynthesis, the absorption and fluorescence characteristics of this pigment and its complexes with human serum albumin (HSA) and basic proteinoid have been studied in parallel with their photochemical activity. The most significant change in the absorption spectrum of PP IX was the appearance of a new maximum at 455 (or 461) nm in the presence of HSA or proteinoid respectively. Some changes in the physicochemical properties of PP IX in different microenvironments have been detected by changes in fluorescence emission and excitation spectra (intensity, quantum yields, position of maxima). The increase of fluorescence quantum yield resulting from the formation of PP IX complexes with HSA or proteinoid correlates with the increase of their photochemical activity. Results obtained are discussed from the point of view of the early evolution of the photosynthetic apparatus.  相似文献   

18.
Binding of bilirubin (BR) to pigeon serum albumin (PgSA) was studied by absorption, fluorescence and CD spectroscopy and results were compared with those obtained with human serum albumin (HSA). PgSA was found to be structurally similar to HSA as judged by near- and far-UV CD spectra. However, PgSA lacks tryptophan. Binding of BR to PgSA showed relatively weaker interaction compared to HSA in terms of binding affinity, induced red shift in the absorption spectrum of BR and CD spectral characteristics of BR-albumin complexes. Photoirradiation results of BR-albumin complexes also showed PgSA-bound BR more labile compared to HSA-bound BR.  相似文献   

19.
Deng F  Dong C  Liu Y 《Molecular bioSystems》2012,8(5):1446-1451
The interaction of nitrofurazone (NF) and human serum albumin (HSA) has been studied by fluorescence spectroscopy, FT-IR spectroscopy and molecular modeling methods. The results showed that the fluorescence of HSA was quenched by NF in a static quenching mechanism. Thermodynamic parameters revealed that hydrogen bonds and van der Waals force played the major role during the interaction. The calculated binding distance (r) indicated that the non-radioactive energy transfer came into being in the interaction between NF and HSA. HSA had a single class of binding site at Sudlow' site I in subdomain IIA for NF, which was verified by the displacement experiment. The molecular modeling study further confirmed the specific binding sites of NF on HSA, such as the interaction between N11 and N14 of NF with Lue 283 and Ser 287 predominately through hydrogen bonds. Three-dimensional fluorescence spectra indicated that the polarity around the tryptophan residues decreased and the conformation of HSA changed after adding NF. FT-IR spectra showed that NF could induce the polypeptides of HSA unfolding because it changed α-helix and β-sheet into β-turn and random structure of HSA.  相似文献   

20.
The interaction between paracetamol and human serum albumin (HSA) under physiological conditions has been investigated by fluorescence, circular dichroism (CD) and docking. Fluorescence data revealed that the fluorescence quenching of HSA by paracetamol was the result of the formed complex of HSA–paracetamol, and the binding constant (Ka) and binding number obtained is 1.3 × 104 at 298 K and 2, respectively for the primary binding site. Circular dichorism spectra showed the induced conformational changes in HSA by the binding of paracetamol. Moreover, protein–ligand docking study indicated that paracetamols (two paracetamols bind to HSA) bind to residues located in the subdomain IIIA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号