首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Present study was conducted to observe the effect of cholesterol and oxidized cholesterol (7beta-hydroxycholesterol,7beta-OH) on the nitric oxide (NO) production and the redox ratio by lipopolysaccharide-stimulated macrophages. Dose-dependent decrease in NO levels was seen with both cholesterol and 7beta-OH at different incubation intervals (6,12,18,24 hr) and concentrations (2.5,5,7.5microg/ml). On comparison, a significant decrease in the NO was observed at 24 hr interval in 7beta-OH exposed cells with all respective concentrations of cholesterol. Incubation with 7beta-OH also resulted in significant increase in levels of oxidized glutathione (GSSG) and decrease in reduced glutathione (GSH), while cholesterol showed no effect on GSSG levels. Moreover, GSH levels were lowered only at highest concentration (7.5microg/ml), and at longer incubation intervals (18,24 hr) with cholesterol exposure. This altered the redox status in both cholesterol/7beta-OH treated macrophages. Increased redox ratio and decreased NO levels indicated increased oxidative stress and decreased vasodilation by 7beta-OH compared to cholesterol.  相似文献   

2.
The effect of dietary selenium yeast, a source of organic selenium, on heat shock protein 70 (hsp70) responses, redox status, growth and feed utilization were evaluated either in enteropathogenic Escherichia coli-challenged (EPEC) or in heat-stressed (HS) male broiler chickens grown to 42 days of age. One day-old chicks in experiment 1 were challenged orally with EPEC (10(6) cfu/chicken on day 1 and boosted by water application on days 2, 3, and 4) and fed diets with or without selenium yeast. Body weight (BW), feed conversion ratio (FCR), and total mortality were determined at 42 days of age, and this was followed by collection of ileal tissue for the quantification of total glutathione (TGSH), reduced glutathione (GSH), oxidized glutathione (GSSG), and hsp70 in randomly selected chickens from each treatment. In experiment 2, male broiler chickens were fed diets with or without selenium yeast under a thermoneutral rearing condition. At four weeks of age, blood and hepatic tissue were collected from chickens maintained in the thermoneutral environment and from chickens subjected to HS (40 degrees C for 1 h) and analyzed for TGSH, GSH, GSSG, and hsp70. Selenium yeast improved BW, FCR, and decreased mortality in both control and EPEC-challenged chicks. Selenium yeast significantly attenuated hsp70 expression in EPEC-challenged chickens and in those subjected to HS. The EPEC challenge increased TGSH and GSSG levels and decreased GSH/GSSG ratio. However, GSSG level accumulated in chickens fed diets without selenium supplementation resulting in a lower GSH/GSSG ratio in the selenium yeast-fed group. Heat stress increased GSSG level and decreased GSH/GSSG ratio. Selenium yeast-fed groups maintained higher levels of GSSG before and after HS with a resultant lower GSH/GSSG ratio. The hsp70 response was significantly less in those chickens fed selenium yeast and challenged with either EPEC or HS than in those chickens given no supplemental selenium. The results of this study suggest that selenium yeast supplementation had imparted resistance to oxidative stress associated with enteric bacteria infection and to high temperature exposure. It is believed that the resistance to the stressors was due to an improved redox status of the selenium yeast-fed chickens.  相似文献   

3.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

4.
Changes in glutathione (GSH) and glutathione disulfide (GSSG) levels and/or redox status have been suggested to mediate the induction of heat shock proteins (HSPs) that follows exposure to oxidizing agents such as ethanol. Here we report the effects of ethanol administration to rats at intracellular levels of GSH, GSSG, HSP70, and protein carbonyls in brain and liver. Following 7 days of ethanol administration, there was a significant decrease in GSH, a significant induction of HSP70, and a significant increase in protein carbonyls in all brain regions studied and in liver. In cortex, striatum, and hippocampus there was a significant correlation between (a) the decrease in GSH, (b) the increase in GSSG, and (c) the decrease in GSH/GSSG ratio and HSP70 levels induced in response to ethanol. These data support the hypothesis that a redox mechanism may be involved in the heat-shock signal pathway responsible for HSP70 induction in the brain.  相似文献   

5.
Proportions between oxidized and reduced glutathione forms were determined in vacuoles isolated from red beet (Beta vulgaris L.) taproots. The pool of vacuolar glutathione was compared with glutathione pools in isolated plastids and mitochondria. The ratio of glutathione forms was assessed by approved methods, such as fluorescence microscopy with the fluorescent probe monochlorobimane (MCB), high-performance liquid chromatography (HPLC), and spectrophotometry with 5,5′-dithiobis-2-nitrobenzoic acid (DTNB). The fluorescence microscopy revealed comparatively low concentrations of reduced glutathione (GSH) in vacuoles. The GSH content was 104 μM on average, which was lower than the GSH levels in mitochondria (448 μM) and plastids (379 μM). The content of reduced (GSH) and oxidized (GSSG) glutathione forms was quantified by means of HPLC and spectrophotometric assays with DTNB. The glutathione concentrations determined by HPLC in the vacuoles were 182 nmol GSH and 25 nmol GSSG per milligram protein. The respective concentrations of GSH and GSSG in the plastids were 112 and 6 nmol/mg protein and they were 228 and 10 nmol/mg protein in the mitochondria. The levels of GSH determined with DTNB were 1.5 times lower, whereas the amounts of GSSG were, by contrast, 1.5–2 times higher than in the HPLC assays. Although the glutathione redox ratios depended to some extent on the method used, the GSH/GSSG ratios were always lower for vacuoles than for plastids and mitochondria. In vacuoles, the pool of oxidized glutathione was higher than in other organelles.  相似文献   

6.
Heat shock protein 70 (hsp70) family of proteins, which functions as molecular chaperones, has been associated with tolerance to stressors in avian species. Selenium (Se) is an essential trace mineral incorporated into the seleno-enzymes such as glutathione peroxidase (GSHpx). GSHpx reduces oxidized glutathione (GSSG) to reduced glutathione (GSH) in the GSH/GSSG antioxidant system and protects cells from oxidative damage. This study was conducted to examine if the relationship between dietary supplementation of selenium to turkey (Meleagris gallopavo) hens and the embryonic expression of hsp70 and GSHpx activity in heat stressed embryos. Livers of embryos developing in eggs from turkey hens fed diets with or without supplemental Se were analyzed for hsp70 concentration and GSHpx activity before and after recovery from a heating episode. Before heat stress, hsp70 concentrations were equivalent in each treatment, but GSHpx activity was maximized in the SE treatment group. After recovery from the heating episode, hsp70 concentrations were significantly higher (P<0.05) in the non-Se-supplemented groups, but in the Se-supplemented groups the hsp70 concentrations were not different from pre-stress concentrations. In the pre-stress Se-supplemented group, liver GSHpx activity was significantly higher than GSHpx activity in the non-Se-supplemented embryo livers, and in the livers from embryos recovering from heat stress, GSHpx activity in the non-Se-supplemented group was lower than the pre-stress activity and significantly lower than the GSHpx activity in liver from Se-supplemented embryos recovering from heat distress. Se supplementation to the dams resulted in a significant increase in their embryos and that condition would facilitate a decreased incidence of oxidative damage to cells. A more reduced redox status in embryos from Se-supplemented dams decreased the need for cellular protection attributed to stress induced hsp70 and presumably allows heat distressed embryos to resume normal growth and development than embryos from dams with inadequate selenium nutrition.  相似文献   

7.
Although c-Jun N-terminal kinase (JNK) plays an important role in cytokine expression, its function in IL-12 production is obscure. The present study uses human macrophages to examine whether the JNK pathway is required for LPS-induced IL-12 production and defines how JNK is involved in the regulation of IL-12 production by glutathione redox, which is the balance between intracellular reduced (GSH) and oxidized glutathione (GSSG). We found that LPS induced IL-12 p40 protein and mRNA in a time- and concentration-dependent manner in PMA-treated THP-1 macrophages, and that LPS activated JNK and p38 mitogen-activated protein (MAP) kinase, but not extracellular signal-regulated kinase, in PMA-treated THP-1 cells. Inhibition of p38 MAP kinase activation using SB203580 dose dependently repressed LPS-induced IL-12 p40 production, as described. Conversely, inhibition of JNK activation using SP600125 dose dependently enhanced both LPS-induced IL-12 p40 production from THP-1 cells and p70 production from human monocytes. Furthermore, JNK antisense oligonucleotides attenuated cellular levels of JNK protein and LPS-induced JNK activation, but augmented IL-12 p40 protein production and mRNA expression. Finally, the increase in the ratio of GSH/GSSG induced by glutathione reduced form ethyl ester (GSH-OEt) dose dependently enhanced LPS-induced IL-12 p40 production in PMA-treated THP-1 cells. GSH-OEt augmented p38 MAP kinase activation, but suppressed the JNK activation induced by LPS. Our findings indicate that JNK negatively affects LPS-induced IL-12 production from human macrophages, and that glutathione redox regulates LPS-induced IL-12 production through the opposite control of JNK and p38 MAP kinase activation.  相似文献   

8.
Glutathione (GSH) is the major thiol-disulfide redox buffer in cells and is a critical component of antioxidant defense. Here we examined GSH redox balance in the intestinal mucosa during the annual cycle of 13-lined ground squirrels (Spermophilus tridecemlineatus). The ratio of reduced GSH to its oxidized form (glutathione disulfide, GSSG), which is an index of oxidative stress, was five-fold lower in hibernating compared with summer-active squirrels, an effect due primarily to elevated GSSG concentration in hibernators. During hibernation the total pool of GSH equivalents was lowest in squirrels undergoing arousal and highest in squirrels during interbout arousals. Hibernation decreased intestinal GSSG reductase activity by approximately 50%, but had no effect on activities of glutathione peroxidase or glucose-6-phosphate dehydrogenase. Within the hibernation season, expression of the stress protein HSP70 in intestinal mucosa was highest in squirrels entering torpor and early in a torpor bout, and lowest in squirrels arousing from torpor and during interbout euthermia. The results suggest that hibernation in ground squirrels is associated with a shift in intestinal GSH redox balance to a more oxidized state. Higher levels of HSP70 during the early phases of torpor may reflect induction of the stress response due to aberrations in protein folding or may be a mechanism to increase enterocyte tolerance to subsequent stress imposed by extended torpor or the arousal process.  相似文献   

9.
Concentration changes of reduced glutathione (GSH) and oxidized glutathione (GSSG) were studied by fluorometric assay witho-phthalaldehyde to clarify the relationship between seizure mechanism and the glutathione redox state. In cerebellum the GSH/GSSG ratio was significantly decreased in the interictal stage of E1 mice (stimulated group), but in ddY mice this ratio was decreased before convulsions induced by pentylenetetrazol and during submaximal ECS. No change was found in the GSH/GSSG ratio of the cerebellum during and after convulsions induced by pentylenetetrazol and maximal ECS. GSH levels in cerebrum in the interictal stage of E1 mice (stimulated group) were lower compared to control E1 mice. In ddY mice submaximal ECS increased GSSG levels in cerebrum so that the GSH/GSSG ratio was decreased.  相似文献   

10.
Rats were subjected to bilateral carotid artery occlusion for 30 min, followed by reperfusion for varying time periods. The concentration of reduced and oxidized glutathione, glutathione peroxidase and glutathione reductase were determined in whole brain after varying periods of reperfusion. Lipid peroxidation was also assessed by determining the levels of malondialdehyde (MDA) in the brain. Reperfusion for 1 hr following bilateral carotid artery occlusion resulted in significant decrease in total glutathione (GSH) concentration along with small but significant increase in oxidized glutathione (GSSG) levels. After 4 hr of reperfusion, GSH levels recovered, although GSSG levels remained elevated up to 12 hr of reperfusion. Increase in malondialdehyde levels was also detected in the brain up to 12 hr of reperfusion. Glutathione reductase activity remained significantly low up to 144 hr of reperfusion, while glutathione peroxidase activity remained unaffected. These results demonstrate that oxidative stress is generated in the brain during reperfusion following partial ischemia due to bilateral carotid artery occlusion.  相似文献   

11.
The reduced glutathione (GSH)/oxidized glutathione (GSSG) redox state is thought to function in signaling of detoxification gene expression, but also appears to be tightly regulated in cells under normal conditions. Thus it is not clear that the magnitude of change in response to physiologic stimuli is sufficient for a role in redox signaling under nontoxicologic conditions. The purpose of this study was to determine the change in 2GSH/GSSG redox during signaling of differentiation and increased detoxification enzyme activity in HT29 cells. We measured GSH, GSSG, cell volume, and cell pH, and we used the Nernst equation to determine the changes in redox potential Eh of the 2GSH/GSSG pool in response to the differentiating agent, sodium butyrate, and the detoxification enzyme inducer, benzyl isothiocyanate. Sodium butyrate caused a 60-mV oxidation (from -260 to -200 mV), an oxidation sufficient for a 100-fold change in protein dithiols:disulfide ratio. Benzyl isothiocyanate caused a 16-mV oxidation in control cells but a 40-mV oxidation (to -160 mV) in differentiated cells. Changes in GSH and mRNA for glutamate:cysteine ligase did not correlate with Eh; however, correlations were seen between Eh and glutathione S-transferase (GST) and nicotinamide adenine dinucleotide phosphate (NADPH):quinone reductase activities (N:QR). These results show that 2GSH/GSSG redox changes in response to physiologic stimuli such as differentiation and enzyme inducers are of a sufficient magnitude to control the activity of redox-sensitive proteins. This suggests that physiologic modulation of the 2GSH/GSSG redox poise could provide a fundamental parameter for the control of cell phenotype.  相似文献   

12.
The main function of reduced glutathione (GSH) is to protect from oxidative stress as a reactive oxygen scavenger. However, in the context of redox regulation, the ratio between GSH and its oxidized form (GSSG) determines the redox state of redox-sensitive cysteines in some proteins and, thus, acts as a signaling system. While GSH/GSSG can catalyze oxido-reduction of intra- and inter-chain disulfides by thiol-disulfide exchange, this review focuses on the formation of mixed disulfides between glutathione and proteins, also known as glutathionylation. The review discusses the regulatory role of this post-translational modification and the role of protein disulfide oxidoreductases (thioredoxin/thioredoxin reductase, glutaredoxin, protein disulfide isomerase) in the reversibility of this process.  相似文献   

13.
Oztürk O  Gümüşlü S 《Life sciences》2004,75(13):1551-1565
The aim of this study was to determine whether exposure to heat stress would lead to oxidative stress and whether this effect varied with different exposure periods. We kept 1-, 6- and 12-month-old male Wistar rats at an ambient temperature of either 22 degrees C or 40 degrees C for 3 and 7 days and measured glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), selenium-dependent glutathione peroxidase (Se-GSH-Px) and glutathione-S-transferase (GST) activities and levels of thiobarbituric acid-reactive substances (TBARS), reduced glutathione (GSH) and oxidized glutathione (GSSG) in erythrocytes and determined GSH/GSSG ratio, total glutathione and the redox index. G-6-PD and CAT activities were found to be significantly increased in 1- and 6-month-old rats after 3 and 7 days of heat stress, but G-6-PD activities decreased in 12-month-old rats. Cu, Zn-SOD activity decreased in 1-month-old rats after heat stress, whereas it increased in 6- and 12-month-old rats. GST activity increased in all groups. GSH and total GSH levels and GSH/GSSG ratios decreased in 1- and 6-month-old rats but they increased in 12-month-old rats after heat stress. GSSG levels increased in 1- and 6-month-old rats but decreased in 12-month-old rats after heat stress. TBARS levels increased in all groups. Seven days of stress is more effective in altering enzyme activities and levels of GSH, GSSG and TBARS. When the effects of both heat stress and aging were examined together, it was interesting to note that they mostly influenced G-6-PD activity.  相似文献   

14.
To explore whether glutathione regulates diapause determination and termina tion in the bivoltine silkworm Bombyx mori, we monitored the changes in glutathione redox cycle in the ovary of both diapanse and nondiapauseegg producers, as well as those in dia pause eggs incubated at different temperatures. The activity ofthioredoxin reductase (TrxR) was detected in ovaries but not in eggs, while neither ovaries nor eggs showed activity of glutathione peroxidase. A lower reduced glutathione/oxidized glutathione (GSH/GSSG) ratio was observed in the ovary of diapauseegg producers, due to weaker reduction of oxidized glutathione (GSSG) to the reduced glutathione (GSH) catalyzed by glutathione reductase (GR) and TrxR. This indicates an oxidative shift in the glutathione redox cy cle during diapause determination. Compared with the 25℃treated diapause eggs, the 5℃treated diapause eggs showed lower GSH/GSSG ratio, a result of stronger oxidation of GSH catalyzed by thioredoxin peroxidase and weaker reduction of GSSG catalyzed by GR. Our study demonstrated the important regulatory role of glutathione in diapause determination and termination of the bivoltine silkworm.  相似文献   

15.
Summary Reperfusion of isolated rabbit heart after 60 min of ischaemia resulted in poor recovery of mechanical function, release of reduced (GSH) and oxidized glutathione (GSSG), reduction of tissue GSH/GSSG ratio and shift of cellular thiol redox state toward oxidation, suggesting the occurrence of oxidative stress. Pretreatment of the isolated heart with propionyl-L-carnitine (10–7M) improved the functional recovery of the myocardium, reduced GSH and GSSG release and attenuated the accumulation of tissue GSSG. This effect was specific for propionyl-L-carnitine as L-carnitine and propionyl acid did not modify myocardial damage.  相似文献   

16.
Glutathione reductase from Saccharomyces cerevisiae was rapidly inactivated following aerobic incubation with NADPH, NADH, and several other reductants, in a time- and temperature-dependent process. The inactivation had already reached 50% when the NADPH concentration reached that of the glutathione reductase subunit. The inactivation was very marked at pH values below 5.5 and over 7, while only a slight activity decrease was noticed at pH values between these two values. After elimination of excess NADPH the enzyme remained inactive for at least 4 h. The enzyme was protected against redox inactivation by low concentrations of GSSG, ferricyanide, GSH, or dithiothreitol, and high concentrations of NAD(P)+; oxidized glutathione effectively protected the enzyme at concentrations even lower than GSH. The inactive enzyme was efficiently reactivated after incubation with GSSG, ferricyanide, GSH, or dithiothreitol, whether NADPH was present or not. The reactivation with GSH was rapid even at 0 degree C, whereas the optimum temperature for reactivation with GSSG was 30 degrees C. A tentative model for the redox interconversion, involving an erroneous intramolecular disulfide bridge, is put forward.  相似文献   

17.
Cellular redox, maintained by the glutathione (GSH)- and thioredoxin (Trx)-dependent systems, has been implicated in the regulation of a variety of biological processes. The redox state of the GSH system becomes oxidized when cells are induced to differentiate by chemical agents. The aim of this study was to determine the redox state of cellular GSH/glutathione disulfide (GSH/GSSG) and Trx as a consequence of progression from proliferation to contact inhibition and spontaneous differentiation in colon carcinoma (Caco-2) cells. Results showed a significant decrease in GSH concentration, accompanied by a 40-mV oxidation of the cellular GSH/GSSG redox state and a 28-mV oxidation of the extracellular cysteine/cystine redox state in association with confluency and increase in differentiation markers. The redox state of Trx did not change. Thus the two central cellular antioxidant and redox-regulating systems (GSH and Trx) were independently controlled. According to the Nernst equation, a 30-mV oxidation is associated with a 10-fold change in the reduced/oxidized ratio of a redox-sensitive dithiol motif. Therefore, the measured 40-mV oxidation of the cellular GSH/GSSG couple or the 28-mV oxidation of the extracellular cysteine/cystine couple should be sufficient to function in signaling or regulation of differentiation in Caco-2 cells.  相似文献   

18.
The proteasome inhibitors lactacystin, clastro lactacystin beta-lactone, or tri-leucine vinyl sulfone (NLVS), in the presence of [(35)S]cysteine/methionine, caused increased incorporation of (35)S into cellular proteins, even when protein synthesis was inhibited by cycloheximide. This effect was blocked by incubation with the glutathione synthesis inhibitor buthionine sulfoximine. Proteasome inhibitors also enhanced total glutathione levels, increased reduced/oxidized glutathione ratio (GSH/GSSG) and upregulated gamma-glutamylcysteine synthetase (rate-limiting in glutathione synthesis). Micromolar concentrations of GSH, GSSG, or cysteine stimulated the chymotrypsin-like activity of purified 20S proteasome, but millimolar GSH or GSSG was inhibitory. Interestingly, GSH did not affect 20S proteasome's trypsin-like activity. Enhanced proteasome glutathiolation was verified when purified preparations of the 20S core enzyme complex were incubated with [(35)S]GSH after pre-incubation with any of the inhibitors. NLVS, lactacystin or clastro lactacystin beta-lactone may promote structural modification of the 20S core proteasome, with increased exposure of cysteine residues, which are prone to S-thiolation. Three main conclusions can be drawn from the present work. First, proteasome inhibitors alter cellular glutathione metabolism. Second, proteasome glutathiolation is enhanced by inhibitors but still occurs in their absence, at physiological GSH and GSSG levels. Third, proteasome glutathiolation seems to be a previously unknown mechanism of proteasome regulation in vivo.  相似文献   

19.
Ageing of tomato seeds involves glutathione oxidation   总被引:2,自引:0,他引:2  
The effect of seed ageing on the oxidation of reduced glutathione (GSH) and the role of GSH oxidation in ageing-induced deterioration were studied in seeds of tomato ( Lycopersicon esculentum Mill. cv. Lerica, Moneymaker and Cromco). Both long-term storage at 15°C/30% relative humidity (RH) and artificial ageing at 20°C/75% RH, 30°C/45% RH and 60°C/45% RH resulted in a marked loss of GSH and a simultaneous, though not proportional, increase in its oxidized form GSSG. The glutathione thiol-disulfide status shifted towards a highly oxidized form, while the total glutathione pool decreased. The extent of GSH oxidation differed between ageing conditions and was not directly related to the extent of seed deterioration. Thiobarbituric acid-reactive substances did not increase in ageing tomato seeds, suggesting that lipid peroxidation did not take place. Hydration of seeds, either upon imbibition in water or by priming in an osmotic solution, resulted in a rapid decrease in GSSG, a shift of the glutathione redox couple to a mainly reduced status and an increase in the glutathione pool, in both control and aged seeds. The results indicate that, in tomato seeds, (1) seed ageing involves GSH oxidation into GSSG, which is indicative of oxidative stress, (2) ageing does not affect the GSSG reduction capacity upon subsequent imbibition, and (3) the lowered viability of aged seeds cannot directly be ascribed to the decreased GSH pool or To the highly oxidized glutathione redox status.  相似文献   

20.
Menadione (MD) and H2O2 caused distinct effects on glutathione status in growing Escherichia coli. Treatment of E. coli AB1157 with 1-25 mM H2O2 did not result in an appreciable decrease in intracellular total glutathione (reduced glutathione [GSH] + oxidized glutathione [GSSG]). Only when cells were treated with 25 mM H2O2 an increase in GSSG and a decrease in the GSH:GSSG ratio were observed. In cells deficient in catalase HPI, such effect was observed even at 10 mM H2O2. The exposure of E. coli AB1157 to MD caused a dose-dependent decrease in intracellular total glutathione, an increase in GSSG, and a decrease in the ratio of GSH:GSSG. In E. coli deficient in cytosolic superoxide dismutase activity, a decrease in total glutathione after incubation with 0.2 mM MD was not accompanied by an increase in GSSGin, and the ratio of GSHin:GSSGin was three times higher than in the wild-type cells. The changes in the redox status of extracellular glutathione under the action of both oxidants were similar. Although the catalase activity increased several times after exposure to both oxidants, there were little or no changes in the activity of enzymes related to glutathione metabolism. A possible role of changes in redox status of glutathione under oxidative stress is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号