首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The major capsid protein of polyomavirus, VP1, has been expression cloned in Escherichia coli, and the recombinant VP1 protein has been purified to near homogeneity (A. D. Leavitt, T. M. Roberts, and R. L. Garcea, J. Biol. Chem. 260:12803-12809, 1985). With this recombinant protein, a nitrocellulose filter transfer assay was developed for detecting DNA binding to VP1 (Southwestern assay). In optimizing conditions for this assay, dithiothreitol was found to inhibit DNA binding significantly. With recombinant VP1 proteins deleted at the carboxy and amino termini, a region of the protein affecting DNA binding was identified within the first 7 amino acids (MAPKRKS) of the VP1 amino terminus. Southwestern analysis of virion proteins separated by two-dimensional gel electrophoresis demonstrated equivalent DNA binding among the different VP1 isoelectric focusing subspecies, suggesting that VP1 phosphorylation does not modulate this function. By means of partial proteolysis of purified recombinant VP1 capsomeres for assessing structural features of the protein domain affecting DNA binding, a trypsin-sensitive site at lysine 28 was found to eliminate VP1 binding to DNA. The binding constant of recombinant VP1 to polyomavirus DNA was determined by an immunoprecipitation assay (R. D. G. McKay, J. Mol. Biol. 145:471-488, 1981) to be 1 x 10(-11) to 2 x 10(-11) M, which was not significantly different from its affinity for plasmid DNA. McKay analysis of deleted VP1 proteins and VP1-beta-galactosidase fusion proteins indicated that the amino terminus was both necessary and sufficient for DNA binding. As shown by electron microscopy, DNA inhibited in vitro capsomere self-assembly into capsidlike structures (D. M. Salunke, D. L. D. Caspar, and R. L. Garcea, Cell 46:895-904, 1986). Thus, VP1 is a high-affinity, non-sequence-specific DNA-binding protein with the binding function localized near its trypsin-accessible amino terminus. The inhibitory effects of disulfide reagents on DNA binding and of DNA on capsid assembly suggest possible intermediate steps in virion assembly.  相似文献   

2.
Although the functional target of quinolone antibacterials such as nalidixic acid and norfloxacin has been identified as the enzyme DNA gyrase, the direct binding site of the drug is the DNA molecule [Shen, L. L., & Pernet, A. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 307-311]. As described in this paper, binding specificity and cooperativity of quinolones to DNA were further investigated with the use of a variety of DNA species of different structures and different base compositions. Results show that the drug binding specificity is controlled and determined largely by the DNA structure. The drug binds weakly and demonstrates no base preference when DNA strands are paired. The drug binds with much greater affinity when the strands are separated, and consequently, binding preference emerges: it binds better to poly(G) and poly(dG) over their counterparts including poly(dI). The results suggest that the drug binds to unpaired bases via hydrogen bonding and not via ring stacking with DNA bases. The weak binding to relaxed double-stranded DNA and the stronger binding to single-stranded DNA are both nonspecific as they do not demonstrate binding saturation and cooperativity. The specific type of binding, initially demonstrated in our previous publication with the supercoiled DNA and more recently with complex formed between linear DNA and DNA gyrase [Shen, L. L., Kohlbrenner, W. E., Weigl, D., & Baranowski, J. (1989) J. Biol. Chem. (in press)], occurs near the drug's supercoiling inhibition concentration. As shown in this paper, binding saturation curves of this type are highly cooperative (with Hill constant greater than 4).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
DNA polymerase III, the core of the DNA polymerase III holoenzyme, has been purified 28,000-fold to 97% homogeneity from Escherichia coli HMS-83. The enzyme contains subunits: alpha, epsilon, and theta of 140,000, 25,000, and 10,000 daltons, respectively. The alpha subunit has been previously shown to be a component of both DNA polymerase III and the more complex DNA polymerase III holoenzyme (Livingston, D.M., Hinkle, D., and Richardson, C. (1975) J. Biol. Chem. 250, 461-469; McHenry, C., and Kornberg, A. (1977) J. Biol. Chem. 252, 6478-6484). It is demonstrated here that the epsilon and theta subunits are also subunits of the DNA polymerase III holoenzyme. Thus, the DNA polymerase III holoenzyme contains at least six different subunits. Our preparation has both the 3' leads to 5' and 5' leads to 3' exonuclease activities previously assigned to DNA polymerase III (Livingston, D., and Richardson, C. (1975) J. Biol. Chem. 250, 470-478).  相似文献   

4.
In mammalian cells, the Ku autoantigen is an end- binding DNA protein required for the repair of DNA breaks [Troelstra, C. and Jaspers, N.G.J. (1994) Curr. Biol., 4, 1149- 1151]. A yeast gene (HDF1) encoding a putative homologue of the 70 kDa subunit of Ku has recently been identified [Feldmann, H. and Winnacker, E. L. (1993) J. Biol. Chem., 268, 12895- 12900]. We find that hdf1 mutant strains have substantially shorter telomeres than wild-type strains. We speculate that Hdf1p may bind the natural ends of the chromosome, in addition to binding to the ends of broken DNA molecules. Strains with both an hdf1 mutation and a mutation in TEL 1 (a gene related to the human ataxia telangiectasia gene) have extremely short telomeres and grow slowly.  相似文献   

5.
Limited proteolysis can be used to remove either 42 or 62 amino acids at the COOH terminus of the 18,873-dalton Escherichia coli single-stranded DNA binding protein (SSB). Since poly(dT), but not d(pT)16, increases the rate of this reaction, it appears that cooperative SSB binding to single-stranded DNA (ssDNA) is associated with a conformational change that increases the exposure of the COOH terminus to proteolysis. As a result of this DNA-induced conformational change, we presume that the COOH-terminal region of SSB will become more accessible for interacting with other proteins that utilize the SSB:ssDNA complex as a substrate and that are involved in E. coli DNA replication, repair, and recombination. Removal of this COOH-terminal domain from SSB results in a stronger helix-destabilizing protein which suggests this region may be important for controlling the ability of SSB to denature double-stranded DNA. Since similar results have previously been reported for the bacteriophage T4 gene 32 protein (Williams, K.R., and Konigsberg, W. (1978) J. Biol. Chem. 253, 2463-2470; Hosoda, J., and Moise, H. (1978) J. Biol. Chem. 253, 7547-7555), the acidic, COOH-terminal domains of these two single-stranded DNA binding proteins may be functionally homologous. Preliminary evidence is cited that suggests other prokaryotic and eukaryotic DNA binding proteins may contain similar functional domains essential for controlling their ability to invade double helical DNA.  相似文献   

6.
The non-specific DNA binding of CRP and its N-terminal core, alpha CRP, to a 298 base pair DNA fragment, in the presence and absence of cAMP, has been studied using the nitrocellulose filter binding technique and analysed quantitatively using the theory of Clore et al. [J. Mol. Biol. (1982) 155, 447-466]. It is shown that both CRP and alpha CRP bind cooperatively to DNA. At an ionic strength of 100 mM and pH 7.5, the intrinsic equilibrium association constant for the binding of alpha CRP to DNA is approximately 10-times smaller than that for CRP, but the cooperativity parameter is approximately 17-times larger for alpha CRP than CRP. cAMP exerts its effect solely on the intrinsic equilibrium constant and does not alter the cooperativity. In the case of alpha CRP, cAMP reduces the intrinsic equilibrium association constant by a factor of 3, in contrast to the case of CRP where cAMP increases it by a factor of 3. The possible location of the DNA binding site present in the N-terminal core of CRP is discussed in the light of crystallographic data on the cAMP . CRP complex [McKay et al. (1982) J. Biol. Chem. 257, 9518-9524].  相似文献   

7.
E. coli Integration host factor (IHF) condenses the bacterial nucleoid by wrapping DNA. Previously, we showed that DNA flexibility compensates for structural characteristics of the four consensus recognition elements associated with specific binding (Aeling et al., J. Biol. Chem. 281, 39236–39248, 2006). If elements are missing, high-affinity binding occurs only if DNA deformation energy is low. In contrast, if all elements are present, net binding energy is unaffected by deformation energy. We tested two hypotheses for this observation: in complexes containing all elements, (1) stiff DNA sequences are less bent upon binding IHF than flexible ones; or (2) DNA sequences with differing flexibility have interactions with IHF that compensate for unfavorable deformation energy. Time-resolved Förster resonance energy transfer (FRET) shows that global topologies are indistinguishable for three complexes with oligonucleotides of different flexibility. However, pressure perturbation shows that the volume change upon binding is smaller with increasing flexibility. We interpret these results in the context of Record and coworker's model for IHF binding (J. Mol. Biol. 310, 379–401, 2001). We propose that the volume changes reflect differences in hydration that arise from structural variation at IHF–DNA interfaces while the resulting energetic compensation maintains the same net binding energy.  相似文献   

8.
Herpes simplex virus type 1 encodes a heterotrimeric helicase-primase complex composed of the products of the UL5, UL52, and UL8 genes. The UL5 protein contains seven motifs found in all members of helicase Superfamily 1 (SF1), and the UL52 protein contains several conserved motifs found in primases; however, the contributions of each subunit to the biochemical activities of the subcomplex are not clear. In this work, the DNA binding properties of wild type and mutant subcomplexes were examined using single-stranded, duplex, and forked substrates. A gel mobility shift assay indicated that the UL5-UL52 subcomplex binds more efficiently to the forked substrate than to either single strand or duplex DNA. Although nucleotides are not absolutely required for DNA binding, ADP stimulated the binding of UL5-UL52 to single strand DNA whereas ATP, ADP, and adenosine 5'-O-(thiotriphosphate) stimulated the binding to a forked substrate. We have previously shown that both subunits contact single-stranded DNA in a photocross-linking assay (Biswas, N., and Weller, S. K. (1999) J. Biol. Chem. 274, 8068-8076). In this study, photocross-linking assays with forked substrates indicate that the UL5 and UL52 subunits contact the forked substrates at different positions, UL52 at the single-stranded DNA tail and UL5 near the junction between single-stranded and double-stranded DNA. Neither subunit was able to cross-link a forked substrate when 5-iododeoxyuridine was located within the duplex portion. Photocross-linking experiments with subcomplexes containing mutant versions of UL5 and wild type UL52 indicated that the integrity of the ATP binding region is important for DNA binding of both subunits. These results support our previous proposal that UL5 and UL52 exhibit a complex interdependence for DNA binding (Biswas, N., and Weller, S. K. (1999) J. Biol. Chem. 274, 8068-8076) and indicate that the UL52 subunit may play a more active role in helicase activity than had previously been thought.  相似文献   

9.
An ethidium homodimer and acridine ethidium heterodimer have been synthesized (Gaugain, B., Barbet, J., Oberlin, R., Roques, B. P., & Le Pecq, J. B. (1978) Biochemistry 17 (preceding paper in this issue)). The binding of these molecules to DNA has been studied. We show that these dimers intercalate only one of their chromophores in DNA. At high salt concentration (Na+ greater than 1 M) only a single type of DNA-binding site exists. Binding affinity constants can then be measured directly using the Mc Ghee & Von Hippel treatment (Mc Ghee, J. D., & Von Hippel, P. H. (1974) J. Mol. Biol. 86, 469). In these conditions the dimers cover four base pairs when bound to DNA. Binding affinities have been deduced from competition experiments in 0.2 M Na+ and are in agreement with the extrapolated values determined from direct DNA-binding measurements at high ionic strength. As expected, the intrinsic binding constant of these dimers is considerably larger than the affinity of the monomer (ethidium dimer K = 2 X 10(8) M-1; ethidium bromide K = 1.5 X 10(5) M-1 in 0.2 M Na+). The fluorescence properties of these molecules have also been studied. The efficiency of the energy transfer from the acridine to the phenanthridinium chromophore, in the acridine ethidium heterodimer when bound to DNA, depends on the square of the AT base pair content. The large increase of fluorescence on binding to DNA combined with a high affinity constant for nucleic acid fluorescent probes. In particular, such molecules can be used in competition experiments to determine the DNA binding constant of ligands of high binding affinity such as bifunctional intercalators.  相似文献   

10.
J Mei  S Benashski    W Firshein 《Journal of bacteriology》1995,177(23):6766-6772
It has been possible to locate a submembrane domain representing less than 10% of the total membrane that appears to be responsible for sequestering some essential components required for plasmid RK2 DNA replication. This subfraction, whose cellular location in the membrane prior to extraction is still unknown, is derived from the inner membrane fraction, since it possesses enzyme marker activity (NADH oxidase) exclusively associated with the inner membrane. The subfraction was detected by a modification of the methods of Ishidate et al. (K. Ishidate, E. S. Kreeger, J. Zrike, S. Deb, B. Glauner, T. MacAlister, and L. I. Rothfield, J. Biol. Chem. 261:428-443, 1986) in which low pressure in a French pressure cell and lysozyme were used to preserve the supercoil plasmid DNA template during cell disruption. This was followed by successive cycles of sucrose gradient sedimentation and flotation density gradient centrifugation to reveal a number of subfractions, including the one of interest. The characteristics of plasmid interaction with the subfraction include the presence of supercoil DNA after extraction, the binding of the origin of plasmid replication (oriV) in vitro, and the association of the two plasmid-encoded initiation (TrfA) proteins (encoded by overlapping genes). However, another peak, the outer membrane fraction, also binds oriV in vitro, contains plasmid DNA in vivo, and associates with the TrfA initiation proteins. Nevertheless, it contains much less of the initiation proteins, and the specific activity of binding oriV is also much reduced compared with the other subfraction. There is a strong correlation between the association of the TrfA initiation proteins with a particular membrane fraction and the binding of oriV in vitro or plasmid DNA in vivo. Since the proteins are known to bind to repeated sequences in oriV (S. Perri, D. R. Helinski, and A. Toukdarian, J. Biol. Chem. 266:12536-1254, 1991; M. Pinkney, R. Diaz, E. Lanka, and C. M. Thomas, J. Mol. Biol. 203: 927-938, 1988), it appears that the initiation proteins themselves could be responsible, at least in part, for the association of plasmid DNA to the membrane.  相似文献   

11.
12.
A centromere-specific DNA-binding protein has been purified to homogeneity by a combination of conventional and sequence-affinity chromatography from the yeast Saccharomyces cerevisiae. This protein (designated CBP-I) has an apparent molecular weight of 16,000. It binds specifically to the CDEI (centromere DNA element I) region of yeast centromere DNA, as shown by the electrophoretic mobility retardation assay and DNase I protection analysis, but does not bind specifically to other regions of yeast centromere DNA such as CDEII and CDEIII. The relative binding affinity of purified CBP-I to five different point mutations of CDEI correlates directly with the previously determined ability of each point mutation to convey centromere function in a mitotic chromosome segregation assay (J. H. Hegemann, J. H. Shero, G. Cottarel, P. Philippsen, and P. Hieter, Mol. Cell. Biol. 8:2523-2535, 1988). This supports the authenticity of CBP-I as a functional component of the yeast kinetochore.  相似文献   

13.
14.
The single crystal structure of d(m5CGUAm5CG) soaked with copper(II) chloride was solved to atomic (1.3 A) resolution to study the base specificity of copper binding to double-stranded DNA. In the present copper(II) chloride-soaked structure, four crystallographically unique copper(II) complexes were observed bound to five of the six purine bases in the hexamer duplex. Covalent copper(II) binding occurred at N-7 of all four guanine bases and at one of the two adenine bases in the DNA duplex. Copper binding was not observed at the position (Ade4) located in an open solvent channel, whereas the second adenine site (Ade10) shared a complex with a guanine residue (Gua12) of a neighboring symmetry-related hexamer. The coordination geometries and distribution of these copper(II) complexes at the guanine bases in the crystal were comparable to the analogous sites in the isomorphous copper(II) chloride-soaked d(CGCGCG) crystal (Kagawa, T., Geierstanger, B. H., Wang, A. H.-J., and Ho, P.S. (1991) J. Biol. Chem. 266, 20175-20184). Thus, the decreased copper(II) binding affinity for Ade4 was not an artifact of crystal packing, but is intrinsic to the chemical properties of this purine base in duplex DNA. This suggests that the adenine bases in dilute solutions of Z-DNA and more generally other duplex DNA conformations are not susceptible to copper(II) modification. Thus, preferential copper(II) binding at guanine bases over adenine bases in double-stranded DNA may explain the observed specificity of copper(II)-induced oxidative DNA damage near guanine residues (Yamamoto, K., and Kawanishi, S. (1989) J. Biol. Chem. 264, 15435-15440; Sagripanti, J.-L., and Kraemer, K. H. (1989) J. Biol. Chem. 264, 1729-1734). The sharing of a single copper(II) complex by Ade10 and Gua12 of an adjacent hexamer suggests that additional and perhaps specific DNA-DNA interactions, as may be found in the densely packed environment of the nuclear matrix in the cell, may render N-7 of adenine bases prone to copper(II) modification.  相似文献   

15.
16.
The role of PriA, required for the assembly of the phiX174-type primosome on DNA, in cellular DNA replication has been unclear since its discovery. Recent evidence, based on the phenotypes of strains carrying priA null mutations, has led to proposals that the primosome assembly activity of PriA was required to load replication forks at intermediates such as D loops during homologous recombination. McGlynn et al. (McGlynn, P., Al-Deib, A. A., Liu, J., Marians, K. J., and Lloyd, R. G. (1997) J. Mol. Biol. 270, 212-221) demonstrated that PriA could, in fact, bind D loops. We show here that there are two modes of stable binding of PriA to DNA. One mode, in which the enzyme binds 3'-single-stranded extensions from duplex DNAs, presumably reflects the 3' --> 5' DNA helicase activity of PriA. The D loop DNA binding activity of PriA can be accounted for by the second mode, where the enzyme binds bent DNA at three strand junctions.  相似文献   

17.
18.
E L Loechler  J King 《Biochemistry》1986,25(20):5858-5864
Acridine dyes bound to the condensed DNA within phage particles sensitize them to inactivation by visible light. The mechanism involves absorption of photons by an acridine/DNA complex, generating singlet oxygen, which covalently damages nearby proteins needed for DNA injection [Bryant, J., & King, J. (1985) J. Mol. Biol. 180, 837-863]. Acridines and related dyes interact with double-stranded DNA through a number of binding modes. To determine in condensed phage DNA the binding mode responsible for this inactivation, we have studied the formation of the DNA/acridine target complexes for photoinactivation. Analysis of the kinetics of 9-aminoacridine binding to Salmonella phage P22 particles revealed the formation of two binding species, one of which appeared more rapidly and was apparently an intermediate in the formation of the second. The rapidly forming species represented DNA sites with intercalated acridines, while the more slowly forming species represented the subsequent binding of additional acridine molecules to the DNA backbone of sites already containing intercalated dye. The rates of photoinactivation correlated with the rate of binding of 9-aminoacridine to the DNA backbone. This suggests that the most effective species for sensitizing phage to light-induced damage has acridine molecules stacked alongside the backbone of a region with intercalated molecules.  相似文献   

19.
Eukaryotic replication protein A (RPA) is a single-stranded DNA-binding protein with multiple functions in DNA replication, repair, and genetic recombination. RPA contains an evolutionarily conserved 4-cysteine-type zinc finger motif (X(3)CX(2-4)CX(12-15)CX(2)C) that has a potential role in regulation of DNA replication and repair (Dong, J., Park, J-S., and Lee, S-H. (1999) Biochem. J. 337, 311-317 and Lin, Y.-L., Shivji, M. K. K., Chen, C., Kolodner, R., Wood, R. D., and Dutta, A. (1998) J. Biol. Chem. 273, 1453-1461), even though the zinc finger itself is not essential for its DNA binding activity (Kim, D. K., Stigger, E., and Lee, S.-H. (1996) J. Biol. Chem. 271, 15124-15129). Here, we show that RPA single-stranded DNA (ssDNA) binding activity is regulated by reduction-oxidation (redox) through its zinc finger domain. RPA-ssDNA interaction was stimulated 10-fold by the reducing agent, dithiothreitol (DTT), whereas treatment of RPA with oxidizing agent, diazene dicarboxylic acid bis[N,N-dimethylamide] (diamide), significantly reduced this interaction. The effect of diamide was reversed by the addition of excess DTT, suggesting that RPA ssDNA binding activity is regulated by redox. Redox regulation of RPA-ssDNA interaction was more effective in the presence of 0.2 M NaCl or higher. Cellular redox factor, thioredoxin, was able to replace DTT in stimulation of RPA DNA binding activity, suggesting that redox protein may be involved in RPA modulation in vivo. In contrast to wild-type RPA, zinc finger mutant (cysteine to alanine mutation at amino acid 486) did not require DTT for its ssDNA binding activity and is not affected by redox. Together, these results suggest a novel function for a putative zinc finger in the regulation of RPA DNA binding activity through cellular redox.  相似文献   

20.
After dissociation of cytosolic heteromeric glucocorticoid receptor complexes by steroid, salt, and other methods, only 35-60% of the dissociated receptors can bind to DNA-cellulose. The DNA-binding and non-DNA-binding forms of the dissociated receptors have the same Mr and are phosphorylated to the same extent (Tienrungroj, W., Sanchez, E. R., Housley, P. R., Harrison, R. W., and Pratt, W. B. (1987) J. Biol. Chem. 262, 17347-17349). The basis for the different DNA-binding activities is unknown, but the DNA-binding fraction of the receptor has a more basic pI than the non-DNA-binding fraction (Smith, A. C., Elsasser, M. S., and Harmon, J. M. (1986) J. Biol. Chem. 261, 13285-13292). We have separated the non-DNA-binding state of the receptor from the DNA-binding state and then cleaved it with trypsin and chymotrypsin. We find that the 15-kDa tryptic fragment derived from the non-DNA-binding state of the dissociated receptor is fully competent in binding DNA, whereas the 42-kDa chymotryptic fragment containing both the hormone-binding and DNA-binding domains does not bind DNA. Trypsin cleavage of the molybdate-stabilized untransformed receptor also yields a 15-kDa fragment that is fully competent in binding DNA. Reducing agents do not restore DNA-binding to the non-DNA-binding fraction of the receptor and the hormone-binding domain can be separated from the DNA-binding domain on nonreducing gel electrophoresis. These results argue that the two domains are not linked by disulfide bridges, and they are consistent with the proposal that there are two least energy states of folding after dissociation of hsp90. A significant portion of the receptors is "misfolded" in such a manner that the steroid binding domain is directly preventing DNA-binding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号