首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The chrysene-degrading bacterium Pseudoxanthomonas sp. PNK-04 was isolated from a coal sample. Three novel metabolites, hydroxyphenanthroic acid, 1-hydroxy-2-naphthoic acid and salicylic acid, were identified by TLC, HPLC and MS. Key enzyme activities, namely 1-hydroxy-2-naphthoate hydroxylase, 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-1,2-dioxygenase, were noted in the cell-free extract. These results suggest that chrysene is catabolized via hydroxyphenanthroic acid, 1-hydroxy-2-naphthoic acid, salicylic acid and catechol. The terminal aromatic metabolite, catechol, is then catabolized by catechol-1,2-dioxygenase to cis,cis-muconic acid, ultimately forming TCA cycle intermediates. Based on these studies, the proposed catabolic pathway for chrysene degradation by strain PNK-04 is chrysene → hydroxyphenanthroic acid → 1-hydroxy-2-naphthoic acid → 1,2-dihydroxynaphthalene → salicylic acid → catechol →cis,cis-muconic acid.  相似文献   

2.
Pseudomonas sp. strain PP2 isolated in our laboratory efficiently metabolizes phenanthrene at 0.3% concentration as the sole source of carbon and energy. The metabolic pathways for the degradation of phenanthrene, benzoate and p-hydroxybenzoate were elucidated by identifying metabolites, biotransformation studies, oxygen uptake by whole cells on probable metabolic intermediates, and monitoring enzyme activities in cell-free extracts. The results obtained suggest that phenanthrene degradation is initiated by double hydroxylation resulting in the formation of 3,4-dihydroxyphenanthrene. The diol was finally oxidized to 2-hydroxymuconic semialdehyde. Detection of 1-hydroxy-2-naphthoic acid, alpha-naphthol, 1,2-dihydroxy naphthalene, and salicylate in the spent medium by thin layer chromatography; the presence of 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-2,3-dioxygenase activity in the extract; O(2) uptake by cells on alpha-naphthol, 1,2-dihydroxynaphthalene, salicylaldehyde, salicylate and catechol; and no O(2) uptake on o-phthalate and 3,4-dihydroxybenzoate supports the novel route of metabolism of phenanthrene via 1-hydroxy-2-naphthoic acid --> [alpha-naphthol] --> 1,2-dihydroxy naphthalene --> salicylate --> catechol. The strain degrades benzoate via catechol and cis,cis-muconic acid, and p-hydroxybenzoate via 3,4-dihydroxybenzoate and 3-carboxy- cis,cis-muconic acid. Interestingly, the culture failed to grow on naphthalene. When grown on either hydrocarbon or dextrose, the culture showed good extracellular biosurfactant production. Growth-dependent changes in the cell surface hydrophobicity, and emulsification activity experiments suggest that: (1) production of biosurfactant was constitutive and growth-associated, (2) production was higher when cells were grown on phenanthrene as compared to dextrose and benzoate, (3) hydrocarbon-grown cells were more hydrophobic and showed higher affinity towards both aromatic and aliphatic hydrocarbons compared to dextrose-grown cells, and (4) mid-log-phase cells were significantly (2-fold) more hydrophobic than stationary phase cells. Based on these results, we hypothesize that growth-associated extracellular biosurfactant production and modulation of cell surface hydrophobicity plays an important role in hydrocarbon assimilation/uptake in Pseudomonas sp. strain PP2.  相似文献   

3.
Lu J  Dang Z  Lu G  Yang C  Yi X  Guo C 《Current microbiology》2012,65(3):225-230
The fusant strain (F14), which produced by protoplast fusion between Sphingomonas sp. GY2B (GenBank DQ139343) and Pseudomonas sp. GP3A (GenBank EU233280), was tested for phenanthrene biodegradation at 30 °C and pH of 7.0. The kinetics of phenanthrene biodegradation by F14 was investigated over a wide range of initial concentration (15-1,000 mg l(-1)). The rate and the extent of phenanthrene degradation increased with the increase of concentration up to 230 mg l(-1), which indicated negligible inhibition effect at low concentrations. The non-competitive inhibition model was found to be fit for the process. GC-MS analysis showed that biodegradation of phenanthrene by F14 was via dioxygenation at both 1,2- and 3,4-positions and followed by 2-hydroxy-1-naphthoic acid and 1-hydroxy-2-naphthoic acid. The relative intensity of 2-hydroxy-1-naphthoic acid was approximately 3-4 times higher than that of 1-hydroxy-2-naphthoic acid, indicating the 2-hydroxy-1-naphthoic acid was the predominant product in the phenanthrene degradation by fusant strain F14.  相似文献   

4.
The present study describes the assimilation of phenanthrene by an aerobic bacterium, Ochrobactrum sp. strain PWTJD, isolated from municipal waste-contaminated soil sample utilizing phenanthrene as a sole source of carbon and energy. The isolate was identified as Ochrobactrum sp. based on the morphological, nutritional and biochemical characteristics as well as 16S rRNA gene sequence analysis. A combination of chromatographic analyses, oxygen uptake assay and enzymatic studies confirmed the degradation of phenanthrene by the strain PWTJD via 2-hydroxy-1-naphthoic acid, salicylic acid and catechol. The strain PWTJD could also utilize 2-hydroxy-1-naphthoic acid and salicylic acid, while the former was metabolized by a ferric-dependent meta-cleavage dioxygenase. In the lower pathway, salicylic acid was metabolized to catechol and was further degraded by catechol 2,3-dioxygenase to 2-hydroxymuconoaldehyde acid, ultimately leading to tricarboxylic acid cycle intermediates. This is the first report of the complete degradation of a polycyclic aromatic hydrocarbon molecule by Gram-negative Ochrobactrum sp. describing the involvement of the meta-cleavage pathway of 2-hydroxy-1-naphthoic acid in phenanthrene assimilation.  相似文献   

5.
Aims:  The metabolism of phenanthrene and anthracene by a moderate thermophilic Nocardia otitidiscaviarum strain TSH1 was examined.
Methods and Results:  When strain TSH1 was grown in the presence of anthracene, four metabolites were identified as 1,2-dihydroxy-1,2-dihydroanthracene, 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid, 2,3-dihydroxynaphthalene and benzoic acid using gas chromatography-mass spectrometry (GC-MS), reverse phase-high performance liquid chromatography (RP-HPLC) and thin-layer chromatography (TLC). Degradation studies with phenanthrene revealed 2,2'-diphenic acid, phthalic acid, 4-hydroxyphenylacetic acid, o -hydroxyphenylacetic acid, benzoic acid, a phenanthrene dihydrodiol, 4-[1-hydroxy(2-naphthyl)]-2-oxobut-3-enoic acid and 1-hydroxy-2-naphthoic acid (1H2NA), as detectable metabolites.
Conclusions:  Strain TSH1 initiates phenanthrene degradation via dioxygenation at the C-3 and C-4 or at C-9 and C-10 ring positions. Ortho -cleavage of the 9,10-diol leads to formation of 2,2'-diphenic acid. The 3,4-diol ring is cleaved to form 1H2NA which can subsequently be degraded through o -phthalic acid pathway. Benzoate does not fit in the previously published pathways from mesophiles. Anthracene metabolism seems to start with a dioxygenation at the 1 and 2 positions and ortho -cleavage of the resulting diol. The pathway proceeds probably through 2,3-dicarboxynaphthalene and 2,3-dihydroxynaphthalene. Degradation of 2,3-dihydroxynaphthalene to benzoate and transformation of the later to catechol is a possible route for the further degradation of anthracene.
Significance and Impact of the Study:  For the first time, metabolism of phenanthrene and anthracene in a thermophilic Nocardia strain was investigated.  相似文献   

6.
From a soil isolate, Pseudomonas strain C18, we cloned and sequenced a 9.8-kb DNA fragment that encodes dibenzothiophene-degrading enzymes. Nine open reading frames were identified and designated doxABDEFGHIJ. Collectively, we refer to these genes as the DOX pathway. At the nucleotide level, doxABD are identical to the ndoABC genes that encode naphthalene dioxygenase of Pseudomonas putida. The DoxG protein is 97% identical to NahC (1,2-dihydroxynaphthalene dioxygenase) of P. putida. DoxE has 37% identity with cis-toluene dihydrodiol dehydrogenase. DoxF is similar to the aldehyde dehydrogenases of many organisms. The predicted DoxHIJ proteins have no obvious sequence similarities to known proteins. Gas chromatography with a flame ionization detector and mass spectroscopy confirmed that the DOX proteins convert naphthalene to salicylate and converting phenanthrene to 1-hydroxy-2-naphthoic acid. doxI mutants convert naphthalene to trans-o-hydroxybenzylidenepyruvate, indicating that the DoxI protein is similar to NahE (trans-o-hydroxybenzylidenepyruvate hydratase-aldolase). Comparison of the DOX sequence with restriction maps of cloned naphthalene catabolic pathway (NAH) genes revealed many conserved restriction sites. The DOX gene arrangement is identical to that proposed for NAH, except that the NAH equivalent of doxH has not been recognized. DoxH may be involved in the conversion of 2-hydroxy-4-(2'-oxo-3,5-cyclohexadienyl)-buta-2,4-dienoat e to cis-o-hydroxybenzylidenepyruvate. doxJ encodes an enzyme similar to NahD (isomerase). Our findings indicate that a single genetic pathway controls the metabolism of dibenzothiophene, naphthalene, and phenanthrene in strain C18 and that the DOX sequence encodes a complete upper naphthalene catabolic pathway similar to NAH.  相似文献   

7.
1. Phenanthrene is oxidatively metabolized by soil pseudomonads through trans-3,4-dihydro-3,4-dihydroxyphenanthrene to 3,4-dihydroxyphenanthrene, which then undergoes cleavage. 2. Some properties of the ring-fission product, cis-4-(1-hydroxynaphth-2-yl)-2-oxobut-3-enoic acid, are described. The Fe2+-dependent oxygenase therefore disrupts the bond between C-4 and the angular C of the phenanthrene nucleus. 3. An enzyme of the aldolase type converts the fission product into 1-hydroxy-2-naphthaldehyde (2-formyl-1-hydroxynaphthalene). An NAD-specific dehydrogenase is also present in the cell-free extract, which oxidizes the aldehyde to 1-hydroxy-2-naphthoic acid. This is then oxidatively decarboxylated to 1,2-dihydroxynaphthalene, thus allowing continuation of metabolism via the naphthalene pathway. 4. Anthracene is similarly metabolized, through 1,2-dihydro-1,2-dihydroxyanthracene to 1,2-dihydroxyanthracene, in which ring-fission occurs to give cis-4-(2-hydroxynaphth-3-yl)-2-oxobut-3-enoic acid. The position of cleavage is again at the bond between the angular C and C-1 of the anthracene nucleus. 5. Enzymes that convert the fission product through 2-hydroxy-3-naphthaldehyde into 2-hydroxy-3-naphthoic acid were demonstrated. The further metabolism of this acid is discussed. 6. The Fe2+-dependent oxygenase responsible for cleavage of all the o-dihydroxyphenol derivatives appears to be catechol 2,3-oxygenase, and is a constitutive enzyme in the Pseudomonas strains used.  相似文献   

8.
1-Hydroxy-2-naphthoate is formed as an intermediate in the bacterial degradation of phenanthrene. A monooxygenase which catalyzed the oxidation of 1-hydroxy-2-naphthoateto 1,2-dihydroxynaphthalene was purified from the phenanthrene- and naphthalene-degrading Pseudomonas putida strain BS202-P1. The purified protein had a molecular weight of45 kDa and required NAD(P)H and FAD as cofactors. The purified enzyme also catalysed the oxidation of salicylate and various substituted salicylates. The comparison of the Kmand Vmax values for 1-hydroxy-2-naphthoate and salicylate demonstrated a higher catalytic efficiency of the enzyme for salicylate as a substrate. A significant substrate-inhibition was detected with higher concentrations of 1-hydroxy-2-naphthoate.The aminoterminal amino acid sequence of the purified enzyme showed significant homologies to salicylate 1-monooxygenases from other Gram negative bacteria. It was therefore concluded that during the degradation of phenanthrene the conversion of 1-hydroxy-2-naphthoate to 1,2-dihydroxynaphthalene is catalysed by a salicylate1-monooxygenase. Together with previous studies, this suggested that the enzymes of the naphthalene pathway are sufficient to catalyse also the mineralization of phenanthrene.  相似文献   

9.
Pseudomonas paucimobilis Q1 originally isolated as biphenyl degrading organism (Furukawa et al. 1983), was shown to grow with naphthalene. After growth with biphenyl or naphthalene the strain synthesized the same enzyme for the ring cleavage of 2,3-dihydroxybiphenyl or 1,2-dihydroxynaphthalene. The enzyme, although characterized as 2,3-dihydroxybiphenyl dioxygenase (Taira et al. 1988), exhibited considerably higher relative activity with 1,2-dihydroxynaphthalene. These results demonstrate that this enzyme can function both in the naphthalene and biphenyl degradative pathway.Abbreviations DHBP dihydroxybiphenyl - DHBPDO 2,3-dihydroxybiphenyl dioxygenase - DHDHNDH 1,2-dihydroxy-1,2-dihydronaphthalene dehydrogenase - DHN 1,2-dihydroxynaphthalene - DHNDO 1,2-dihydroxynaphthalene dioxygenase - HBP cis-2-hydroxybenzalpyruvate - HOPDA 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate - PCB polychlorinated biphenyl - 2NS naphthalene-2-sulfonic acid  相似文献   

10.
Sphingomonas sp. strain P2, which is capable of utilizing phenanthrene as a sole carbon and energy source, was isolated from petroleum-contaminated soil in Thailand. Gas chromatography-mass spectrometry and (1)H and (13)C nuclear magnetic resonance analyses revealed two novel metabolites from the phenanthrene degradation pathway. One was identified as 5,6-benzocoumarin, which was derived by dioxygenation at the 1- and 2-positions of phenanthrene, and the other was determined to be 1,5-dihydroxy-2-naphthoic acid. Other metabolites from phenanthrene degradation were identified as 7, 8-benzocoumarin, 1-hydroxy-2-naphthoic acid and coumarin. From these results, it is suggested that strain P2 can degrade phenanthrene via dioxygenation at both 1,2- and 3,4-positions followed by meta-cleavage.  相似文献   

11.
The metabolism of phenanthrene by a gram-negative organism able to use this compound as a sole source of carbon and energy has been examined. 1-Hydroxy-2-naphthoic acid was oxidized by oxygen in a reaction catalyzed by a dioxygenase which was activated by ferrous ions. The stoichiometry of the oxidation and the UV spectrum of the product were consistent with the identification of the product as 2'-carboxybenzalpyruvate. This was confirmed by cleaving the product with a partially purified aldolase to yield 2-carboxybenzaldehyde and pyruvate. A number of enzymes for the metabolism of 1-hydroxy-2-naphthoic acid were induced by growth on phthalate or (less well) by growth on protocatechuate. The latter supported only a slow rate of growth, and this and poor induction may have been due to a slow rate of entry into the cell.  相似文献   

12.
A versatile bacterial strain able to convert polycyclic aromatic hydrocarbons (PAHs) was isolated, and a conversion by the isolate of both individual substances and PAH mixtures was investigated. The strain belonged to the Sphingomonas genus as determined on the basis of 16S rRNA analysis and was designated as VKM B-2434. The strain used naphthalene, acenaphthene, phenanthrene, anthracene and fluoranthene as a sole source of carbon and energy, and cometabolically oxidized fluorene, pyrene, benz[a]anthracene, chrysene and benzo[a]pyrene. Acenaphthene and fluoranthene were degraded by the strain via naphthalene-1,8-dicarboxylic acid and 3-hydroxyphthalic acid. Conversion of most other PAHs was confined to the cleavage of only one aromatic ring. The major oxidation products of naphthalene, phenanthrene, anthracene, chrysene, and benzo[a]pyrene were identified as salicylic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, o-hydroxyphenanthroic acid and o-hydroxypyrenoic acid, respectively. Fluorene and pyrene were oxidized mainly to hydroxyfluorenone and dihydroxydihydropyrene, respectively. Oxidation of phenanthrene and anthracene to the corresponding hydroxynaphthoic acids occurred quantitatively. The strain converted phenanthrene, anthracene, fluoranthene and carbazole of coal-tar-pitch extract.  相似文献   

13.
Stenotrophomonas sp. RMSK capable of degrading acenaphthylene as a sole source of carbon and energy was isolated from coal sample. Metabolites produced were analyzed and characterized by TLC, HPLC and mass spectrometry. Identification of naphthalene-1,8-dicarboxylic acid, 1-naphthoic acid, 1,2-dihydroxynaphthalene, salicylate and detection of key enzymes namely 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-1,2-dioxygenase in the cell free extract suggest that acenaphthylene metabolized via 1,2-dihydroxynaphthalene, salicylate and catechol. The terminal metabolite, catechol was then metabolized by catechol-1,2-dioxygenase to cis,cis-muconic acid, ultimately forming TCA cycle intermediates. Based on these studies, the proposed metabolic pathway in strain RMSK is, acenaphthylene → naphthalene-1,8-dicarboxylic acid → 1-naphthoic acid → 1,2-dihydroxynaphthalene → salicylic acid → catechol → cis,cis-muconic acid.  相似文献   

14.
Seo JS  Keum YS  Hu Y  Lee SE  Li QX 《Biodegradation》2007,18(1):123-131
Burkholderia sp. C3 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Hilo, Hawaii, USA, and studied for its degradation of phenanthrene as a sole carbon source. The initial 3,4-C dioxygenation was faster than 1,2-C dioxygenation in the first 3-day culture. However, 1-hydroxy-2-naphthoic acid derived from 3,4-C dioxygenation degraded much slower than 2-hydroxy-1-naphthoic acid derived from 1,2-C dioxygenation. Slow degradation of 1-hydroxy-2-naphthoic acid relative to 2-hydroxy-1-naphthoic acid may trigger 1,2-C dioxygenation faster after 3 days of culture. High concentrations of 5,6-␣and 7,8-benzocoumarins indicated that meta-cleavage was the major degradation mechanism of phenanthrene-1,2- and -3,4-diols. Separate cultures with 2-hydroxy-1-naphthoic acid and 1-hydroxy-2-naphthoic acid showed that the degradation rate of the former to naphthalene-1,2-diol was much faster than that of the latter. The two upper metabolic pathways of phenanthrene are converged into naphthalene-1,2-diol that is further metabolized to 2-carboxycinnamic acid and 2-hydroxybenzalpyruvic acid by ortho- and meta-cleavages, respectively. Transformation of naphthalene-1,2-diol to 2-carboxycinnamic acid by this strain represents the first observation of ortho-cleavage of two rings-PAH-diols by a Gram-negative species.  相似文献   

15.
In order to study the mechanisms regulating the phenanthrene degradation pathway and the intermediate-metabolite accumulation in strain S. paucimobilis 20006FA, we sequenced the genome and compared the genome-based predictions to experimental proteomic analyses. Physiological studies indicated that the degradation involved the salicylate and protocatechuate pathways, reaching 56.3% after 15 days. Furthermore, the strain degraded other polycyclic aromatic hydrocarbons (PAH) such as anthracene (13.1%), dibenzothiophene (76.3%), and fluoranthene. The intermediate metabolite 1-hydroxy-2-naphthoic acid (HNA) accumulated during phenanthrene catabolism and inhibited both bacterial growth and phenanthrene degradation, but exogenous-HNA addition did not affect further degradation. Genomic analysis predicted 126 putative genes encoding enzymes for all the steps of phenanthrene degradation, which loci could also participate in the metabolism of other PAH. Proteomic analysis identified enzymes involved in 19 of the 23 steps needed for the transformation of phenanthrene to trichloroacetic-acid intermediates that were upregulated in phenanthrene cultures relative to the levels in glucose cultures. Moreover, the protein-induction pattern was temporal, varying between 24 and 96 h during phenanthrene degradation, with most catabolic proteins being overexpressed at 96 h—e. g., the biphenyl dioxygenase and a multispecies (2Fe–2S)-binding protein. These results provided the first clues about regulation of expression of phenanthrene degradative enzymes in strain 20006FA and enabled an elucidation of the metabolic pathway utilized by the bacterium. To our knowledge the present work represents the first investigation of genomic, proteomic, and physiological studies of a PAH-degrading Sphingomonas strain.  相似文献   

16.
Mycobacterium vanbaalenii PYR-1 is capable of degrading a number of polycyclic aromatic hydrocarbons (PAHs) to ring cleavage metabolites via multiple pathways. Genes for the large and small subunits of a pyrene dioxygenase, nidA and nidB, respectively, were previously identified in M. vanbaalenii PYR-1 [Appl. Environ. Microbiol. 67 (2001) 3577]. A library of the M. vanbaalenii PYR-1 genome was constructed in a fosmid vector to identify additional genes involved in PAH degradation. Twelve fosmid clones containing nidA were identified by Southern hybridization. Sequence analysis of one nidA-positive clone, pFOS608, revealed a number of additional genes involved in PAH degradation. At this locus, one putative operon contained genes involved in phthalate degradation, and another contained genes encoding a putative ABC transporter(s). A number of the genes found in this region are homologous to those involved in phenanthrene degradation via the phthalic acid pathway. The majority of phenanthrene degradation genes were located between putative transposase genes. In Escherichia coli, pFOS608 converted phenanthrene into phenanthrene cis-3,4-dihydrodiol, and converted 1-hydroxy-2-naphthoic acid into 2'-carboxybenzalpyruvate, 2-carboxybenzaldehyde, and phthalic acid. A subclone containing nidA and nidB converted phenanthrene into phenanthrene cis-3,4-dihydrodiol, suggesting that the NidAB dioxygenase is responsible for an initial attack on phenanthrene. This study is the first to identify genes responsible for the degradation of phenanthrene via the phthalic acid pathway in Mycobacterium species.  相似文献   

17.
1,2-Dihydroxynaphthalene dioxygenase was purified to homogeneity from a bacterium that degrades naphthalenesulfonic acids (strain BN6). The enzyme requires Fe2+ for maximal activity and consists of eight identical subunits with a molecular weight of about 33,000. Analysis of the NH2-terminal amino acid sequence revealed a high degree of homology (22 of 29 amino acids) with the NH2-terminal amino acid sequence of 2,3-dihydroxybiphenyl dioxygenase from strain Pseudomonas paucimobilis Q1. 1,2-Dihydroxynaphthalene dioxygenase from strain BN6 shows a wide substrate specificity and also cleaves 5-, 6-, and 7-hydroxy-1,2-dihydroxynaphthalene, 2,3- and 3,4-dihydroxybiphenyl, catechol, and 3-methyl- and 4-methylcatechol. Similar activities against the hydroxy-1,2-dihydroxynaphthalenes were also found in cell extracts from naphthalene-degrading bacteria.  相似文献   

18.
A bacterial strain capable of utilizing phenanthrene as sole source of carbon was isolated from soil and identified as a Bacillus sp. The organism also utilized naphthalene, biphenyl, anthracene, and other aromatic compounds as growth substrates. The organism degraded phenanthrene through the intermediate formation of 1-hydroxy-2-naphthoic acid, which was further metabolized via o-phthalate by a protocatechuate pathway, as evidenced by oxygen uptake and enzymatic studies. Received: 1 December 1999 / Accepted: 5 January 2000  相似文献   

19.
《Process Biochemistry》2007,42(3):401-408
This study systematically characterized an aerobic bacterial strain Sphingomonas sp. GY2B for biotransformation of phenanthrene. The strain was isolated from soils contaminated with polycyclic aromatic hydrocarbons (PAHs) and was shown to efficiently use phenanthrene as the sole carbon and energy source. The antibiotics discs susceptibility test revealed that the bacterium was susceptible to some commonly used antibiotics, such as cefuroxime, chloramphenicol, erythromycin and tetracycline. It showed better growth at pH 7.4 and 30 °C and in a mineral salts medium (MSM) with phenanthrene at 100 mg L−1 as the substrate. The results indicated that 99.8% of the substrate had been degraded and that salicylate route was likely the metabolic pathway. When added as the second organic chemical, glucose could enhance the bacterial growth at low concentration (10–200 mg L−1), but could inhibit cell growth at high concentration (>500 mg L−1). Further study showed that strain GY2B could also use naphthalene, phenol, 1-hydroxy-2-naphthoic acid, 2-naphthol, salicylic acid and catechol as the sole carbon and energy source, but did not grow on 1-naphthol which could be co-metabolized in the present of phenanthrene or 1-hydroxy-2-naphthoic acid.  相似文献   

20.
Phenanthrene degradation by Pseudomonas mendocina CGMCC 1.766, a new phenanthrene-degrading strain, was investigated in this work. When cells were grown on 20, 50, 100 and 200 mg l−1 of phenanthrene, the doubling time was 18.3, 19.8, 21.0 and 20.3 h and the growth yield during exponential phase was 242, 271, 221 and 206 mg protein (g phenanthrene)−1, respectively. High level accumulation of the intermediate metabolite 1-hydroxy-2-naphthoic acid (1H2N) up to ≈94% of its theoretical yield was observed. Dynamic profiles of the activities of two key enzymes, i.e. polycyclic aromatic hydrocarbon (PAH) dioxygenase (PDO) and catechol-2,3-oxygenase (C23O), during the biodegradation were revealed and the results suggest a delicate mechanism in the regulation of these phenanthrene-degrading enzymes in this strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号